You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

convolution.cpp 90 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225
  1. /**
  2. * \file src/opr/impl/dnn/convolution.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/dnn/convolution.h"
  12. #include "megbrain/graph/grad_impl.h"
  13. #include "megbrain/system.h"
  14. #include "megbrain/utils/hash_ct.h"
  15. #include "megbrain/utils/timer.h"
  16. #include "megdnn/oprs/utils.h"
  17. #include "../internal/megdnn_opr_wrapper.inl"
  18. #include <array>
  19. #include <chrono>
  20. #include <cstring>
  21. #include <thread>
  22. using namespace mgb;
  23. using namespace opr;
  24. using namespace cg::static_infer;
  25. using intl::WorkspaceLimitGetter;
  26. #define CACHE_KEY_VERSION "v2"
  27. #define MGB_FOREACH_FASTRUN_OPR(cb) \
  28. cb(ConvolutionForward); \
  29. cb(ConvBiasForward); \
  30. cb(ConvolutionBackwardData); \
  31. cb(ConvolutionBackwardFilter); \
  32. cb(Convolution3DForward); \
  33. cb(Convolution3DBackwardData); \
  34. cb(Convolution3DBackwardFilter); \
  35. cb(LocalShareForward); \
  36. cb(LocalShareBackwardData); \
  37. cb(LocalShareBackwardFilter); \
  38. cb(DeformableConvForward); \
  39. cb(DeformableConvBackwardFilter); \
  40. cb(DeformableConvBackwardData); \
  41. cb(BatchConvBiasForward);
  42. namespace mgb {
  43. namespace opr {
  44. namespace intl {
  45. #define cb(_Opr) \
  46. template <> \
  47. struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \
  48. static constexpr bool val = true; \
  49. };
  50. MGB_FOREACH_FASTRUN_OPR(cb)
  51. #undef cb
  52. } // namespace intl
  53. } // namespace opr
  54. } // namespace mgb
  55. namespace {
  56. template <class MegDNNOpr>
  57. struct MegDNNOpr2MGBOpr;
  58. #define cb(_Opr) \
  59. template <> \
  60. struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \
  61. using MGBOpr = opr::_Opr; \
  62. };
  63. MGB_FOREACH_FASTRUN_OPR(cb)
  64. #undef cb
  65. template <class MGBOpr>
  66. struct OprAttributeTrait {
  67. static bool is_weights_persistent(const MGBOpr*) { return false; }
  68. };
  69. template <>
  70. struct OprAttributeTrait<opr::ConvBias> {
  71. //! return true if the flag of weights is PERSISTENT_DEVICE_VALUE, false
  72. //! otherwise. True means weights can be tranformed in the first run.
  73. static bool is_weights_persistent(const opr::ConvBias* opr) {
  74. return opr->input()[1]->contain_flag(
  75. VarNode::Flag::PERSISTENT_DEVICE_VALUE);
  76. }
  77. };
  78. template <typename Opr>
  79. struct OprArityTrait;
  80. #define cb(x) (x)
  81. #define cb_ref(x) (&(x))
  82. #define cb_dnn(x) ((x).as_megdnn())
  83. #define WS_ARG_true ,nullptr
  84. #define WS_ARG_false
  85. #define INST_ARITY(_Opr, _in, _out, _has_preprocessed_filter) \
  86. template <> \
  87. struct OprArityTrait<_Opr> { \
  88. static constexpr int arity_in = _in; \
  89. static constexpr int arity_out = _out; \
  90. static constexpr int arity = _in + _out; \
  91. using TensorLayoutArray = std::array<TensorLayout, arity>; \
  92. static size_t get_workspace_in_bytes( \
  93. _Opr* opr, typename _Opr::Algorithm* algo, \
  94. const TensorLayoutArray& layouts) { \
  95. opr->execution_policy() = {algo}; \
  96. return opr->get_workspace_in_bytes( \
  97. LAYOUTS(cb) WS_ARG_##_has_preprocessed_filter); \
  98. } \
  99. \
  100. static std::vector<typename _Opr::Algorithm*> get_all_algorithms( \
  101. _Opr* opr, const TensorLayoutArray& layouts) { \
  102. return opr->get_all_algorithms(LAYOUTS(cb)); \
  103. } \
  104. \
  105. static typename _Opr::Algorithm* get_algorithm_heuristic( \
  106. _Opr* opr, const TensorLayoutArray& layouts, \
  107. size_t workspace_limit, bool reproducible) { \
  108. return opr->get_algorithm_heuristic(LAYOUTS(cb), workspace_limit, \
  109. reproducible); \
  110. } \
  111. \
  112. static void exec(_Opr* opr, const DeviceTensorND* inp_val, \
  113. const DeviceTensorND* out_val, \
  114. megdnn::Workspace& workspace) { \
  115. opr->exec(TENSORS(cb_dnn), workspace); \
  116. } \
  117. }
  118. #define TENSORS(cb) cb(inp_val[0]), cb(inp_val[1]), cb(out_val[0])
  119. #define LAYOUTS(cb) cb(layouts[0]), cb(layouts[1]), cb(layouts[2])
  120. #define INST_ARITY_2_1(Opr) INST_ARITY(Opr, 2, 1, false)
  121. INST_ARITY_2_1(megdnn::ConvolutionBackwardData);
  122. INST_ARITY_2_1(megdnn::ConvolutionBackwardFilter);
  123. INST_ARITY_2_1(megdnn::Convolution3DForward);
  124. INST_ARITY_2_1(megdnn::Convolution3DBackwardData);
