You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 90 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/test/helper.h"
  12. #include "megbrain/gopt/inference.h"
  13. #include "megbrain/gopt/basic_arith.h"
  14. #include "megbrain/gopt/gtrans.h"
  15. #include "megbrain/opr/io.h"
  16. #include "megbrain/opr/basic_arith_wrapper.h"
  17. #include "megbrain/opr/tensor_manip.h"
  18. #include "megbrain/opr/dnn/batch_norm.h"
  19. #include "megbrain/opr/dnn/convolution.h"
  20. #include "megbrain/opr/utility.h"
  21. #include "megbrain/opr/imgproc.h"
  22. #include "megbrain/opr/tensor_manip.h"
  23. #include "megbrain/opr/nn_int.h"
  24. #include "megbrain/opr/imgproc.h"
  25. #include "megbrain/opr/dnn/pooling.h"
  26. #include "megbrain/comp_node_env.h"
  27. #include "./helper.h"
  28. #include "megdnn/tensor_format.h"
  29. #include <random>
  30. using namespace mgb;
  31. namespace {
  32. //! find first the operator of specific type; raise exception if not found
  33. template <typename T>
  34. T& find_opr(SymbolVar endpoint) {
  35. T* found = nullptr;
  36. auto cb = [&found](cg::OperatorNodeBase* opr) {
  37. if (!found && opr->same_type<T>()) {
  38. found = &opr->cast_final_safe<T>();
  39. }
  40. };
  41. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  42. mgb_assert(found);
  43. return *found;
  44. }
  45. template <typename T>
  46. size_t find_opr_num(SymbolVar endpoint) {
  47. size_t opr_num = 0;
  48. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  49. if (opr->same_type<T>()) {
  50. opr_num++;
  51. }
  52. };
  53. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  54. return opr_num;
  55. }
  56. class NaiveMegDNNHandleScope {
  57. int m_orig_level;
  58. public:
  59. NaiveMegDNNHandleScope()
  60. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  61. CompNode::finalize();
  62. }
  63. ~NaiveMegDNNHandleScope() {
  64. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  65. mgb_assert(set == 2);
  66. CompNode::finalize();
  67. }
  68. };
  69. #if MGB_CUDA
  70. //! this function is only used in TestGoptInference.EnableCHWN4...
  71. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  72. size_t INP_W) {
  73. static std::mt19937 rng(next_rand_seed());
  74. auto rand_real = [&](double lo, double hi) {
  75. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  76. };
  77. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  78. auto ptr = mat.ptr<float>();
  79. for (size_t i = 0; i < N; ++i) {
  80. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  81. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  82. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  83. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  84. ptr[0] = ptr[4] = cos(rot) * scale;
  85. ptr[1] = -(ptr[3] = sin(rot) * scale);
  86. ptr[3] *= sheer;
  87. ptr[4] *= sheer;
  88. ptr[2] = dx;
  89. ptr[5] = dy;
  90. ptr[6] = kx;
  91. ptr[7] = ky;
  92. ptr[8] = kb;
  93. ptr += 9;
  94. }
  95. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  96. }
  97. #endif
  98. } // namespace
  99. TEST(TestGoptInference, ParamFuse) {
  100. constexpr size_t SIZE = 23;
  101. HostTensorGenerator<> gen;
  102. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  103. auto graph = ComputingGraph::make();
  104. graph->options().graph_opt_level = 0;
  105. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  106. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  107. p = opr::Host2DeviceCopy::make(*graph, host_p),
  108. z = x + y, // endpoint
  109. q = x * y + p; // middle point
  110. SymbolVar z1, q1;
  111. unpack_vector(
  112. gopt::GraphOptimizer{}.
  113. add_pass<gopt::ParamFusePass>().
  114. apply({{z, q}}).endpoint_vars(),
  115. z1, q1);
  116. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  117. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  118. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  119. q.node()->owner_opr()->dyn_typeinfo());
  120. HostTensorND host_z, host_q;
  121. auto func = graph->compile(
  122. {make_callback_copy(z1, host_z),
  123. make_callback_copy(q1, host_q)});
  124. func->execute();
  125. int nr_opr = 0;
  126. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  127. ASSERT_EQ(6, nr_opr);
  128. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  129. pq = host_q.ptr<float>();
  130. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  131. for (size_t i = 0; i < SIZE; ++ i) {
  132. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  133. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  134. }
  135. }
  136. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  137. constexpr size_t SIZE = 23;
  138. HostTensorGenerator<> gen;
  139. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  140. auto graph = ComputingGraph::make();
  141. graph->options().graph_opt_level = 0;
  142. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  143. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  144. p = opr::Host2DeviceCopy::make(*graph, host_p),
  145. z = x + y, // endpoint
  146. q = x * y + p; // middle point
  147. SymbolVar z1, q1;
  148. unpack_vector(gopt::GraphOptimizer{}
  149. .add_pass<gopt::ParamMergePass>()
  150. .apply({{z}})
  151. .endpoint_vars(),
  152. z1);
  153. ASSERT_TRUE(z1.node()
  154. ->owner_opr()->input(0)->owner_opr()
  155. ->same_type<opr::MultipleDeviceTensorHolder>());
  156. unpack_vector(
  157. gopt::GraphOptimizer{}.
  158. add_pass<gopt::ParamMergePass>().
  159. add_pass<gopt::ParamFusePass>().
  160. apply({{z, q}}).endpoint_vars(),
  161. z1, q1);
  162. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  163. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  164. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  165. q.node()->owner_opr()->dyn_typeinfo());
  166. HostTensorND host_z, host_q;
  167. auto func = graph->compile(
  168. {make_callback_copy(z1, host_z),
  169. make_callback_copy(q1, host_q)});
  170. func->execute();
  171. int nr_opr = 0;
  172. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  173. ASSERT_EQ(6, nr_opr);
  174. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  175. pq = host_q.ptr<float>();
  176. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  177. for (size_t i = 0; i < SIZE; ++ i) {
  178. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  179. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  180. }
  181. }
  182. TEST(TestGoptInference, ParamFuseMultiRead) {
  183. HostTensorGenerator<> gen;
  184. auto graph = ComputingGraph::make();
  185. graph->options().graph_opt_level = 0;
  186. auto mkvar = [&](const char *name, const TensorShape &shp) {
  187. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  188. };
  189. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  190. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  191. };
  192. auto x = mkvar("x", {23}),
  193. p0 = mkcvar("p0", {1}),
  194. p1 = mkcvar("p1", {1}),
  195. z0 = x * (p0 + p1) + x / (p0 + p1);
  196. SymbolVar z1;
  197. unpack_vector(
  198. gopt::GraphOptimizer{}.
  199. add_pass<gopt::ParamFusePass>().
  200. apply({{z0}}).endpoint_vars(),
  201. z1);
  202. ASSERT_NE(z0.node(), z1.node());
  203. ASSERT_TRUE(z1.node()->owner_opr()->input(0)->owner_opr()
  204. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  205. ASSERT_TRUE(z1.node()->owner_opr()->input(1)->owner_opr()
  206. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  207. HostTensorND host_z0, host_z1;
  208. graph->compile({make_callback_copy(z0, host_z0),
  209. make_callback_copy(z1, host_z1)})->execute();
  210. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  211. }
  212. TEST(TestGoptInference, ParamFuseStaticInfer) {
  213. HostTensorGenerator<> gen;
  214. auto graph = ComputingGraph::make();
  215. auto mkvar = [&](const char *name, const TensorShape &shp) {
  216. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  217. };
  218. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  219. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  220. };
  221. auto a = mkvar("x", {4}),
  222. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  223. SymbolVar b1;
  224. unpack_vector(
  225. gopt::GraphOptimizer{}.
  226. add_pass<gopt::ParamFusePass>().
  227. apply({{b}}).endpoint_vars(),
  228. b1);
  229. ASSERT_EQ(b1, a.reshape({2, 2}));
  230. }
  231. TEST(TestGoptInference, ParamRedistributeConvMul) {
  232. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  233. HostTensorGenerator<> gen;
  234. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  235. host_w = gen({OC, IC, KH, KW});
  236. auto graph = ComputingGraph::make();
  237. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  238. k = opr::Dimshuffle::make(
  239. opr::SharedDeviceTensor::make(*graph, *host_k),
  240. {-1, 0, -1, -1}),
  241. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  242. y0 = opr::Convolution::make(x * k, w);
  243. SymbolVar y1;
  244. unpack_vector(
  245. gopt::GraphOptimizer{}.
  246. add_pass<gopt::ParamRedistributePass>().
