You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_math.py 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. # -*- coding: utf-8 -*-
  2. from functools import partial
  3. import numpy as np
  4. import pytest
  5. from utils import opr_test
  6. import megengine.functional as F
  7. from megengine import jit, tensor
  8. from megengine.core._imperative_rt.core2 import apply
  9. from megengine.core.ops import builtin
  10. def common_test_reduce(opr, ref_opr):
  11. data1_shape = (5, 6, 7)
  12. data2_shape = (2, 9, 12)
  13. data1 = np.random.random(data1_shape).astype(np.float32)
  14. data2 = np.random.random(data2_shape).astype(np.float32)
  15. cases = [
  16. {"input": data1},
  17. {"input": data2},
  18. {"input": np.array([[[1, 2, np.nan, 4], [8, 6, 5, 2], [2, 3, 4, 5]]])},
  19. ]
  20. if opr not in (F.argmin, F.argmax):
  21. # test default axis
  22. opr_test(cases, opr, ref_fn=ref_opr)
  23. # test all axises in range of input shape
  24. for axis in range(-3, 3):
  25. # test keepdims False
  26. opr_test(cases, opr, ref_fn=lambda x: ref_opr(x, axis=axis), axis=axis)
  27. # test keepdims True
  28. opr_test(
  29. cases,
  30. opr,
  31. ref_fn=lambda x: ref_opr(x, axis=axis, keepdims=True),
  32. axis=axis,
  33. keepdims=True,
  34. )
  35. else:
  36. # test defaut axis
  37. opr_test(cases, opr, ref_fn=lambda x: ref_opr(x).astype(np.int32))
  38. # test all axises in range of input shape
  39. for axis in range(0, 3):
  40. opr_test(
  41. cases,
  42. opr,
  43. ref_fn=lambda x: ref_opr(x, axis=axis).astype(np.int32),
  44. axis=axis,
  45. )
  46. # test negative axis
  47. axis = axis - len(data1_shape)
  48. opr_test(
  49. cases,
  50. opr,
  51. ref_fn=lambda x: ref_opr(x, axis=axis).astype(np.int32),
  52. axis=axis,
  53. )
  54. def test_sum():
  55. common_test_reduce(opr=F.sum, ref_opr=np.sum)
  56. def test_prod():
  57. common_test_reduce(opr=F.prod, ref_opr=np.prod)
  58. def test_mean():
  59. common_test_reduce(opr=F.mean, ref_opr=np.mean)
  60. def test_var():
  61. common_test_reduce(opr=F.var, ref_opr=np.var)
  62. def test_std():
  63. common_test_reduce(opr=F.std, ref_opr=np.std)
  64. def test_min():
  65. common_test_reduce(opr=F.min, ref_opr=np.min)
  66. def test_max():
  67. common_test_reduce(opr=F.max, ref_opr=np.max)
  68. def test_argmin():
  69. common_test_reduce(opr=F.argmin, ref_opr=np.argmin)
  70. def test_argmax():
  71. common_test_reduce(opr=F.argmax, ref_opr=np.argmax)
  72. def test_sqrt():
  73. d1_shape = (15,)
  74. d2_shape = (25,)
  75. d1 = np.random.random(d1_shape).astype(np.float32)
  76. d2 = np.random.random(d2_shape).astype(np.float32)
  77. cases = [{"input": d1}, {"input": d2}]
  78. opr_test(cases, F.sqrt, ref_fn=np.sqrt)
  79. def test_sort():
  80. data1_shape = (10, 3)
  81. data2_shape = (12, 2)
  82. data1 = np.random.random(data1_shape).astype(np.float32)
  83. data2 = np.random.random(data2_shape).astype(np.float32)
  84. output1 = [np.sort(data1), np.argsort(data1).astype(np.int32)]
  85. output2 = [np.sort(data2), np.argsort(data2).astype(np.int32)]
  86. cases = [
  87. {"input": data1, "output": output1},
  88. {"input": data2, "output": output2},
  89. ]
  90. opr_test(cases, F.sort)
  91. @pytest.mark.parametrize("is_symbolic", [None, False, True])
  92. def test_sort_empty(is_symbolic):
  93. data_shapes = [
  94. (0,),
  95. (10, 0),
  96. ]
  97. def fn(x):
  98. return F.sort(x)
  99. for shape in data_shapes:
  100. if is_symbolic is not None:
  101. fn_ = jit.trace(symbolic=is_symbolic)(fn)
  102. else:
  103. fn_ = fn
  104. data = np.random.random(shape).astype(np.float32)
  105. for _ in range(3):
  106. outs = fn_(tensor(data))
  107. ref_outs = (np.sort(data), np.argsort(data))
  108. assert len(ref_outs) == len(outs)
  109. for i in range(len(outs)):
  110. np.testing.assert_equal(outs[i].numpy(), ref_outs[i])
  111. if is_symbolic is None:
  112. break
  113. def test_normalize():
  114. cases = [
  115. {"input": np.random.random((2, 3, 12, 12)).astype(np.float32)} for i in range(2)
  116. ]
  117. def np_normalize(x, p=2, axis=None, eps=1e-12):
  118. if axis is None:
  119. norm = np.sum(x ** p) ** (1.0 / p)
  120. else:
  121. norm = np.sum(x ** p, axis=axis, keepdims=True) ** (1.0 / p)
  122. return x / np.clip(norm, a_min=eps, a_max=np.inf)
  123. # # Test L-2 norm along all dimensions