  125. INST_ARITY_2_1(megdnn::Convolution3DBackwardFilter);
  126. INST_ARITY_2_1(megdnn::LocalShareForward);
  127. INST_ARITY_2_1(megdnn::LocalShareBackwardData);
  128. INST_ARITY_2_1(megdnn::LocalShareBackwardFilter);
  129. #undef TENSORS
  130. #define TENSORS(cb) cb(inp_val[0]), cb(inp_val[1]), cb(out_val[0]), nullptr
  131. INST_ARITY(megdnn::Convolution, 2, 1, true);
  132. #undef TENSORS
  133. #undef LAYOUTS
  134. #undef INST_ARITY_2_1
  135. #define TENSORS(cb) \
  136. cb(inp_val[0]), cb(inp_val[1]), cb(inp_val[2]), cb(inp_val[3]), \
  137. cb(out_val[0])
  138. #define LAYOUTS(cb) \
  139. cb(layouts[0]), cb(layouts[1]), cb(layouts[2]), cb(layouts[3]), \
  140. cb(layouts[4])
  141. #define INST_ARITY_4_1(Opr) INST_ARITY(Opr, 4, 1, false)
  142. INST_ARITY_4_1(megdnn::DeformableConvForward);
  143. INST_ARITY_4_1(megdnn::DeformableConvBackwardFilter);
  144. INST_ARITY_4_1(megdnn::BatchConvBiasForward);
  145. #undef TENSORS
  146. #define TENSORS(cb) \
  147. cb(inp_val[0]), cb(inp_val[1]), cb(inp_val[2]), cb(inp_val[3]), \
  148. cb(out_val[0]), nullptr
  149. INST_ARITY(megdnn::ConvBias, 4, 1, true);
  150. #undef TENSORS
  151. #undef LAYOUTS
  152. #undef INST_ARITY_4_1
  153. #define TENSORS(cb) cb(inp_val[0]), cb(inp_val[1]), cb(inp_val[2]), \
  154. cb(inp_val[3]), cb(inp_val[4]), cb(out_val[0]), \
  155. cb(out_val[1]), cb(out_val[2])
  156. #define LAYOUTS(cb) cb(layouts[0]), cb(layouts[1]), cb(layouts[2]), \
  157. cb(layouts[3]), cb(layouts[4]), cb(layouts[5]), \
  158. cb(layouts[6]), cb(layouts[7])
  159. #define INST_ARITY_5_3(Opr) INST_ARITY(Opr, 5, 3, false)
  160. INST_ARITY_5_3(megdnn::DeformableConvBackwardData);
  161. #undef TENSORS
  162. #undef LAYOUTS
  163. #undef INST_ARITY_5_3
  164. #undef cb
  165. #undef cb_ref
  166. #undef cb_dnn
  167. #undef INST_ARITY
  168. #undef WS_ARG_true
  169. #undef WS_ARG_false
  170. // timeout delta to be added with fastest known algorithm for new algos
  171. constexpr double TIMEOUT_TOLERANCE = 2;
  172. template <typename Opr>
  173. struct AlgoChooserFuncId {};
  174. #define DEF_FUNC_ID(func) \
  175. template <> \
  176. struct AlgoChooserFuncId<megdnn::func> { \
  177. __attribute__( \
  178. (unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \
  179. static_cast<sys::TimedFuncInvoker::FuncId>( \
  180. MGB_HASH_STR("megdnn::" #func)); \
  181. };
  182. MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID)
  183. #undef DEF_FUNC_ID
  184. /* =================== TimedProfiler =================== */
  185. /*!
  186. * \brief profile a megdnn opr conv with given param
  187. *
  188. * This class only provides static methods, and the entry point is
  189. * TimedProfiler::profile; it would run profiler in a timed environment by
  190. * sys::TimedFuncInvoker
  191. *
  192. * \tparam Opr megdnn opr impl
  193. */
  194. template <typename Opr>
  195. class TimedProfiler {
  196. static constexpr int arity_in = OprArityTrait<Opr>::arity_in;
  197. static constexpr int arity_out = OprArityTrait<Opr>::arity_out;
  198. static constexpr int arity = OprArityTrait<Opr>::arity;
  199. using ConvTensorShapes = std::array<TensorShape, arity>;
  200. public:
  201. struct Param {
  202. char algo_name[128];
  203. size_t workspace;
  204. DTypeEnum dtypes[arity];
  205. CompNode::Locator comp_node_loc;
  206. ConvTensorShapes shapes;
  207. typename Opr::Param opr_param;
  208. //! filled by profile()
  209. mutable double actual_timeout;
  210. };
  211. struct Result {
  212. double time;
  213. };
  214. static Maybe<Result> profile(const Param& param, double& timeout) {
  215. mgb_assert(timeout >= 0);
  216. if (!timeout) {
  217. timeout = timeout_setting;
  218. } else if (timeout_setting) {
  219. timeout = std::min(timeout, timeout_setting);
  220. }
  221. param.actual_timeout =
  222. timeout ? timeout : std::numeric_limits<double>::infinity();
  223. auto res = sys::TimedFuncInvoker::ins().invoke(
  224. AlgoChooserFuncId<Opr>::ID,
  225. TParam::from_pod(const_cast<Param&>(param)), timeout);
  226. if (res.valid())
  227. return res.val().template as_single_pod<Result>();
  228. return None;
  229. }
  230. private:
  231. using TParam = sys::TimedFuncInvoker::Param;
  232. using TResult = sys::TimedFuncInvoker::Result;
  233. static const double timeout_setting;
  234. static double init_timeout_setting();
  235. static TResult prof_impl(const TParam& raw_param);
  236. static void prof_init_device(const TParam& raw_param);
  237. };
  238. template <typename Opr>