  247. apply({{y0}}).endpoint_vars(),
  248. y1);
  249. ASSERT_NE(y0.node(), y1.node());
  250. HostTensorND host_y0, host_y1;
  251. auto func = graph->compile(
  252. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  253. func->execute();
  254. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  255. }
  256. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  257. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  258. HostTensorGenerator<> gen;
  259. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  260. host_w = gen({C, C, KH, KW});
  261. auto graph = ComputingGraph::make();
  262. graph->options().graph_opt_level = 0;
  263. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  264. k = opr::Dimshuffle::make(
  265. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  266. {-1, 0, -1, -1}),
  267. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  268. // y0 should be replaced
  269. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  270. y0k = (y0 * k).rename("y0k"),
  271. // y0k is accessed twice, so it should not be replaced
  272. y1 = opr::Convolution::make(y0k, w).rename("y1"),
  273. z0 = y1 / y0k;
  274. SymbolVar z1;
  275. unpack_vector(
  276. gopt::GraphOptimizer{}.
  277. add_pass<gopt::ParamRedistributePass>().
  278. apply({{z0}}).endpoint_vars(),
  279. z1);
  280. ASSERT_NE(z0.node(), z1.node());
  281. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  282. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  283. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  284. HostTensorND host_z0, host_z1;
  285. auto func = graph->compile(
  286. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  287. func->execute();
  288. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  289. }
  290. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  291. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  292. HostTensorGenerator<> gen;
  293. auto host_x = gen({N, IC, IH, IW}),
  294. host_k1 = gen({IC}),
  295. host_k2 = gen({1, OC, 1, 1}),
  296. host_w = gen({OC, IC, KH, KW});
  297. auto graph = ComputingGraph::make();
  298. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  299. k1 = opr::Dimshuffle::make(
  300. opr::SharedDeviceTensor::make(*graph, *host_k1),
  301. {-1, 0, -1, -1}),
  302. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  303. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  304. y0 = opr::Convolution::make(x * k1, w) * k2;
  305. SymbolVar y1;
  306. unpack_vector(
  307. gopt::GraphOptimizer{}.
  308. add_pass<gopt::ParamRedistributePass>().
  309. add_pass<gopt::ParamFusePass>().
  310. apply({{y0}}).endpoint_vars(),
  311. y1);
  312. auto y1opr = y1.node()->owner_opr();
  313. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  314. ASSERT_EQ(y1opr->input(0), x.node());
  315. HostTensorND host_y0, host_y1;
  316. auto func = graph->compile(
  317. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  318. func->execute();
  319. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  320. }
  321. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  322. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  323. HostTensorGenerator<> gen;
  324. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  325. host_w = gen({OC, IC, KH, KW});
  326. auto graph = ComputingGraph::make();
  327. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  328. b = opr::Dimshuffle::make(
  329. opr::SharedDeviceTensor::make(*graph, *host_b),
  330. {-1, 0, -1, -1}),
  331. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  332. y0 = opr::Convolution::make(x + b, w);
  333. SymbolVar y1;
  334. unpack_vector(
  335. gopt::GraphOptimizer{}.
  336. add_pass<gopt::ParamRedistributePass>().
  337. add_pass<gopt::ParamFusePass>().
  338. apply({{y0}}).endpoint_vars(),
  339. y1);
  340. ASSERT_NE(y0.node(), y1.node());
  341. HostTensorND host_y0, host_y1;
  342. auto func = graph->compile(
  343. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  344. func->execute();
  345. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  346. }
  347. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  348. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5,
  349. IW = 4, OC = 4, KH = 3, KW = 2;
  350. HostTensorGenerator<> gen;
  351. auto graph = ComputingGraph::make();
  352. auto mkvar = [&](const char *name, const TensorShape &shp) {
  353. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  354. };
  355. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  356. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  357. };
  358. auto x0 = mkvar("x0", {N, IC0, IH, IW}),
  359. x1 = mkvar("x1", {N, IC1, IH, IW}),
  360. k0 = opr::Dimshuffle::make(
  361. mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  362. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  363. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  364. w1 = mkcvar("w1", {OC, IC1, KH, KW}),
  365. b0 = mkvar("b0", {1, OC, 1, 1}),
  366. b1 = mkcvar("b1", {1}),
  367. k2 = mkcvar("k2", {1}),
  368. y0 = (
  369. opr::Convolution::make(x0 * k0, w0) +
  370. opr::Convolution::make(x1 + k1, w1) +
  371. b0 + b1) * k2;
  372. SymbolVar y1;
  373. unpack_vector(
  374. gopt::GraphOptimizer{}.
  375. add_pass<gopt::ParamRedistributePass>().
  376. add_pass<gopt::ReorderArithChainPass>(
  377. gopt::ConstVarType::IMMUTABLE_AND_PARAM).
  378. add_pass<gopt::ParamFusePass>().
  379. apply({{y0}}).endpoint_vars(),
  380. y1);
  381. ASSERT_NE(y0.node(), y1.node());
  382. HostTensorND host_y0, host_y1;
  383. auto func = graph->compile(
  384. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  385. func->execute();
  386. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  387. auto chain = gopt::extract_opr_leaves(y1.node(),
  388. [](cg::OperatorNodeBase*opr){
  389. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  390. });
  391. size_t nr_conv = 0;
  392. for (auto i: chain) {
  393. auto opr = i->owner_opr();
  394. if (opr->same_type<opr::Convolution>()) {
  395. ++ nr_conv;
  396. ASSERT_TRUE(opr->input(0)->owner_opr()
  397. ->same_type<opr::Host2DeviceCopy>());
  398. ASSERT_TRUE(opr->input(1)->owner_opr()
  399. ->same_type<opr::SharedDeviceTensor>());
  400. }
  401. }
  402. ASSERT_EQ(2u, nr_conv);
  403. ASSERT_EQ(4u, chain.size());
  404. }
  405. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  406. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  407. HostTensorGenerator<> gen;
  408. auto graph = ComputingGraph::make();
  409. graph->options().graph_opt_level = 0;
  410. auto mkvar = [&](const char *name, const TensorShape &shp) {
  411. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  412. };
  413. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  414. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  415. };
  416. auto x = mkvar("x", {N, IC, IH, IW}),
  417. k0 = mkcvar("k0", {1, IC, 1, 1}),
  418. b0 = mkcvar("b0", {1, IC, 1, 1}),
  419. k1 = mkcvar("k0", {1}),
  420. b1 = mkcvar("b0", {1}),
  421. w = mkcvar("w", {OC, IC, KH, KW}),
  422. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  423. SymbolVar y1;
  424. unpack_vector(
  425. gopt::GraphOptimizer{}.
  426. add_pass<gopt::ParamRedistributePass>().
  427. add_pass<gopt::ParamFusePass>().
  428. apply({{y0}}).endpoint_vars(),
  429. y1);
  430. ASSERT_NE(y0.node(), y1.node());
  431. HostTensorND host_y0, host_y1;
  432. auto func = graph->compile(
  433. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  434. func->execute();
  435. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  436. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  437. ASSERT_TRUE(y1elem);
  438. auto yconv = y1elem->input(0)->owner_opr();
  439. if (!yconv->same_type<opr::Convolution>())
  440. yconv = y1elem->input(1)->owner_opr();
  441. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  442. ASSERT_EQ(x.node(), yconv->input(0));
  443. }
  444. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  445. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  446. HostTensorGenerator<> gen;
  447. auto graph = ComputingGraph::make();
  448. graph->options().graph_opt_level = 0;
  449. auto mkvar = [&](const char *name, const TensorShape &shp) {
  450. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  451. };
  452. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  453. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  454. };
  455. auto x = mkvar("x", {N, IC, IH, IW}),
  456. k = mkcvar("k", {1, OC, 1, 1}),
  457. w = mkcvar("w", {OC, IC, KH, KW});
  458. auto conv = opr::Convolution::make(x, w);
  459. auto t = conv * k;
  460. auto y0 = t * 4.2f + t * 2.4f;
  461. SymbolVar y1;
  462. unpack_vector(
  463. gopt::GraphOptimizer{}.
  464. add_pass<gopt::ParamRedistributePass>().
  465. add_pass<gopt::ParamFusePass>().