  124. # opr_test(cases, F.normalize, ref_fn=np_normalize)
  125. # # Test L-1 norm along all dimensions
  126. # opr_test(cases, partial(F.normalize, p=1), ref_fn=partial(np_normalize, p=1))
  127. # Test L-2 norm along the second dimension
  128. opr_test(cases, partial(F.normalize, axis=1), ref_fn=partial(np_normalize, axis=1))
  129. # Test some norm == 0
  130. cases[0]["input"][0, 0, 0, :] = 0
  131. cases[1]["input"][0, 0, 0, :] = 0
  132. opr_test(cases, partial(F.normalize, axis=3), ref_fn=partial(np_normalize, axis=3))
  133. def test_sum_neg_axis():
  134. shape = (2, 3)
  135. data = np.random.random(shape).astype(np.float32)
  136. for axis in (-1, -2, (-2, 1), (-1, 0)):
  137. get = F.sum(tensor(data), axis=axis)
  138. ref = np.sum(data, axis=axis)
  139. np.testing.assert_allclose(get.numpy(), ref, rtol=1e-6)
  140. with pytest.raises(AssertionError):
  141. F.sum(tensor(data), axis=(-1, 1))
  142. def test_builtin_reduce():
  143. shape = (2, 3, 3, 2)
  144. data = np.random.random(shape).astype(np.float32)
  145. for axis in (-1, -2, 0, 1):
  146. for keepdims in (True, False):
  147. op = builtin.Reduce(mode="sum", axis=axis, keepdim=keepdims)
  148. get = apply(op, tensor(data))[0]
  149. def_op = builtin.Reduce(mode="sum", axis=axis)
  150. def_get = apply(def_op, tensor(data))[0]
  151. ref = np.sum(data, axis=axis, keepdims=keepdims)
  152. np.testing.assert_allclose(get.numpy(), ref, rtol=1e-6)
  153. if keepdims == True:
  154. np.testing.assert_allclose(def_get.numpy(), ref, rtol=1e-6)
  155. def test_non_finite():
  156. shape = (32, 3, 32, 32)
  157. data = []
  158. for i in range(2):
  159. data.append(np.random.random(shape).astype(np.float32))
  160. tensorList = [tensor(x) for x in data]
  161. rst = F.math._check_non_finite(tensorList, 0.7)
  162. np.testing.assert_equal(rst.numpy(), [0])
  163. for i in range(len(tensorList)):
  164. np.testing.assert_allclose(tensorList[i].numpy() / 0.7, data[i], rtol=1e-6)
  165. data[1][0][0][0][0] = float("inf")
  166. rst = F.math._check_non_finite([tensor(x) for x in data], 0.7)
  167. np.testing.assert_equal(rst.numpy(), [1])
  168. data[1][0][0][0][0] = float("nan")
  169. rst = F.math._check_non_finite([tensor(x) for x in data], 0.7)
  170. np.testing.assert_equal(rst.numpy(), [1])
  171. @pytest.mark.parametrize("descending", [True, False])
  172. @pytest.mark.parametrize("sorted", [True, False])
  173. @pytest.mark.parametrize("inp1d", [True, False])
  174. @pytest.mark.parametrize("kth_only", [True, False])
  175. def test_topk(descending, sorted, inp1d, kth_only):
  176. k = 3
  177. if inp1d:
  178. data = np.random.permutation(7)
  179. else:
  180. data = np.random.permutation(5 * 7).reshape(5, 7)
  181. data = data.astype(np.int32)
  182. def np_sort(x):
  183. if descending:
  184. return np.sort(x)[..., ::-1]
  185. return np.sort(x)
  186. res = F.topk(
  187. tensor(data), k, descending=descending, no_sort=(not sorted), kth_only=kth_only
  188. )
  189. values, indices = res
  190. values = values.numpy()
  191. indices = indices.numpy()
  192. if kth_only:
  193. np.testing.assert_equal(
  194. values, np.take_along_axis(data, indices[..., None], -1).squeeze(-1)
  195. )
  196. np.testing.assert_equal(values, np_sort(data)[..., k - 1])
  197. else:
  198. np.testing.assert_equal(values, np.take_along_axis(data, indices, -1))
  199. if not sorted:
  200. values = np_sort(values)
  201. np.testing.assert_equal(values, np_sort(data)[..., :k])
  202. @pytest.mark.parametrize("is_trace", [True, False])
  203. def test_reduce_on_empty_tensor(is_trace):
  204. dtypes = [np.float32, np.int32, np.bool]
  205. inputs = [
  206. (np.random.random((0,)), None),
  207. (np.random.random((3, 0, 2)), 1),
  208. (np.random.random((10, 10, 0, 10)), 0),
  209. ]
  210. def run_test(fn, ref_fn, input, dtype, axis=None, symbolic=False):
  211. if is_trace:
  212. fn = jit.trace(symbolic=symbolic)(fn)
  213. for i in range(3):
  214. out = fn(tensor(input, dtype=dtype), axis=axis).numpy()
  215. out_ref = ref_fn(input.astype(dtype), axis=axis)
  216. np.testing.assert_equal(out, out_ref)
  217. for dtype in dtypes:
  218. for inp, axis in inputs:
  219. run_test(F.sum, np.sum, inp, dtype, axis, True)
  220. run_test(F.sum, np.sum, inp, dtype, axis, False)
  221. run_test(F.prod, np.prod, inp, dtype, axis, True)
  222. run_test(F.prod, np.prod, inp, dtype, axis, False)