  239. const double TimedProfiler<Opr>::timeout_setting =
  240. TimedProfiler<Opr>::init_timeout_setting();
  241. template <typename Opr>
  242. double TimedProfiler<Opr>::init_timeout_setting() {
  243. #if MGB_ENABLE_FASTRUN
  244. sys::TimedFuncInvoker::ins().register_func(
  245. AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl,
  246. &TimedProfiler<Opr>::prof_init_device);
  247. auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT");
  248. if (to_set)
  249. return std::stod(to_set);
  250. #endif
  251. return 0;
  252. }
  253. template <typename Opr>
  254. typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl(
  255. const TParam& raw_param) {
  256. auto&& param = raw_param.as_single_pod<Param>();
  257. CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
  258. auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn);
  259. std::array<TensorLayout, arity> layouts;
  260. auto from_enum = [&](DTypeEnum enumv) -> DType {
  261. switch (enumv) {
  262. #define cb(_dt) \
  263. case DTypeTrait<_dt>::enumv: \
  264. return _dt(1.0f, static_cast<uint8_t>(0))
  265. cb(dtype::Quantized8Asymm);
  266. #undef cb
  267. #define cb(_dt) \
  268. case DTypeTrait<_dt>::enumv: \
  269. return _dt(1.0f)
  270. cb(dtype::QuantizedS8);
  271. cb(dtype::QuantizedS16);
  272. cb(dtype::QuantizedS32);
  273. default:
  274. return DType::from_enum(enumv);
  275. #undef cb
  276. }
  277. };
  278. for (int i = 0; i < arity; ++i) {
  279. layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])};
  280. }
  281. megdnn_opr->param() = param.opr_param;
  282. {
  283. typename Opr::Algorithm* algo = nullptr;
  284. for (auto i : OprArityTrait<Opr>::get_all_algorithms(megdnn_opr.get(),
  285. layouts)) {
  286. if (!strcmp(i->name(), param.algo_name)) {
  287. algo = i;
  288. break;
  289. }
  290. }
  291. mgb_assert(algo, "algorithm %s not found", param.algo_name);
  292. megdnn_opr->execution_policy() = {algo};
  293. }
  294. {
  295. // first allocate a whole chunk to avoid memory fragmentation (here we
  296. // rely on memory allocator to reuse memory)
  297. auto align = cn.get_mem_addr_alignment();
  298. size_t tot_size = align;
  299. for (int i = 0; i < arity; ++i) {
  300. tot_size += layouts[i].span().high_byte + align;
  301. }
  302. tot_size += param.workspace;
  303. DeviceTensorStorage storage{cn};
  304. storage.ensure_size(tot_size);
  305. }
  306. // allocate input and output memory
  307. DeviceTensorND inp_val[arity_in], out_val[arity_out], workspace;
  308. for (int i = 0; i < arity_in; ++i) {
  309. inp_val[i]
  310. .comp_node(cn)
  311. .dtype(layouts[i].dtype)
  312. .resize(layouts[i]);
  313. }
  314. for (int i = 0; i < arity_out; ++i) {
  315. out_val[i]
  316. .comp_node(cn)
  317. .dtype(layouts[arity_in + i].dtype)
  318. .resize(layouts[arity_in + i]);
  319. }
  320. megdnn::Workspace mdn_workspace;
  321. // allocate workspace
  322. if (param.workspace) {
  323. workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace});
  324. mdn_workspace.size = param.workspace;
  325. mdn_workspace.raw_ptr = workspace.raw_ptr();
  326. }
  327. for (int i = 0; i < arity_in; ++i) {
  328. fill_zero_dev_tensor(inp_val[i]);
  329. }
  330. RealTimer timer;
  331. auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER),
  332. ev_end = cn.create_event(CompNode::Event::NEED_TIMER);
  333. ev_start->record();
  334. OprArityTrait<Opr>::exec(megdnn_opr.get(), inp_val, out_val, mdn_workspace);
  335. ev_end->record();
  336. double next_report_time = 0.5;
  337. while (!ev_end->finished()) {
  338. if (timer.get_secs() >= next_report_time) {
  339. mgb_log_warn(
  340. "profiling conv algo %s already took %.3f/%.3f secs"
  341. " (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ",
  342. param.algo_name, timer.get_secs(), param.actual_timeout);
  343. next_report_time = timer.get_secs() + 1;
  344. }
  345. using namespace std::literals;
  346. std::this_thread::sleep_for(1000us);
  347. }
  348. mgb_assert(ev_start->finished());
  349. return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)});
  350. };
  351. template <typename Opr>
  352. void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) {
  353. auto&& param = raw_param.as_single_pod<Param>();
  354. CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
  355. // wait for cuda init, so its time does not get accounted in timeout
  356. cn.sync();
  357. }
  358. /* =================== AlgoChooser =================== */
  359. /*!