  466. apply({{y0}}).endpoint_vars(),
  467. y1);
  468. ASSERT_NE(y0.node(), y1.node());
  469. HostTensorND host_y0, host_y1;
  470. auto func = graph->compile(
  471. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  472. func->execute();
  473. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  474. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  475. ASSERT_TRUE(y1elem);
  476. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  477. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  478. ASSERT_TRUE(ymul0);
  479. ASSERT_TRUE(ymul1);
  480. auto yconv = ymul0->input(0)->owner_opr();
  481. if (!yconv->same_type<opr::Convolution>())
  482. {
  483. yconv = ymul0->input(1)->owner_opr();
  484. }
  485. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  486. if (ymul1->input(0) != yconv->output(0))
  487. {
  488. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  489. }
  490. ASSERT_EQ(x.node(), yconv->input(0));
  491. }
  492. TEST(TestGoptInference, ParamFuseBiasMerge) {
  493. HostTensorGenerator<> gen;
  494. auto graph = ComputingGraph::make();
  495. graph->options().graph_opt_level = 0;
  496. auto mkvar = [&](const char* name, const TensorShape& shp) {
  497. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  498. };
  499. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  500. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  501. };
  502. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  503. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  504. b2 = mkcvar("b2", {1, 4, 1, 1}),
  505. y1 = opr::Convolution::make(x, w1) + b1,
  506. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  507. SymbolVar y_opt;
  508. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  509. HostTensorND host_y, host_y_opt;
  510. auto func = graph->compile({make_callback_copy(y, host_y),
  511. make_callback_copy(y_opt, host_y_opt)});
  512. func->execute();
  513. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  514. graph->compile({{y_opt, {}}})
  515. ->to_json()
  516. ->writeto_fpath(
  517. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  518. auto chain = gopt::extract_opr_leaves(
  519. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  520. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  521. });
  522. ASSERT_EQ(3u, chain.size());
  523. }
  524. TEST(TestGoptInference, Float16IOFloat32Compute) {
  525. constexpr size_t INP_H = 10, INP_W = 10;
  526. HostTensorGenerator<> gen;
  527. auto graph = ComputingGraph::make();
  528. auto mkvar = [&](const char* name, const TensorShape& shp) {
  529. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  530. };
  531. graph->options().graph_opt_level = 0;
  532. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  533. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  534. s1 = mkvar("s1", {4, 3, 1, 1});
  535. auto b = opr::Convolution::make(s0, s1, {}, {});
  536. auto y = a + b;
  537. y = opr::Concat::make({y, -y}, 0);
  538. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  539. SymbolVar y_opt;
  540. unpack_vector(gopt::optimize_for_inference(
  541. {y}, gopt::OptimizeForInferenceOptions{}
  542. .enable_f16_io_f32_comp()),
  543. y_opt);
  544. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  545. HostTensorND host_y, host_y_opt;
  546. auto func = graph->compile({make_callback_copy(y, host_y),
  547. make_callback_copy(y_opt, host_y_opt)});
  548. func->execute();
  549. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  550. }
  551. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  552. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  553. HostTensorGenerator<> gen;
  554. auto graph = ComputingGraph::make();
  555. auto mkvar = [&](const char* name, const TensorShape& shp) {
  556. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  557. };
  558. graph->options().graph_opt_level = 0;
  559. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  560. float value1 = M_PI, value2 = 0.6;
  561. auto gen_mat = [&](HostTensorND& mat) {
  562. auto ptr = mat.ptr<float>();
  563. for (size_t i = 0; i < N; ++i) {
  564. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  565. dx = value2, ky = value2, kx = value2, kb = value2;
  566. ptr[0] = ptr[4] = cos(rot) * scale;
  567. ptr[1] = -(ptr[3] = sin(rot) * scale);
  568. ptr[3] *= sheer;
  569. ptr[4] *= sheer;
  570. ptr[2] = dx;
  571. ptr[5] = dy;
  572. ptr[6] = kx;
  573. ptr[7] = ky;
  574. ptr[8] = kb;
  575. ptr += 9;
  576. }
  577. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  578. };
  579. auto mat_host = std::make_shared<HostTensorND>(
  580. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  581. gen_mat(*mat_host);
  582. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  583. TensorShape out_shp{20, 20};
  584. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  585. SymbolVar y_opt;
  586. unpack_vector(gopt::optimize_for_inference(
  587. {y}, gopt::OptimizeForInferenceOptions{}
  588. .enable_f16_io_f32_comp()),
  589. y_opt);
  590. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  591. HostTensorND host_y, host_y_opt;
  592. auto func = graph->compile({make_callback_copy(y, host_y),
  593. make_callback_copy(y_opt, host_y_opt)});
  594. func->execute();
  595. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  596. }
  597. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  598. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  599. HostTensorGenerator<dtype::Uint8> gen_uint8;
  600. auto graph = ComputingGraph::make();
  601. auto mkvar = [&](const char* name, const TensorShape& shp) {
  602. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  603. };
  604. graph->options().graph_opt_level = 0;
  605. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  606. float value1 = M_PI, value2 = 0.6;
  607. auto gen_mat = [&](HostTensorND& mat) {
  608. auto ptr = mat.ptr<float>();
  609. for (size_t i = 0; i < N; ++i) {
  610. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  611. dx = value2, ky = value2, kx = value2, kb = value2;
  612. ptr[0] = ptr[4] = cos(rot) * scale;
  613. ptr[1] = -(ptr[3] = sin(rot) * scale);
  614. ptr[3] *= sheer;
  615. ptr[4] *= sheer;
  616. ptr[2] = dx;
  617. ptr[5] = dy;
  618. ptr[6] = kx;
  619. ptr[7] = ky;
  620. ptr[8] = kb;
  621. ptr += 9;
  622. }
  623. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  624. };
  625. auto mat_host = std::make_shared<HostTensorND>(
  626. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  627. gen_mat(*mat_host);
  628. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  629. TensorShape out_shp{20, 20};
  630. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  631. SymbolVar y_opt;
  632. unpack_vector(gopt::optimize_for_inference(
  633. {y}, gopt::OptimizeForInferenceOptions{}
  634. .enable_f16_io_comp()),
  635. y_opt);
  636. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  637. HostTensorND host_y, host_y_opt;
  638. auto func = graph->compile({make_callback_copy(y, host_y),
  639. make_callback_copy(y_opt, host_y_opt)});
  640. func->execute();
  641. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  642. }
  643. TEST(TestGoptInference, Float32TOFloat16) {
  644. CompNode cn = CompNode::load("cpu0");
  645. HostTensorGenerator<> gen(0, 1, 0);
  646. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  647. host_x2 = gen({4, 3, 1, 1}, cn);
  648. auto graph = ComputingGraph::make();
  649. auto make_f32_to_f16_graph = [&]() {
  650. graph->options().graph_opt_level = 0;
  651. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  652. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  653. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  654. auto b = opr::Convolution::make(d1, d2, {}, {});
  655. auto y = d0 + b;
  656. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  657. SymbolVar y_opt;
  658. unpack_vector(gopt::optimize_for_inference(
  659. {y}, gopt::OptimizeForInferenceOptions{}
  660. .enable_f16_io_comp()),
  661. y_opt);
  662. return y_opt;
  663. };
  664. auto make_f16_graph = [&]() {
  665. auto d0 = opr::TypeCvt::make(
  666. opr::Host2DeviceCopy::make(*graph, host_x0),
  667. dtype::Float16{}),
  668. d1 = opr::TypeCvt::make(
  669. opr::Host2DeviceCopy::make(*graph, host_x1),
  670. dtype::Float16{}),
  671. d2 = opr::TypeCvt::make(
  672. opr::SharedDeviceTensor::make(*graph, *host_x2),
  673. dtype::Float16{});
  674. auto b = opr::Convolution::make(d1, d2, {}, {});
  675. SymbolVar y = d0 + b;
  676. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  677. y = opr::TypeCvt::make(y, dtype::Float32{});
  678. return y;
  679. };
  680. auto y_opt = make_f32_to_f16_graph();
  681. auto y = make_f16_graph();
  682. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  683. ASSERT_EQ(y.dtype(), dtype::Float32{});
  684. HostTensorND host_y_opt, host_y;
  685. auto func = graph->compile({make_callback_copy(y, host_y),
  686. make_callback_copy(y_opt, host_y_opt)});
  687. func->execute();
  688. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  689. }
  690. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  691. CompNode cn = CompNode::load("cpu0");
  692. HostTensorGenerator<> gen(0, 1, 0);
  693. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  694. host_x2 = gen({4, 3, 1, 1}, cn);
  695. auto graph = ComputingGraph::make();
  696. auto make_f32_to_f16_graph = [&]() {
  697. graph->options().graph_opt_level = 0;
  698. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  699. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  700. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  701. auto b = opr::Convolution::make(d1, d2, {}, {});
  702. auto y = d0 + b;
  703. SymbolVar y_opt;
  704. unpack_vector(gopt::optimize_for_inference(
  705. {y}, gopt::OptimizeForInferenceOptions{}
  706. .enable_f16_io_comp()),
  707. y_opt);
  708. return y_opt;
  709. };
  710. auto make_f16_graph = [&]() {
  711. auto d0 = opr::TypeCvt::make(
  712. opr::Host2DeviceCopy::make(*graph, host_x0),
  713. dtype::Float16{}),
  714. d1 = opr::TypeCvt::make(
  715. opr::Host2DeviceCopy::make(*graph, host_x1),
  716. dtype::Float16{}),
  717. d2 = opr::TypeCvt::make(
  718. opr::SharedDeviceTensor::make(*graph, *host_x2),
  719. dtype::Float16{});
  720. auto b = opr::Convolution::make(d1, d2, {}, {});
  721. SymbolVar y = d0 + b;
  722. y = opr::TypeCvt::make(y, dtype::Float32{});
  723. return y;
  724. };
  725. auto y_opt = make_f32_to_f16_graph();
  726. auto y = make_f16_graph();
  727. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  728. ASSERT_EQ(y.dtype(), dtype::Float32{});
  729. HostTensorND host_y_opt, host_y;
  730. auto func = graph->compile({make_callback_copy(y, host_y),