  360. * \brief choose algorithm according to ExecutionPolicy
  361. *
  362. * This class only provides static methods, and the entry point is
  363. * AlgoChooser::setup_algo. When profiling is needed, it would first try to
  364. * retrive profiling stats from cache, and run TimedProfiler when necessary
  365. *
  366. * \tparam Opr megdnn operator impl
  367. */
  368. template <typename Opr>
  369. class AlgoChooser {
  370. static constexpr int arity_in = OprArityTrait<Opr>::arity_in;
  371. static constexpr int arity_out = OprArityTrait<Opr>::arity_out;
  372. static constexpr int arity = OprArityTrait<Opr>::arity;
  373. using ImplAlgo = typename Opr::Algorithm*;
  374. using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr;
  375. using ConvTensorLayouts = std::array<TensorLayout, arity>;
  376. class ExeContext {
  377. const ConvTensorLayouts& m_layouts;
  378. Opr* m_megdnn_opr;
  379. const MGBOpr* m_mgb_opr;
  380. public:
  381. ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr,
  382. const MGBOpr* mgb_opr)
  383. : m_layouts{layouts},
  384. m_megdnn_opr{megdnn_opr},
  385. m_mgb_opr{mgb_opr} {
  386. mgb_assert(m_layouts.size() == layouts.size());
  387. static_assert(
  388. std::tuple_size<ConvTensorLayouts>::value == 3 ||
  389. std::tuple_size<ConvTensorLayouts>::value == 5 ||
  390. std::tuple_size<ConvTensorLayouts>::value == 8,
  391. "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
  392. "deformable conv)");
  393. }
  394. Opr* megdnn_opr() const { return m_megdnn_opr; }
  395. const MGBOpr* mgb_opr() const { return m_mgb_opr; }
  396. const TensorLayout& inp_layout(size_t idx) const {
  397. return m_layouts[idx];
  398. }
  399. const ConvTensorLayouts& layouts() const { return m_layouts; }
  400. ImplAlgo choose_by_heuristic(bool reproducible = false) const {
  401. auto opr = m_mgb_opr;
  402. auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
  403. opr->owner_graph(), opr->comp_node(),
  404. opr->execution_policy().workspace_limit);
  405. return OprArityTrait<Opr>::get_algorithm_heuristic(
  406. m_megdnn_opr, m_layouts, workspace_limit, reproducible);
  407. }
  408. //! get all candidate algos, and the one choose_by_heuristic() is
  409. //! put first
  410. std::vector<ImplAlgo> get_all_candidates() const {
  411. auto heu = choose_by_heuristic();
  412. auto&& ret = OprArityTrait<Opr>::get_all_algorithms(
  413. m_megdnn_opr, m_layouts);
  414. bool found = false;
  415. for (size_t i = 0; i < ret.size(); ++i) {
  416. if (ret[i] == heu) {
  417. found = true;
  418. std::swap(ret[i], ret[0]);
  419. break;
  420. }
  421. }
  422. mgb_assert(found,
  423. "algo got by heuristic not found in "
  424. "candidate list");
  425. return std::move(ret);
  426. }
  427. //! get candidate algos with workspace limit.
  428. std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const {
  429. auto && all_algos = get_all_candidates();
  430. auto opr = m_mgb_opr;
  431. auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
  432. opr->owner_graph(), opr->comp_node(),
  433. opr->execution_policy().workspace_limit);
  434. std::vector<ImplAlgo> ret;
  435. for (auto&& algo : all_algos) {
  436. if (get_workspace_size_bytes(algo) <= workspace_limit) {
  437. ret.push_back(algo);
  438. }
  439. }
  440. return ret;
  441. }
  442. //! get workspace size required for specific algo
  443. size_t get_workspace_size_bytes(ImplAlgo algo) const {
  444. return OprArityTrait<Opr>::get_workspace_in_bytes(m_megdnn_opr,
  445. algo, m_layouts);
  446. }
  447. /*!
  448. * \brief profile a single algorithm
  449. *
  450. * This is actually a wrapper that constructs param and call
  451. * TimedProfiler<Opr>::profile for the actual profiling
  452. *
  453. * \param[in,out] timeout set the timeout, and return the actual
  454. * timeout used during profiling
  455. */
  456. Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo(
  457. ImplAlgo algo, double& timeout) const;
  458. private:
  459. /*!
  460. * \brief modify param passed to prof_impl by weights preprcess.
  461. *
  462. * \param param: param passed.
  463. *
  464. * \warning invoke when is_weights_persistent is true.
  465. */
  466. void modify_param_with_weights_preprocessed(
  467. typename TimedProfiler<Opr>::Param& param) const {}
  468. };
  469. //! entrance for getting algorithm according to execution strategy
  470. static ImplAlgo get_algo(ExeContext& ctx) {
  471. using S = mixin::Convolution::ExecutionPolicy::Strategy;
  472. MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
  473. switch (ctx.mgb_opr()->execution_policy().strategy) {
  474. case S::HEURISTIC:
  475. return ctx.choose_by_heuristic();
  476. case S::HEURISTIC_REPRODUCIBLE:
  477. return ctx.choose_by_heuristic(true);
  478. case S::PROFILE_HEURISTIC: {
  479. ImplAlgo algo = choose_by_profile(ctx, false, false);
  480. if (algo == nullptr)
  481. algo = ctx.choose_by_heuristic();
  482. return algo;
  483. }
  484. #if MGB_ENABLE_FASTRUN
  485. case S::PROFILE:
  486. return choose_by_profile(ctx, false);
  487. case S::PROFILE_REPRODUCIBLE:
  488. return choose_by_profile(ctx, true);
  489. #endif
  490. default:
  491. mgb_throw(GraphError,
  492. "bad convolution ExecutionPolicy strategy");
  493. }
  494. }
  495. //! get all profile result, either by retrieving cache or profiling
  496. static AlgoChooserProfileCache::Result get_profile_result(
  497. ExeContext& ctx, bool enable_update);
  498. static ImplAlgo choose_by_profile(ExeContext& ctx,
  499. bool require_reproducible,
  500. bool enable_update = true);
  501. public:
  502. /*!
  503. * \brief setup algorithm and return workspace size
  504. */
  505. static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr,
  506. const MGBOpr* mgb_opr) {
  507. if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
  508. return 0;
  509. }
  510. ExeContext ctx(layouts, megdnn_opr, mgb_opr);
  511. auto algo = get_algo(ctx);
  512. size_t workspace = ctx.get_workspace_size_bytes(algo);
  513. mgb_log_debug(
  514. "%s: input shapes (%s, %s): algo=%s "
  515. "workspace=%.2fMiB reproducible=%d",
  516. mgb_opr->dyn_typeinfo()->name,
  517. layouts[0].TensorShape::to_string().c_str(),
  518. layouts[1].TensorShape::to_string().c_str(), algo->name(),
  519. workspace / (1024 * 1024.0), algo->is_reproducible());
  520. megdnn_opr->execution_policy() = {algo};
  521. return workspace;
  522. }
  523. };
  524. template <typename Opr>
  525. AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result(
  526. ExeContext& ctx, bool enable_update) {
  527. AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache();
  528. auto param_blob = ctx.mgb_opr()->param_blob();
  529. AlgoChooserProfileCache::Key cache_key{ctx.layouts().data(),
  530. ctx.layouts().size(),
  531. param_blob.first, param_blob.second};
  532. {
  533. auto&& rst = cache.get(cache_key);
  534. if (rst.valid())
  535. return rst.val();
  536. }
  537. AlgoChooserProfileCache::Result prof_rst;
  538. if (!enable_update)
  539. return prof_rst;
  540. std::string str_on_inp_shape = ssprintf(
  541. "on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(),
  542. ctx.layouts()[1].to_string().c_str());
  543. double cur_timeout = 0;
  544. RealTimer timer;
  545. for (auto algo : ctx.get_all_candidates_with_workspace_limit()) {
  546. Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
  547. std::string msg = ssprintf("profiling %s algorithm %s %s",
  548. ctx.mgb_opr()->dyn_typeinfo()->name,
  549. algo->name(), str_on_inp_shape.c_str());
  550. timer.reset();
  551. MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); }
  552. MGB_CATCH(std::exception & exc,
  553. {
  554. mgb_log_warn("caught exception during %s: %s",
  555. msg.c_str(), exc.what());
  556. continue;
  557. })
  558. MGB_CATCH(..., {
  559. mgb_log_warn("caught exception during %s", msg.c_str());
  560. continue;
  561. }) if (!cur_rst.valid()) {
  562. mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
  563. msg.c_str(), cur_timeout);
  564. continue;
  565. }
  566. if (!cur_timeout) {
  567. cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
  568. } else {
  569. cur_timeout =
  570. std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
  571. }
  572. auto&& rst = cur_rst.val();
  573. mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
  574. rst.workspace, rst.time);
  575. prof_rst.push_back(rst);
  576. }
  577. mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s",
  578. str_on_inp_shape.c_str());
  579. cache.put(cache_key, prof_rst);
  580. return prof_rst;
  581. }
  582. template <typename Opr>
  583. typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile(
  584. ExeContext& ctx, bool require_reproducible, bool enable_update) {
  585. auto opr = ctx.mgb_opr();
  586. if (opr->owner_graph()->options().no_profiling_on_shape_change) {
  587. auto algo = ctx.megdnn_opr()->execution_policy().algorithm;
  588. if (algo)
  589. return algo;
  590. }
  591. std::unordered_map<std::string, ImplAlgo> algo_map;
  592. for (auto i : ctx.get_all_candidates()) {
  593. auto ins = algo_map.emplace(i->name(), i);
  594. mgb_assert(ins.second, "duplicated algo name: %s", i->name());
  595. }
  596. auto&& prof = get_profile_result(ctx, enable_update);
  597. if (prof.empty())
  598. return nullptr;
  599. for (auto&& i : prof) {
  600. if ((!require_reproducible || i.reproducible)) {
  601. auto iter = algo_map.find(i.algo);
  602. mgb_assert(
  603. iter != algo_map.end(),
  604. "algorithm %s exists in "
  605. "profiling result but not in algo_map; please report this "
  606. "bug; opr: %s{%s}, shapes: %s %s %s",
  607. ctx.mgb_opr()->cname(), ctx.mgb_opr()->dyn_typeinfo()->name,
  608. ctx.layouts()[0].TensorShape::to_string().c_str(),
  609. ctx.layouts()[1].TensorShape::to_string().c_str(),
  610. ctx.layouts()[2].TensorShape::to_string().c_str(),
  611. i.algo.c_str());
  612. return iter->second;
  613. }
  614. }
  615. mgb_log_error(
  616. "Workspace requirement (%zu) could not be satisfied. Abort now to "
  617. "avoid further problems",
  618. WorkspaceLimitGetter::get_workspace_limit(
  619. opr->owner_graph(), opr->comp_node(),
  620. opr->execution_policy().workspace_limit));
  621. mgb_trap();
  622. }
  623. template <>
  624. void AlgoChooser<megdnn::ConvBias>::ExeContext::
  625. modify_param_with_weights_preprocessed(
  626. typename TimedProfiler<megdnn::ConvBias>::Param& param) const {
  627. if (param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW) {
  628. auto winograd_param =
  629. megdnn::ConvBias::parse_winograd_name(param.algo_name);
  630. if (winograd_param == megdnn::ConvBias::INVALID_WINOGRAD_PARAM) {
  631. return;
  632. }
  633. ConvBiasForward::check_winograd_param_valid(winograd_param,
  634. m_layouts[1].dtype);
  635. auto winograd_preprocess_opr =
  636. intl::create_megdnn_opr<megdnn::WinogradFilterPreprocess>(
  637. m_mgb_opr->output(0)->comp_node());
  638. winograd_preprocess_opr->param().format =
  639. ConvBiasForward::get_matmul_format(winograd_param);
  640. winograd_preprocess_opr->param().output_block_size =
  641. winograd_param.output_block_size;
  642. TensorLayout filter_transform_layout;
  643. winograd_preprocess_opr->deduce_layout(m_layouts[1],
  644. filter_transform_layout);
  645. param.shapes[1] = filter_transform_layout;
  646. param.dtypes[1] = filter_transform_layout.dtype.enumv();
  647. param.opr_param.format = megdnn::ConvBias::Param::Format::NCHW_WINOGRAD;
  648. param.opr_param.output_block_size = winograd_param.output_block_size;
  649. }
  650. }
  651. template <typename Opr>
  652. Maybe<AlgoChooserProfileCache::ResultEntry>
  653. AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo,
  654. double& timeout) const {
  655. typename TimedProfiler<Opr>::Param param;
  656. bool is_weights_persistent =
  657. OprAttributeTrait<typename MegDNNOpr2MGBOpr<Opr>::MGBOpr>::
  658. is_weights_persistent(m_mgb_opr);
  659. auto name = algo->name();
  660. // force check copy size <= dest len-1 from gcc8 for safe
  661. auto len = sizeof(param.algo_name);
  662. strncpy(param.algo_name, name, len - 1);
  663. param.algo_name[len - 1] = '\0';
  664. mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2],
  665. "algo name too long: %s; len=%zu", name, strlen(name));
  666. param.workspace = get_workspace_size_bytes(algo);
  667. for (int i = 0; i < arity; ++i) {
  668. auto&& src = m_layouts[i];
  669. mgb_assert(src.format.is_default() &&
  670. (src.dtype.category() == DTypeCategory::FLOAT ||
  671. src.dtype.category() == DTypeCategory::INT ||
  672. src.dtype.category() == DTypeCategory::QUANTIZED),
  673. "unsupported layout in profiling: %s",
  674. src.to_string().c_str());
  675. param.dtypes[i] = src.dtype.enumv();
  676. }
  677. param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator();
  678. mgb_assert(param.shapes.size() == m_layouts.size());
  679. for (size_t i = 0; i < param.shapes.size(); ++i)
  680. param.shapes[i] = m_layouts[i];
  681. param.opr_param = m_megdnn_opr->param();
  682. if (is_weights_persistent) {
  683. modify_param_with_weights_preprocessed(param);
  684. }
  685. auto rst = TimedProfiler<Opr>::profile(param, timeout);
  686. // MIOpen conv profiles all available algos when a specfic shape is
  687. // provided for the first time, which probably adds to the result time.