  731. make_callback_copy(y_opt, host_y_opt)});
  732. func->execute();
  733. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  734. }
  735. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  736. // hwcd4 is only supported in naive handle
  737. NaiveMegDNNHandleScope naive_megdnn_handle;
  738. HostTensorGenerator<> gen;
  739. auto cn = CompNode::load("cpu0");
  740. auto graph = ComputingGraph::make();
  741. graph->options().graph_opt_level = 0;
  742. auto mkvar = [&](const char* name, const TensorShape& shp) {
  743. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  744. };
  745. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  746. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  747. .rename(name);
  748. };
  749. auto host_x = gen({8, 8, 8, 8}, cn);
  750. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  751. opr::Convolution::Param param;
  752. param.pad_h = param.pad_w = 0;
  753. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  754. conv = opr::Convolution::make(x, w1, param);
  755. auto shape_of = opr::GetVarShape::make(conv);
  756. auto subtensor = opr::Subtensor::make(
  757. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  758. 0, x.make_scalar(2), None, x.make_scalar(1))});
  759. opr::Resize::Param param_resize;
  760. param_resize.format = opr::Resize::Param::Format::NCHW;
  761. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  762. auto mat = mkcvar("mat", {8, 3, 3}),
  763. warp = opr::WarpPerspectiveForward::make(
  764. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  765. auto b = mkvar("b", {1, 4, 1, 1}),
  766. elem = opr::Elemwise::make({warp + b},
  767. opr::Elemwise::Param::Mode::RELU);
  768. param.pad_h = param.pad_w = 1;
  769. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  770. y = opr::Convolution::make(elem, w2, param);
  771. SymbolVar y_opt;
  772. unpack_vector(
  773. gopt::optimize_for_inference(
  774. {y},
  775. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  776. y_opt);
  777. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  778. find_opr<opr::Convolution>(y_opt).param().format);
  779. graph->compile({{y_opt, {}}})
  780. ->to_json()
  781. ->writeto_fpath(
  782. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  783. HostTensorND host_y_opt, host_y;
  784. auto func = graph->compile({make_callback_copy(y, host_y),
  785. make_callback_copy(y_opt, host_y_opt)});
  786. func->execute();
  787. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  788. *host_x = *gen({8, 8, 16, 16}, cn);
  789. func->execute();
  790. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  791. }
  792. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  793. // hwcd4 is only supported in naive handle
  794. NaiveMegDNNHandleScope naive_megdnn_handle;
  795. HostTensorGenerator<> gen;
  796. auto cn = CompNode::load("cpu0");
  797. auto graph = ComputingGraph::make();
  798. graph->options().graph_opt_level = 0;
  799. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  800. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  801. .rename(name);
  802. };
  803. auto host_x = gen({8, 8, 8, 8}, cn);
  804. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  805. opr::Convolution::Param param;
  806. param.pad_h = param.pad_w = 0;
  807. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  808. conv = opr::Convolution::make(x, w0, param);
  809. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  810. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  811. SymbolVar y_opt;
  812. unpack_vector(
  813. gopt::optimize_for_inference(
  814. {y},
  815. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  816. y_opt);
  817. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  818. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  819. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  820. find_opr<opr::Convolution>(y_opt).param().format);
  821. HostTensorND host_y_opt, host_y;
  822. auto func = graph->compile({make_callback_copy(y, host_y),
  823. make_callback_copy(y_opt, host_y_opt)});
  824. func->execute();
  825. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  826. }
  827. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  828. // hwcd4 is only supported in naive handle
  829. NaiveMegDNNHandleScope naive_megdnn_handle;
  830. HostTensorGenerator<> gen;
  831. auto cn = CompNode::load("cpu0");
  832. auto graph = ComputingGraph::make();
  833. graph->options().graph_opt_level = 0;
  834. auto mkcvar = [&](const char* name, const TensorShape& shp,
  835. const DType& dtype) {
  836. return opr::TypeCvt::make(
  837. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  838. .rename(name),
  839. dtype);
  840. };
  841. auto host_x = gen({8, 8, 8, 8}, cn);
  842. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  843. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  844. opr::ConvBias::Param param;
  845. param.pad_h = param.pad_w = 0;
  846. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  847. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  848. y = opr::ConvBias::make(
  849. x, w, b, param, {},
  850. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  851. SymbolVar y_opt;
  852. unpack_vector(
  853. gopt::optimize_for_inference(
  854. {y},
  855. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  856. y_opt);
  857. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  858. find_opr<opr::ConvBias>(y_opt).param().format);
  859. graph->compile({{y_opt, {}}})
  860. ->to_json()
  861. ->writeto_fpath(output_file(
  862. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  863. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  864. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  865. HostTensorND host_y_opt, host_y;
  866. auto func = graph->compile({make_callback_copy(float_y, host_y),
  867. make_callback_copy(float_y_opt, host_y_opt)});
  868. func->execute();
  869. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  870. }
  871. TEST(TestGoptInference, ConvertFormatPadIC) {
  872. // hwcd4 is only supported in naive handle
  873. NaiveMegDNNHandleScope naive_megdnn_handle;
  874. HostTensorGenerator<> gen;
  875. auto cn = CompNode::load("cpu0");
  876. auto graph = ComputingGraph::make();
  877. graph->options().graph_opt_level = 0;
  878. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  879. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  880. .rename(name);
  881. };
  882. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  883. host_inp2 = gen({1, 6, 256, 256}, cn);
  884. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  885. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  886. auto shape_tmp = mkcvar("tmp", {256, 256});
  887. auto shape_of = opr::GetVarShape::make(shape_tmp);
  888. opr::Resize::Param param_resize;
  889. param_resize.format = opr::Resize::Param::Format::NCHW;
  890. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  891. auto concat = opr::Concat::make({inp2, resize}, 1);
  892. opr::Convolution::Param param;
  893. param.pad_h = param.pad_w = 1;
  894. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  895. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  896. auto y = opr::Convolution::make(concat, w1, param);
  897. SymbolVar y_opt;
  898. unpack_vector(
  899. gopt::optimize_for_inference(
  900. {y},
  901. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  902. y_opt);
  903. HostTensorND host_y_opt, host_y;
  904. auto func = graph->compile({make_callback_copy(y, host_y),
  905. make_callback_copy(y_opt, host_y_opt)});
  906. func->execute();
  907. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  908. }
  909. TEST(TestGoptInference, ConvertBatchNormPass) {
  910. auto cn = CompNode::load("cpu0");
  911. HostTensorGenerator<> gen(0, 1, 0);
  912. auto graph = ComputingGraph::make();
  913. graph->options().graph_opt_level = 0;
  914. auto mkvar = [&](const char* name, const TensorShape& shp) {
  915. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  916. };
  917. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  918. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  919. .rename(name);
  920. };
  921. using Param = opr::BatchNorm::Param;
  922. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  923. TensorShape shp = {1, 3, 1, 1};
  924. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  925. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  926. auto host_variance = gen(shp, cn);
  927. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  928. host_variance->ptr<float>()[i] =
  929. std::abs(host_variance->ptr<float>()[i]);
  930. }
  931. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  932. .rename("variance");
  933. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  934. SymbolVar y_opt;
  935. unpack_vector(gopt::optimize_for_inference(
  936. {y}, gopt::OptimizeForInferenceOptions{}),
  937. y_opt);
  938. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  939. graph->compile({{y_opt, {}}})
  940. ->to_json()
  941. ->writeto_fpath(
  942. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  943. HostTensorND host_y, host_y_opt;
  944. auto func = graph->compile({make_callback_copy(y, host_y),
  945. make_callback_copy(y_opt, host_y_opt)});
  946. func->execute();
  947. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  948. }
  949. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  950. // hwcd4 is only supported in naive handle
  951. NaiveMegDNNHandleScope naive_megdnn_handle;
  952. auto cn = CompNode::load("cpu0");
  953. HostTensorGenerator<> gen;
  954. auto graph = ComputingGraph::make();
  955. graph->options().graph_opt_level = 0;
  956. auto mkvar = [&](const char* name, const TensorShape& shp) {
  957. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  958. };
  959. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  960. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  961. .rename(name);
  962. };
  963. opr::Convolution::Param param;
  964. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  965. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  966. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  967. y_cut = opr::Convolution::make(x, w1, param),
  968. y1 = opr::Elemwise::make({y_cut + b1},
  969. opr::Elemwise::Param::Mode::RELU);
  970. param.pad_w = param.pad_h = 1;
  971. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  972. opr::Elemwise::Param::Mode::SIGMOID);
  973. param.pad_w = param.pad_h = 0;
  974. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  975. y_expand =
  976. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  977. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  978. SymbolVar y_opt;
  979. unpack_vector(gopt::optimize_for_inference(