  688. // Therefore, a second profile execution is needed.
  689. if (strncmp(name, "MIOpen", 6) == 0)
  690. rst = TimedProfiler<Opr>::profile(param, timeout);
  691. if (!rst.valid())
  692. return None;
  693. return AlgoChooserProfileCache::ResultEntry{
  694. algo->name(), algo->is_reproducible(), rst.val().time,
  695. param.workspace};
  696. }
  697. } // anonymous namespace
  698. /* ==================== misc impl ==================== */
  699. mixin::Convolution::~Convolution() = default;
  700. void mixin::Convolution::set_execution_policy(const ExecutionPolicy& policy) {
  701. mgb_throw_if(
  702. m_policy_accessed, InternalError,
  703. "attempt to modify ExecutionPolicy after it has been accessed");
  704. m_policy = policy;
  705. }
  706. template <class MgbOpr, class MegDNNOpr>
  707. void mixin::Convolution::init_output_static_infer_desc_for_bwd_data(
  708. cg::OperatorNodeBase* self) {
  709. using namespace cg::static_infer;
  710. auto&& mgr = self->owner_graph()->static_infer_manager();
  711. DepVal inp_deps;
  712. inp_deps.reserve(4);
  713. for (int i = 0; i < 2; ++i) {
  714. inp_deps.push_back({self->input(i), DepType::SHAPE});
  715. }
  716. // output shape
  717. if (self->input().size() == 3) {
  718. mgr.register_shape_infer(self->output(0),
  719. ShapeInferDesc::make_identity(self->input(2)));
  720. } else {
  721. auto infer_shp = [self](TensorShape& dest, const InpVal& inp) {
  722. TensorLayout ol{self->output(0)->dtype()};
  723. static_cast<MgbOpr*>(self)->megdnn_opr()->deduce_layout(
  724. {inp.val.at(0).shape(), self->input(0)->dtype()},
  725. {inp.val.at(1).shape(), self->input(1)->dtype()}, ol);
  726. dest = ol;
  727. return true;
  728. };
  729. mgr.register_shape_infer(self->output(0),
  730. {SourceType::DEP, inp_deps, infer_shp});
  731. }
  732. // workspace size
  733. auto infer_wk = [self](TensorShape& dest, const InpVal& inp) {
  734. auto&& iv = inp.val;
  735. dest.ndim = 1;
  736. dest.shape[0] = AlgoChooser<MegDNNOpr>::setup_algo(
  737. {TensorLayout{iv[0].shape(), self->input(0)->dtype(),
  738. self->input(0)->format()},
  739. {iv[1].shape(), self->input(1)->dtype(),
  740. self->input(1)->format()},
  741. {iv.at(2).shape(), self->output(0)->dtype(),
  742. self->output(0)->format()}},
  743. static_cast<MgbOpr*>(self)->megdnn_opr(),
  744. static_cast<MgbOpr*>(self));
  745. return true;
  746. };
  747. inp_deps.push_back({self->output(0), DepType::SHAPE});
  748. auto workspace_dep_var =
  749. WorkspaceLimitGetter::register_to_graph(self->owner_graph());
  750. if (workspace_dep_var) {
  751. inp_deps.push_back({workspace_dep_var, DepType::VALUE});
  752. }
  753. mgr.register_shape_infer(self->output(1),
  754. {SourceType::DEP, inp_deps, infer_wk});
  755. }
  756. #define IMPL_CONV(_cls, _prof_name) \
  757. void _cls::init_profile_cache() { \
  758. std::string name(_prof_name CACHE_KEY_VERSION); \
  759. name.append(megdnn_opr()->get_algorithm_set_name()); \
  760. m_profile_cache = std::make_unique<AlgoChooserProfileCache>( \
  761. comp_node(), name.c_str()); \
  762. } \
  763. std::pair<const void*, size_t> _cls::param_blob() const { \
  764. return {&param(), sizeof(Param)}; \
  765. } \
  766. MGB_DYN_TYPE_OBJ_FINAL_IMPL(_cls)
  767. AlgoChooserProfileCache& mixin::Convolution::profile_cache() const {
  768. if (!m_profile_cache) {
  769. const_cast<Convolution*>(this)->init_profile_cache();
  770. mgb_assert(m_profile_cache);
  771. }
  772. return *m_profile_cache;
  773. }
  774. /* ==================== ConvolutionForward ==================== */
  775. IMPL_CONV(ConvolutionForward, "conv_fwd");
  776. ConvolutionForward::ConvolutionForward(VarNode* src, VarNode* filter,
  777. const Param& param,
  778. const ExecutionPolicy& policy,
  779. const OperatorNodeConfig& config)
  780. : Super{src->owner_graph(), config, "conv", {src, filter}} {
  781. init_megdnn_opr(*this, param);
  782. m_policy = policy;
  783. add_input({src, filter});
  784. }
  785. SymbolVar ConvolutionForward::make(SymbolVar src, SymbolVar filter,
  786. const Param& param,
  787. const ExecutionPolicy& policy,
  788. const OperatorNodeConfig& config) {
  789. return src.insert_single_output_opr<ConvolutionForward>(
  790. src.node(), filter.node(), param, policy, config);
  791. }
  792. void ConvolutionForward::init_output_dtype() {
  793. DType output_dtype = config().output_dtype();
  794. megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
  795. output_dtype);
  796. output(0)->dtype(output_dtype);
  797. }
  798. MGB_IMPL_OPR_GRAD(ConvolutionForward) {
  799. mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
  800. "only float data type supported for grad");
  801. mgb_assert(wrt_idx == 0 || wrt_idx == 1);
  802. mgb_assert(out_grad.size() == 2);
  803. if (wrt_idx == 0) {
  804. // data