  980. {y}, gopt::OptimizeForInferenceOptions{}
  981. .enable_use_nhwcd4()
  982. .enable_fuse_conv_bias_nonlinearity()),
  983. y_opt);
  984. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  985. graph->compile({{y_opt, {}}})
  986. ->to_json()
  987. ->writeto_fpath(output_file(
  988. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  989. HostTensorND host_y, host_y_opt;
  990. auto func = graph->compile({make_callback_copy(y, host_y),
  991. make_callback_copy(y_opt, host_y_opt)});
  992. func->execute();
  993. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  994. }
  995. TEST(TestGoptInference, ParamMerge) {
  996. auto cns = load_multiple_xpus(2);
  997. HostTensorGenerator<> gen;
  998. auto graph = ComputingGraph::make();
  999. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1000. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1001. y = var0 + opr::Copy::make(var1, {cns[0]});
  1002. HostTensorND y_expected_val;
  1003. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1004. SymbolVar y_opt;
  1005. unpack_vector(gopt::GraphOptimizer{}
  1006. .add_pass<gopt::ParamMergePass>()
  1007. .apply({{y}})
  1008. .endpoint_vars(),
  1009. y_opt);
  1010. auto opr = y_opt.node()->owner_opr();
  1011. ASSERT_EQ(2u, opr->input().size());
  1012. ASSERT_EQ(2u,
  1013. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1014. HostTensorND y_got_val;
  1015. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1016. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1017. }
  1018. TEST(TestGoptInference, ParamMergeFormat) {
  1019. auto cns = load_multiple_xpus(2);
  1020. auto make_dv = [](const HostTensorND& hv) {
  1021. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1022. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1023. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1024. ret->copy_from_fixlayout(hv).sync();
  1025. return ret;
  1026. };
  1027. HostTensorGenerator<> gen;
  1028. auto graph = ComputingGraph::make();
  1029. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1030. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1031. var1 = opr::SharedDeviceTensorWithFormat::make(
  1032. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1033. y = var0 + opr::Copy::make(var1, {cns[0]});
  1034. HostTensorND y_expected_val;
  1035. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1036. SymbolVar y_opt;
  1037. unpack_vector(gopt::GraphOptimizer{}
  1038. .add_pass<gopt::ParamMergePass>()
  1039. .apply({{y}})
  1040. .endpoint_vars(),
  1041. y_opt);
  1042. auto opr = y_opt.node()->owner_opr();
  1043. ASSERT_EQ(2u, opr->input().size());
  1044. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1045. .output()
  1046. .size());
  1047. HostTensorND y_got_val;
  1048. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1049. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1050. }
  1051. #if MGB_ENABLE_FASTRUN
  1052. TEST(TestGoptInference, AlgoProfile) {
  1053. HostTensorGenerator<> gen;
  1054. auto graph = ComputingGraph::make();
  1055. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1056. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1057. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1058. z = opr::Convolution::make(x, y);
  1059. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1060. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1061. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1062. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1063. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1064. }
  1065. #endif
  1066. TEST(TestGoptInference, ProfileCache) {
  1067. HostTensorGenerator<> gen;
  1068. auto graph = ComputingGraph::make();
  1069. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1070. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1071. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1072. z = opr::Convolution::make(x, y);
  1073. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1074. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1075. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1076. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1077. ASSERT_EQ(S::PROFILE_HEURISTIC, conv.execution_policy().strategy);
  1078. }
  1079. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1080. HostTensorGenerator<> gen;
  1081. auto graph = ComputingGraph::make();
  1082. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1083. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1084. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1085. z = opr::Convolution::make(x, y);
  1086. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1087. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1088. conv.execution_policy_transient().workspace_limit);
  1089. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1090. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1091. }
  1092. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1093. auto cn = CompNode::load("xpux");
  1094. HostTensorGenerator<dtype::Int8> gen;
  1095. auto graph = ComputingGraph::make();
  1096. graph->options().graph_opt_level = 0;
  1097. auto mkvar = [&](const char* name, const TensorShape& shp,
  1098. const DType& dtype) {
  1099. return opr::TypeCvt::make(
  1100. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1101. dtype);
  1102. };
  1103. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1104. const DType& dtype) {
  1105. return opr::TypeCvt::make(
  1106. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1107. .rename(name),
  1108. dtype);
  1109. };
  1110. for (auto format : {
  1111. opr::Convolution::Param::Format::NCHW,
  1112. opr::Convolution::Param::Format::NHWC,
  1113. opr::Convolution::Param::Format::NCHW4
  1114. }) {
  1115. opr::Convolution::Param param;
  1116. param.format = format;
  1117. SymbolVar x, w, b;
  1118. if (format == opr::Convolution::Param::Format::NHWC) {
  1119. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1120. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1121. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1122. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1123. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1124. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1125. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1126. } else {
  1127. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1128. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1129. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1130. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1131. }
  1132. auto y = opr::Convolution::make(x, w, param);
  1133. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1134. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1135. opr::ConvBias::Param conv_bias_param;
  1136. conv_bias_param.format = format;
  1137. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1138. auto concret_y = opr::ConvBias::make(
  1139. x, w, b, conv_bias_param, {},
  1140. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1141. check(concret_y, y);
  1142. }
  1143. }
  1144. #if MGB_CUDA
  1145. TEST(TestEnableTensorCore, SmallInputShape) {
  1146. REQUIRE_GPU(1);
  1147. auto cn = CompNode::load("gpu0");
  1148. cn.activate();
  1149. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1150. auto sm_ver = prop.major * 10 + prop.minor;
  1151. if (sm_ver < 75) {
  1152. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1153. "expected: %d)\n",
  1154. sm_ver, 75);
  1155. return;
  1156. }
  1157. HostTensorGenerator<dtype::Int8> gen;
  1158. auto graph = ComputingGraph::make();
  1159. graph->options().graph_opt_level = 0;
  1160. auto mkvar = [&](const char* name, const TensorShape& shp,
  1161. const DType& dtype) {
  1162. return opr::TypeCvt::make(
  1163. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1164. dtype);
  1165. };
  1166. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1167. const DType& dtype) {
  1168. return opr::TypeCvt::make(
  1169. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1170. .rename(name),
  1171. dtype);
  1172. };
  1173. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1174. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1175. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1176. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1177. opr::ConvBias::Param param;
  1178. param.format = opr::ConvBias::Param::Format::NCHW4;
  1179. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1180. param.stride_h = param.stride_w = 2;
  1181. param.pad_h = param.pad_w = 1;
  1182. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1183. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1184. y = opr::ConvBias::make(y, w, b, param, {},
  1185. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1186. y = opr::TypeCvt::make(y, dtype::Float32());
  1187. SymbolVar y_opt;
  1188. SymbolVar y_no_tc;
  1189. unpack_vector(gopt::optimize_for_inference(
  1190. {y}, gopt::OptimizeForInferenceOptions{}
  1191. .enable_fuse_conv_bias_nonlinearity()
  1192. .enable_use_tensor_core()),
  1193. y_opt);
  1194. unpack_vector(gopt::optimize_for_inference(
  1195. {y}, gopt::OptimizeForInferenceOptions{}
  1196. .enable_fuse_conv_bias_nonlinearity()),
  1197. y_no_tc);
  1198. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1199. ASSERT_EQ(2u, nr_dimshuffle);
  1200. HostTensorND host_y, host_y_opt;
  1201. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1202. make_callback_copy(y_opt, host_y_opt)});
  1203. func->execute();
  1204. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1205. }
  1206. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1207. REQUIRE_GPU(1);
  1208. auto cn = CompNode::load("gpu0");
  1209. cn.activate();
  1210. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1211. auto sm_ver = prop.major * 10 + prop.minor;
  1212. if (sm_ver < 75) {
  1213. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1214. "expected: %d)\n",
  1215. sm_ver, 75);
  1216. return;
  1217. }
  1218. HostTensorGenerator<dtype::Int8> gen;
  1219. auto graph = ComputingGraph::make();
  1220. graph->options().graph_opt_level = 0;
  1221. auto mkvar = [&](const char* name, const TensorShape& shp,
  1222. const DType& dtype) {
  1223. return opr::TypeCvt::make(
  1224. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1225. dtype);
  1226. };
  1227. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1228. const DType& dtype) {
  1229. return opr::TypeCvt::make(
  1230. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1231. .rename(name),
  1232. dtype);
  1233. };
  1234. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1235. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1236. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1237. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1238. opr::ConvBias::Param param;
  1239. param.format = opr::ConvBias::Param::Format::NCHW4;
  1240. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1241. param.stride_h = param.stride_w = 1;
  1242. param.pad_h = param.pad_w = 1;
  1243. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1244. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1245. y = opr::TypeCvt::make(y, dtype::Float32());
  1246. SymbolVar y_opt;
  1247. SymbolVar y_no_tc;
  1248. unpack_vector(gopt::optimize_for_inference(
  1249. {y}, gopt::OptimizeForInferenceOptions{}
  1250. .enable_fuse_conv_bias_nonlinearity()
  1251. .enable_use_tensor_core()),
  1252. y_opt);
  1253. unpack_vector(gopt::optimize_for_inference(
  1254. {y}, gopt::OptimizeForInferenceOptions{}
  1255. .enable_fuse_conv_bias_nonlinearity()),
  1256. y_no_tc);
  1257. HostTensorND host_y, host_y_opt;
  1258. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1259. make_callback_copy(y_opt, host_y_opt)});
  1260. func->execute();
  1261. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1262. }
  1263. TEST(TestGoptInference, EnableTensorCore) {
  1264. REQUIRE_GPU(1);
  1265. auto cn = CompNode::load("gpu0");
  1266. cn.activate();
  1267. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1268. auto sm_ver = prop.major * 10 + prop.minor;
  1269. if (sm_ver < 75) {
  1270. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1271. "expected: %d)\n",
  1272. sm_ver, 75);
  1273. return;
  1274. }
  1275. HostTensorGenerator<dtype::Int8> gen;
  1276. auto graph = ComputingGraph::make();
  1277. graph->options().graph_opt_level = 0;
  1278. auto mkvar = [&](const char* name, const TensorShape& shp,
  1279. const DType& dtype) {
  1280. return opr::TypeCvt::make(
  1281. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1282. dtype);
  1283. };
  1284. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1285. const DType& dtype) {
  1286. return opr::TypeCvt::make(
  1287. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1288. .rename(name),
  1289. dtype);
  1290. };
  1291. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1292. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1293. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1294. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1295. opr::Convolution::Param param;
  1296. param.format = opr::Convolution::Param::Format::NCHW4;
  1297. param.stride_h = param.stride_w = 1;
  1298. param.pad_h = param.pad_w = 1;
  1299. auto y = opr::Convolution::make(x, w, param);
  1300. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1301. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1302. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1303. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1304. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1305. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1306. auto y4 = y1 + y2 + y3;
  1307. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1308. SymbolVar y_opt;
  1309. SymbolVar y_no_tc;
  1310. unpack_vector(gopt::optimize_for_inference(
  1311. {y4}, gopt::OptimizeForInferenceOptions{}
  1312. .enable_fuse_conv_bias_nonlinearity()
  1313. .enable_use_tensor_core()),
  1314. y_opt);
  1315. unpack_vector(gopt::optimize_for_inference(
  1316. {y4}, gopt::OptimizeForInferenceOptions{}
  1317. .enable_fuse_conv_bias_nonlinearity()),
  1318. y_no_tc);
  1319. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1320. ASSERT_EQ(3u, nr_dimshuffle);
  1321. graph->compile({{y_opt, {}}})
  1322. ->to_json()
  1323. ->writeto_fpath(
  1324. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1325. HostTensorND host_y, host_y_opt;
  1326. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1327. make_callback_copy(y_opt, host_y_opt)});
  1328. func->execute();
  1329. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1330. }
  1331. TEST(FuseConvBiasZPass, BlockFuse) {
  1332. REQUIRE_GPU(1);
  1333. auto cn = CompNode::load("gpu0");
  1334. cn.activate();
  1335. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1336. auto sm_ver = prop.major * 10 + prop.minor;
  1337. if (sm_ver < 61) {
  1338. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1339. "expected: %d)\n",
  1340. sm_ver, 61);
  1341. return;
  1342. }
  1343. HostTensorGenerator<dtype::Int8> gen;
  1344. auto graph = ComputingGraph::make();
  1345. graph->options().graph_opt_level = 0;
  1346. auto mkvar = [&](const char* name, const TensorShape& shp,
  1347. const DType& dtype) {
  1348. return opr::TypeCvt::make(
  1349. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1350. dtype);
  1351. };
  1352. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1353. const DType& dtype) {
  1354. return opr::TypeCvt::make(
  1355. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1356. .rename(name),
  1357. dtype);
  1358. };
  1359. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1360. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1361. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1362. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1363. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1364. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1365. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  1366. opr::ConvBias::Param param;
  1367. param.format = opr::Convolution::Param::Format::NCHW4;
  1368. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1369. param.stride_h = param.stride_w = 1;
  1370. param.pad_h = param.pad_w = 1;
  1371. auto y1 = opr::ConvBias::make(x, w1, b1, param, {},
  1372. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1373. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  1374. auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
  1375. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1376. y3 = opr::ElemwiseMultiType::make(
  1377. {y1, y2},
  1378. {opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU},
  1379. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  1380. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1381. auto y4 = opr::ConvBias::make(y3, w3, b3, param, {},
  1382. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1383. z = opr::ElemwiseMultiType::make(
  1384. {y3, y4},
  1385. {opr::ElemwiseMultiType::Param::Mode::QADD},
  1386. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1387. z = opr::TypeCvt::make(z, dtype::Float32());
  1388. //! fuse z mannually
  1389. auto z0 = opr::ConvBias::make(x, w1, b1, param, {},
  1390. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1391. auto z1 = opr::ConvBias::make(z0, w2, b2, z0, param, {},
  1392. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  1393. z2 = opr::ConvBias::make(z1, w3, b3, param, {},
  1394. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1395. z4 = opr::ElemwiseMultiType::make(
  1396. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  1397. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1398. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  1399. SymbolVar z_fuse;
  1400. SymbolVar z_nonfuse;
  1401. unpack_vector(gopt::optimize_for_inference(
  1402. {z}, gopt::OptimizeForInferenceOptions{}
  1403. .enable_fuse_conv_bias_nonlinearity()
  1404. .enable_fuse_conv_bias_with_z()),
  1405. z_fuse);
  1406. unpack_vector(gopt::optimize_for_inference(
  1407. {z4}, gopt::OptimizeForInferenceOptions{}
  1408. .enable_fuse_conv_bias_nonlinearity()),
  1409. z_nonfuse);
  1410. auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  1411. MGB_MARK_USED_VAR(nr_elem_multi_type);
  1412. ASSERT_EQ(1u, nr_elem_multi_type);
  1413. graph->compile({{z_fuse, {}}})
  1414. ->to_json()
  1415. ->writeto_fpath(
  1416. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  1417. graph->compile({{z_nonfuse, {}}})
  1418. ->to_json()
  1419. ->writeto_fpath(
  1420. output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  1421. HostTensorND host_z_fuse, host_z_nonfuse;
  1422. auto func = graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  1423. make_callback_copy(z_fuse, host_z_fuse)});
  1424. func->execute();
  1425. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  1426. }
  1427. TEST(TestEnableTensorCore, ShuffleMerge) {
  1428. REQUIRE_GPU(1);
  1429. auto cn = CompNode::load("gpu0");
  1430. cn.activate();
  1431. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1432. auto sm_ver = prop.major * 10 + prop.minor;
  1433. if (sm_ver < 75) {
  1434. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1435. "expected: %d)\n",
  1436. sm_ver, 75);
  1437. return;
  1438. }
  1439. HostTensorGenerator<dtype::Int8> gen;
  1440. auto graph = ComputingGraph::make();
  1441. graph->options().graph_opt_level = 0;
  1442. auto mkvar = [&](const char* name, const TensorShape& shp,
  1443. const DType& dtype) {
  1444. return opr::TypeCvt::make(
  1445. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1446. dtype);
  1447. };
  1448. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1449. const DType& dtype) {
  1450. return opr::TypeCvt::make(
  1451. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1452. .rename(name),
  1453. dtype);
  1454. };
  1455. auto nchw2nchw4 = [](SymbolVar x) {
  1456. auto xshp = opr::GetVarShape::make(x);
  1457. auto cv = [&x](int v) { return x.make_scalar(v); };
  1458. auto sub = [&xshp, &cv](int idx) {
  1459. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1460. };
  1461. auto tshp = opr::Concat::make(
  1462. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1463. auto y0 = opr::Reshape::make(x, tshp);
  1464. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1465. return y1;
  1466. };
  1467. auto nchw42nchw = [](SymbolVar x) {
  1468. auto xshp = opr::GetVarShape::make(x);
  1469. auto cv = [&x](int v) { return x.make_scalar(v); };
  1470. auto sub = [&xshp, &cv](int idx) {
  1471. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1472. };
  1473. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1474. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1475. auto y1 = opr::Reshape::make(y0, tshp);
  1476. return y1;
  1477. };
  1478. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1479. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  1480. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  1481. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  1482. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z= nchw2nchw4(z);
  1483. opr::ConvBias::Param param;
  1484. param.format = opr::ConvBias::Param::Format::NCHW4;
  1485. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1486. param.stride_h = param.stride_w = 1;
  1487. param.pad_h = param.pad_w = 1;