  805. SymbolVar grad = ConvolutionBackwardData::make(
  806. opr.input(1), out_grad[0], opr.input(0), opr.param(),
  807. opr.execution_policy());
  808. return grad.node();
  809. } else {
  810. // filter
  811. SymbolVar grad = ConvolutionBackwardFilter::make(
  812. opr.input(0), out_grad[0], opr.input(1), opr.param(),
  813. opr.execution_policy());
  814. return grad.node();
  815. }
  816. }
  817. size_t ConvolutionForward::get_workspace_size_bytes(
  818. const TensorShapeArray& input_shapes,
  819. const TensorShapeArray& output_shapes) const {
  820. mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
  821. return AlgoChooser<megdnn::ConvolutionForward>::setup_algo(
  822. {TensorLayout{input_shapes[0], input(0)->dtype(),
  823. input(0)->format()},
  824. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  825. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  826. megdnn_opr(), this);
  827. }
  828. void ConvolutionForward::init_output_format() {
  829. mgb_assert(output().size() == 2);
  830. output(0)->format(input(0)->format());
  831. }
  832. void ConvolutionForward::scn_do_execute() {
  833. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  834. input(1)->dev_tensor().as_megdnn(),
  835. output(0)->dev_tensor().as_megdnn(), nullptr,
  836. intl::get_megdnn_workspace_from_var(output().back()));
  837. }
  838. void ConvolutionForward::add_input_layout_constraint() {
  839. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  840. }
  841. void ConvolutionForward::init_output_static_infer_desc() {
  842. Super::set_nr_managed_outputs(this->output().size() - 1);
  843. Super::init_output_static_infer_desc();
  844. init_output_static_infer_desc_workspace(
  845. intl::AutoAddWorkspaceNeedLimitGetter<
  846. megdnn::ConvolutionForward>::val);
  847. }
  848. void ConvolutionForward::get_output_var_shape(
  849. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  850. TensorLayout input_layout{inp_shape[0], input(0)->dtype(),
  851. input(0)->format()};
  852. TensorLayout filter_layout{inp_shape[1], input(1)->dtype(),
  853. input(1)->format()};
  854. TensorLayout dst_layout{output(0)->dtype(), output(0)->format()};
  855. megdnn_opr()->deduce_layout(input_layout, filter_layout, dst_layout);
  856. out_shape[0] = dst_layout;
  857. }
  858. void ConvolutionForward::record_execute_deps(
  859. cg::GraphExecutable::ExecDependencyArray& deps) {
  860. record_megdnn_opr(deps);
  861. }
  862. /* ==================== ConvolutionBackwardData ==================== */
  863. IMPL_CONV(ConvolutionBackwardData, "conv_bwd_data");
  864. ConvolutionBackwardData::ConvolutionBackwardData(
  865. VarNode* filter, VarNode* diff, VarNode* src_for_shp,
  866. const Param& param, const ExecutionPolicy& policy,
  867. const OperatorNodeConfig& config)
  868. : Super{filter->owner_graph(),
  869. config,
  870. "conv_bwd_data",
  871. {filter, diff}} {
  872. init_megdnn_opr(*this, param);
  873. m_policy = policy;
  874. add_input({filter, diff});
  875. if (src_for_shp) {
  876. add_input({src_for_shp});
  877. }
  878. }
  879. SymbolVar ConvolutionBackwardData::make(SymbolVar filter, SymbolVar diff,
  880. SymbolVar src, const Param& param,
  881. const ExecutionPolicy& policy,
  882. const OperatorNodeConfig& config) {
  883. return filter.insert_single_output_opr<ConvolutionBackwardData>(
  884. filter.node(), diff.node(), src.node(), param, policy, config);
  885. }
  886. SymbolVar ConvolutionBackwardData::make(SymbolVar filter, SymbolVar data,
  887. const Param& param,
  888. const ExecutionPolicy& policy,
  889. const OperatorNodeConfig& config) {
  890. return make(filter, data, {}, param, policy, config);
  891. }
  892. void ConvolutionBackwardData::add_input_layout_constraint() {
  893. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  894. }
  895. void ConvolutionBackwardData::init_output_static_infer_desc() {
  896. init_output_static_infer_desc_for_bwd_data<ConvolutionBackwardData,
  897. megdnn::ConvolutionBackwardData>(
  898. this);
  899. }
  900. void ConvolutionBackwardData::init_output_dtype() {
  901. DType output_dtype = config().output_dtype();
  902. megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
  903. output_dtype);
  904. output(0)->dtype(output_dtype);
  905. }
  906. void ConvolutionBackwardData::init_output_format() {
  907. mgb_assert(output().size() == 2);
  908. output(0)->format(input(1)->format());
  909. }
  910. cg::OperatorNodeBase::NodeProp* ConvolutionBackwardData::do_make_node_prop()
  911. const {
  912. auto prop = Super::Super::do_make_node_prop();
  913. if (input().size() == 3) {
  914. using D = NodeProp::DepType;
  915. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
  916. }
  917. return prop;
  918. }
  919. void ConvolutionBackwardData::scn_do_execute() {