  1488. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1489. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1490. y = nchw42nchw(y);
  1491. y = opr::TypeCvt::make(y, dtype::Float32());
  1492. SymbolVar y_opt;
  1493. SymbolVar y_no_tc;
  1494. unpack_vector(gopt::optimize_for_inference(
  1495. {y}, gopt::OptimizeForInferenceOptions{}
  1496. .enable_fuse_conv_bias_nonlinearity()
  1497. .enable_use_tensor_core()),
  1498. y_opt);
  1499. unpack_vector(gopt::optimize_for_inference(
  1500. {y}, gopt::OptimizeForInferenceOptions{}
  1501. .enable_fuse_conv_bias_nonlinearity()),
  1502. y_no_tc);
  1503. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1504. ASSERT_EQ(3u, nr_dimshuffle);
  1505. HostTensorND host_y, host_y_opt;
  1506. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1507. make_callback_copy(y_opt, host_y_opt)});
  1508. func->execute();
  1509. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1510. }
  1511. #endif
  1512. TEST(FuseConvBiasZPass, Basic) {
  1513. REQUIRE_GPU(1);
  1514. auto cn = CompNode::load("gpu0");
  1515. HostTensorGenerator<dtype::Int8> gen;
  1516. auto graph = ComputingGraph::make();
  1517. graph->options().graph_opt_level = 0;
  1518. auto mkvar = [&](const char* name, const TensorShape& shp,
  1519. const DType& dtype) {
  1520. return opr::TypeCvt::make(
  1521. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1522. dtype);
  1523. };
  1524. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1525. const DType& dtype) {
  1526. return opr::TypeCvt::make(
  1527. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1528. .rename(name),
  1529. dtype);
  1530. };
  1531. auto format = opr::Convolution::Param::Format::NCHW4;
  1532. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1533. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1534. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1535. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1536. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1537. opr::ConvBias::Param conv_bias_param;
  1538. conv_bias_param.format = format;
  1539. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  1540. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  1541. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  1542. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1543. SymbolVar y_opt;
  1544. // check fuse mode
  1545. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  1546. opr::ElemwiseMultiType::Param::Mode::QMUL,
  1547. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  1548. auto y1 = opr::ElemwiseMultiType::make(
  1549. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1550. unpack_vector(
  1551. gopt::optimize_for_inference(
  1552. {y1}, gopt::OptimizeForInferenceOptions{}
  1553. .enable_fuse_conv_bias_nonlinearity()
  1554. .enable_fuse_conv_bias_with_z()
  1555. .enable_use_tensor_core()),
  1556. y_opt);
  1557. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1558. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  1559. ASSERT_NE(0u, nr_elemwisemultitype);
  1560. } else
  1561. ASSERT_EQ(0u, nr_elemwisemultitype);
  1562. // fuse convbiasz and z
  1563. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  1564. auto y2 = opr::ElemwiseMultiType::make(
  1565. {y1, b2}, {mode},
  1566. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1567. unpack_vector(
  1568. gopt::optimize_for_inference(
  1569. {y2}, gopt::OptimizeForInferenceOptions{}
  1570. .enable_fuse_conv_bias_nonlinearity()
  1571. .enable_fuse_conv_bias_with_z()
  1572. .enable_use_tensor_core()),
  1573. y_opt);
  1574. auto nr_elemwisemultitype =
  1575. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1576. ASSERT_NE(0u, nr_elemwisemultitype);
  1577. }
  1578. }
  1579. }
  1580. #if MGB_CUDA
  1581. TEST(TestGoptInference, EnableCHWN4) {
  1582. REQUIRE_GPU(1);
  1583. auto cn = CompNode::load("gpu0");
  1584. cn.activate();
  1585. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1586. auto sm_ver = prop.major * 10 + prop.minor;
  1587. if (sm_ver < 61) {
  1588. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1589. "expected: %d)\n",
  1590. sm_ver, 61);
  1591. return;
  1592. }
  1593. HostTensorGenerator<dtype::Int8> gen;
  1594. auto graph = ComputingGraph::make();
  1595. graph->options().graph_opt_level = 0;
  1596. auto mkvar = [&](const char* name, const TensorShape& shp,
  1597. const DType& dtype) {
  1598. return opr::TypeCvt::make(
  1599. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1600. dtype);
  1601. };
  1602. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1603. const DType& dtype) {
  1604. return opr::TypeCvt::make(
  1605. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1606. .rename(name),
  1607. dtype);
  1608. };
  1609. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1610. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1611. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1612. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1613. opr::ConvBias::Param param;
  1614. param.format = opr::ConvBias::Param::Format::NCHW4;
  1615. param.stride_h = param.stride_w = 1;
  1616. param.pad_h = param.pad_w = 1;
  1617. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1618. auto y = opr::ConvBiasForward::make(
  1619. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1620. auto y1 = opr::ElemwiseMultiType::make(
  1621. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  1622. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1623. auto y2 = opr::ConvBiasForward::make(
  1624. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1625. auto y3 = opr::ElemwiseMultiType::make(
  1626. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  1627. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1628. auto y4 = opr::ElemwiseMultiType::make(
  1629. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1630. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1631. y4 = opr::ElemwiseMultiType::make(
  1632. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1633. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1634. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1635. SymbolVar y_opt;
  1636. SymbolVar y_cudnn;
  1637. unpack_vector(
  1638. gopt::GraphOptimizer{}
  1639. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1640. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1641. .add_pass<gopt::FuseConvBiasZPass>()
  1642. .apply({{y4}})
  1643. .endpoint_vars(),
  1644. y_opt);
  1645. unpack_vector(gopt::GraphOptimizer{}
  1646. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1647. .add_pass<gopt::FuseConvBiasZPass>()
  1648. .apply({{y4}})
  1649. .endpoint_vars(),
  1650. y_cudnn);
  1651. HostTensorND host_y, host_y_opt;
  1652. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1653. make_callback_copy(y_opt, host_y_opt)});
  1654. func->execute();
  1655. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1656. }
  1657. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  1658. REQUIRE_GPU(1);
  1659. auto cn = CompNode::load("gpu0");
  1660. cn.activate();
  1661. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1662. auto sm_ver = prop.major * 10 + prop.minor;
  1663. if (sm_ver < 61) {
  1664. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1665. "expected: %d)\n",
  1666. sm_ver, 61);
  1667. return;
  1668. }
  1669. HostTensorGenerator<dtype::Int8> gen;
  1670. auto graph = ComputingGraph::make();
  1671. graph->options().graph_opt_level = 0;
  1672. auto mkvar = [&](const char* name, const TensorShape& shp,
  1673. const DType& dtype) {
  1674. return opr::TypeCvt::make(
  1675. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1676. dtype);
  1677. };
  1678. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1679. const DType& dtype) {
  1680. return opr::TypeCvt::make(
  1681. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1682. .rename(name),
  1683. dtype);
  1684. };
  1685. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  1686. cn, TensorShape{32, 3, 3}, dtype::Float32());
  1687. warp_perspective_mat_gen(*mat, 32, 16, 16);
  1688. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  1689. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1690. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1691. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1692. opr::ConvBias::Param param;
  1693. param.format = opr::ConvBias::Param::Format::NCHW4;
  1694. param.stride_h = param.stride_w = 1;
  1695. param.pad_h = param.pad_w = 1;
  1696. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1697. auto y = opr::ConvBiasForward::make(
  1698. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1699. opr::WarpPerspective::Param warp_param;
  1700. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  1701. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  1702. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  1703. auto nchw42nchw = [](SymbolVar x) {
  1704. auto xshp = opr::GetVarShape::make(x);
  1705. auto cv = [&x](int v) { return x.make_scalar(v); };
  1706. auto sub = [&xshp, &cv](int idx) {
  1707. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1708. };
  1709. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1710. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1711. auto y1 = opr::Reshape::make(y0, tshp);
  1712. return y1;
  1713. };
  1714. y1 = nchw42nchw(y1);
  1715. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  1716. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  1717. SymbolVar y_opt;
  1718. SymbolVar y_cudnn;
  1719. unpack_vector(gopt::GraphOptimizer{}
  1720. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1721. .add_pass<gopt::FuseConvBiasZPass>()
  1722. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1723. .apply({{y2}})
  1724. .endpoint_vars(),
  1725. y_opt);
  1726. unpack_vector(gopt::GraphOptimizer{}
  1727. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1728. .add_pass<gopt::FuseConvBiasZPass>()
  1729. .apply({{y2}})
  1730. .endpoint_vars(),
  1731. y_cudnn);
  1732. HostTensorND host_y, host_y_opt;
  1733. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1734. make_callback_copy(y_opt, host_y_opt)});
  1735. func->execute();
  1736. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1737. }
  1738. TEST(TestGoptInference, EnableCHWN4Pooling) {
  1739. REQUIRE_GPU(1);
  1740. auto cn = CompNode::load("gpu0");
  1741. cn.activate();
  1742. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1743. auto sm_ver = prop.major * 10 + prop.minor;
  1744. if (sm_ver < 61) {
  1745. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1746. "expected: %d)\n",
  1747. sm_ver, 61);
  1748. return;
  1749. }
  1750. HostTensorGenerator<dtype::Int8> gen;
  1751. auto graph = ComputingGraph::make();
  1752. graph->options().graph_opt_level = 0;
  1753. auto mkvar = [&](const char* name, const TensorShape& shp,
  1754. const DType& dtype) {
  1755. return opr::TypeCvt::make(
  1756. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1757. dtype);
  1758. };
  1759. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1760. const DType& dtype) {
  1761. return opr::TypeCvt::make(
  1762. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1763. .rename(name),
  1764. dtype);
  1765. };
  1766. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1767. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1768. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1769. opr::ConvBias::Param param;
  1770. param.format = opr::ConvBias::Param::Format::NCHW4;
  1771. param.stride_h = param.stride_w = 1;
  1772. param.pad_h = param.pad_w = 1;
  1773. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1774. auto y = opr::ConvBiasForward::make(
  1775. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1776. opr::Pooling::Param pool_param;
  1777. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  1778. y = opr::Pooling::make(y, pool_param);
  1779. y = opr::TypeCvt::make(y, dtype::Float32());
  1780. auto nchw42nchw = [](SymbolVar x) {
  1781. auto xshp = opr::GetVarShape::make(x);
  1782. auto cv = [&x](int v) { return x.make_scalar(v); };
  1783. auto sub = [&xshp, &cv](int idx) {
  1784. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1785. };
  1786. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1787. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1788. auto y1 = opr::Reshape::make(y0, tshp);
  1789. return y1;
  1790. };
  1791. y = nchw42nchw(y);
  1792. pool_param.format = opr::Pooling::Param::Format::NCHW;
  1793. auto y1 = opr::Pooling::make(y, pool_param);
  1794. SymbolVar y_opt;
  1795. SymbolVar y_cudnn;
  1796. unpack_vector(
  1797. gopt::GraphOptimizer{}
  1798. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1799. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1800. .add_pass<gopt::FuseConvBiasZPass>()
  1801. .apply({{y1}})
  1802. .endpoint_vars(),
  1803. y_opt);
  1804. unpack_vector(gopt::GraphOptimizer{}
  1805. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1806. .add_pass<gopt::FuseConvBiasZPass>()
  1807. .apply({{y1}})
  1808. .endpoint_vars(),
  1809. y_cudnn);
  1810. HostTensorND host_y, host_y_opt;
  1811. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1812. make_callback_copy(y_opt, host_y_opt)});
  1813. func->execute();
  1814. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1815. }
  1816. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  1817. REQUIRE_GPU(1);
  1818. auto cn = CompNode::load("gpu0");
  1819. cn.activate();
  1820. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1821. auto sm_ver = prop.major * 10 + prop.minor;
  1822. if (sm_ver < 61) {
  1823. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1824. "expected: %d)\n",
  1825. sm_ver, 61);
  1826. return;
  1827. }
  1828. HostTensorGenerator<dtype::Int8> gen;
  1829. auto graph = ComputingGraph::make();
  1830. graph->options().graph_opt_level = 0;
  1831. auto mkvar = [&](const char* name, const TensorShape& shp,
  1832. const DType& dtype) {
  1833. return opr::TypeCvt::make(
  1834. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1835. dtype);
  1836. };
  1837. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1838. const DType& dtype) {
  1839. return opr::TypeCvt::make(
  1840. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1841. .rename(name),
  1842. dtype);
  1843. };
  1844. auto nchw2nchw4 = [](SymbolVar x) {
  1845. auto xshp = opr::GetVarShape::make(x);
  1846. auto cv = [&x](int v) { return x.make_scalar(v); };
  1847. auto sub = [&xshp, &cv](int idx) {
  1848. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1849. };
  1850. auto tshp = opr::Concat::make(
  1851. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1852. auto y0 = opr::Reshape::make(x, tshp);
  1853. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1854. return y1;
  1855. };
  1856. auto nchw42nchw = [](SymbolVar x) {
  1857. auto xshp = opr::GetVarShape::make(x);
  1858. auto cv = [&x](int v) { return x.make_scalar(v); };
  1859. auto sub = [&xshp, &cv](int idx) {
  1860. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1861. };
  1862. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1863. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1864. auto y1 = opr::Reshape::make(y0, tshp);
  1865. return y1;
  1866. };
  1867. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1868. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1869. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1870. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  1871. x = nchw2nchw4(x);
  1872. opr::ConvBias::Param param;
  1873. param.format = opr::ConvBias::Param::Format::NCHW4;
  1874. param.stride_h = param.stride_w = 1;
  1875. param.pad_h = param.pad_w = 1;
  1876. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1877. auto y = opr::ConvBiasForward::make(
  1878. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1879. auto y1 = opr::ElemwiseMultiType::make(
  1880. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  1881. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1882. auto y2 = opr::ConvBiasForward::make(
  1883. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1884. auto y3 = opr::ElemwiseMultiType::make(
  1885. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  1886. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1887. auto y4 = opr::ElemwiseMultiType::make(
  1888. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1889. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1890. y4 = opr::ElemwiseMultiType::make(
  1891. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1892. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1893. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1894. y4 = nchw42nchw(y4);
  1895. SymbolVar y_opt;
  1896. SymbolVar y_cudnn;
  1897. unpack_vector(
  1898. gopt::GraphOptimizer{}
  1899. .add_pass<gopt::ParamRedistributePass>()
  1900. .add_pass<gopt::ParamFusePass>()
  1901. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1902. .add_pass<gopt::FuseConvBiasZPass>()
  1903. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1904. .add_pass<gopt::ShuffleShuffleRemovePass>()
  1905. .add_pass<gopt::ParamFusePass>()
  1906. .apply({{y4}})
  1907. .endpoint_vars(),
  1908. y_opt);
  1909. graph->compile({{y_opt, {}}})
  1910. ->to_json()
  1911. ->writeto_fpath(output_file(
  1912. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  1913. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1914. ASSERT_EQ(2u, nr_dimshuffle);
  1915. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  1916. ASSERT_EQ(0u, nr_reformat);
  1917. unpack_vector(gopt::GraphOptimizer{}
  1918. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1919. .add_pass<gopt::FuseConvBiasZPass>()
  1920. .apply({{y4}})
  1921. .endpoint_vars(),
  1922. y_cudnn);
  1923. HostTensorND host_y, host_y_opt;
  1924. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1925. make_callback_copy(y_opt, host_y_opt)});
  1926. func->execute();
  1927. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1928. }
  1929. #endif
  1930. TEST(TestGoptInference, ConvertFormatNCHW88) {
  1931. HostTensorGenerator<> gen;
  1932. auto cn = CompNode::load("cpu0");
  1933. auto graph = ComputingGraph::make();
  1934. graph->options().graph_opt_level = 0;
  1935. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1936. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1937. };
  1938. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1939. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1940. .rename(name);
  1941. };
  1942. auto host_x = gen({2, 3, 16, 16}, cn);
  1943. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1944. //!Hybrid nchw88 mode
  1945. opr::Convolution::Param param_conv;
  1946. param_conv.pad_h = param_conv.pad_w = 1;
  1947. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  1948. conv1 = opr::Convolution::make(x, w1, param_conv);
  1949. //!channel wise
  1950. opr::ConvBias::Param param_conv_bias;
  1951. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  1952. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  1953. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  1954. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  1955. //! group
  1956. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  1957. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  1958. auto shape_of = opr::GetVarShape::make(conv3);
  1959. auto subtensor = opr::Subtensor::make(
  1960. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  1961. 0, x.make_scalar(2), None, x.make_scalar(1))});
  1962. opr::Resize::Param param_resize;
  1963. param_resize.format = opr::Resize::Param::Format::NCHW;
  1964. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  1965. auto mat = mkcvar("mat", {2, 3, 3}),
  1966. warp = opr::WarpPerspectiveForward::make(
  1967. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  1968. auto b = mkvar("b", {1, 8, 1, 1}),
  1969. elem = opr::Elemwise::make({warp + b},
  1970. opr::Elemwise::Param::Mode::RELU);
  1971. //! Dense
  1972. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  1973. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  1974. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  1975. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  1976. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  1977. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  1978. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  1979. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  1980. SymbolVar y_opt;
  1981. unpack_vector(
  1982. gopt::optimize_for_inference(
  1983. {y},
  1984. gopt::OptimizeForInferenceOptions{}.enable_use_nchw88()),
  1985. y_opt);
  1986. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  1987. find_opr<opr::ConvBias>(y_opt).param().format);
  1988. graph->compile({{y_opt, {}}})
  1989. ->to_json()
  1990. ->writeto_fpath(
  1991. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  1992. HostTensorND host_y_opt, host_y;
  1993. auto func = graph->compile({make_callback_copy(y, host_y),
  1994. make_callback_copy(y_opt, host_y_opt)});
  1995. func->execute();
  1996. //! meybe go to winograd in x86-32, so set error 1e-1
  1997. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  1998. *host_x = *gen({2, 3, 32, 32}, cn);
  1999. func->execute();
  2000. //! meybe go to winograd in x86-32, so set error 1e-1
  2001. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2002. }
  2003. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台

Contributors (1)