  920. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  921. input(1)->dev_tensor().as_megdnn(),
  922. output(0)->dev_tensor().as_megdnn(),
  923. intl::get_megdnn_workspace_from_var(output(1)));
  924. }
  925. MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) {
  926. mgb_assert(!out_grad[1]);
  927. if (wrt_idx == 0) {
  928. return ConvolutionBackwardFilter::make(out_grad[0], opr.input(1),
  929. opr.input(0), opr.param(),
  930. opr.execution_policy())
  931. .node();
  932. }
  933. if (wrt_idx == 1) {
  934. return Convolution::make(out_grad[0], opr.input(0), opr.param(),
  935. opr.execution_policy())
  936. .node();
  937. }
  938. return nullptr;
  939. }
  940. /* ==================== ConvolutionBackwardFilter ==================== */
  941. IMPL_CONV(ConvolutionBackwardFilter, "conv_bwd_filter");
  942. ConvolutionBackwardFilter::ConvolutionBackwardFilter(
  943. VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
  944. const ExecutionPolicy& policy, const OperatorNodeConfig& config)
  945. : Super({src->owner_graph(),
  946. config,
  947. "conv_bwd_filter",
  948. {src, diff, filter}},
  949. 2, false) {
  950. init_megdnn_opr(*this, param);
  951. m_policy = policy;
  952. add_input({src, diff, filter});
  953. }
  954. SymbolVar ConvolutionBackwardFilter::make(SymbolVar src, SymbolVar diff,
  955. SymbolVar filter, const Param& param,
  956. const ExecutionPolicy& policy,
  957. const OperatorNodeConfig& config) {
  958. return src.insert_single_output_opr<ConvolutionBackwardFilter>(
  959. src.node(), diff.node(), filter.node(), param, policy, config);
  960. }
  961. size_t ConvolutionBackwardFilter::get_workspace_size_bytes(
  962. const TensorShapeArray& input_shapes,
  963. const TensorShapeArray& output_shapes) const {
  964. mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
  965. return AlgoChooser<megdnn::ConvolutionBackwardFilter>::setup_algo(
  966. {TensorLayout{input_shapes[0], input(0)->dtype(),
  967. input(0)->format()},
  968. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  969. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  970. megdnn_opr(), this);
  971. }
  972. MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) {
  973. mgb_assert(!out_grad[1]);
  974. if (wrt_idx == 0) {
  975. return ConvolutionBackwardData::make(out_grad[0], opr.input(1),
  976. opr.input(0), opr.param(),
  977. opr.execution_policy())
  978. .node();
  979. }
  980. if (wrt_idx == 1) {
  981. return Convolution::make(opr.input(0), out_grad[0], opr.param(),
  982. opr.execution_policy())
  983. .node();
  984. }
  985. return nullptr;
  986. }
  987. /* ==================== Convolution3DForward ==================== */
  988. IMPL_CONV(Convolution3DForward, "conv3d_fwd");
  989. Convolution3DForward::Convolution3DForward(VarNode* src, VarNode* filter,
  990. const Param& param,
  991. const ExecutionPolicy& policy,
  992. const OperatorNodeConfig& config)
  993. : Super{src->owner_graph(), config, "conv3d", {src, filter}} {
  994. init_megdnn_opr(*this, param);
  995. m_policy = policy;
  996. add_input({src, filter});
  997. }
  998. SymbolVar Convolution3DForward::make(SymbolVar src, SymbolVar filter,
  999. const Param& param,
  1000. const ExecutionPolicy& policy,
  1001. const OperatorNodeConfig& config) {
  1002. return src.insert_single_output_opr<Convolution3DForward>(
  1003. src.node(), filter.node(), param, policy, config);
  1004. }
  1005. void Convolution3DForward::init_output_dtype() {
  1006. switch (param().data_type) {
  1007. case Param::DataType::FLOAT:
  1008. output(0)->dtype(input(0)->dtype());
  1009. break;
  1010. #if !MEGDNN_DISABLE_FLOAT16
  1011. case Param::DataType::FLOAT_IO16xC32:
  1012. mgb_assert(input(0)->dtype() == dtype::Float16(),
  1013. "invalid input dtype %s", input(0)->name().c_str());
  1014. output(0)->dtype(input(0)->dtype());
  1015. break;
  1016. #endif
  1017. default:
  1018. mgb_throw(MegBrainError, "bad data_type enum");
  1019. }
  1020. }
  1021. MGB_IMPL_OPR_GRAD(Convolution3DForward) {
  1022. mgb_assert(opr.param().data_type ==
  1023. Convolution3DForward::Param::DataType::FLOAT,
  1024. "only float data type supported for grad");
  1025. mgb_assert(wrt_idx == 0 || wrt_idx == 1);
  1026. mgb_assert(out_grad.size() == 2);
  1027. if (wrt_idx == 0) {
  1028. // data
  1029. SymbolVar grad = Convolution3DBackwardData::make(
  1030. opr.input(1), out_grad[0], opr.input(0), opr.param(),
  1031. opr.execution_policy());
  1032. return grad.node();
  1033. } else {
  1034. // filter
  1035. SymbolVar grad = Convolution3DBackwardFilter::make(
  1036. opr.input(0), out_grad[0], opr.input(1), opr.param(),
  1037. opr.execution_policy());
  1038. return grad.node();
  1039. }
  1040. }
  1041. size_t Convolution3DForward::get_workspace_size_bytes(
  1042. const TensorShapeArray& input_shapes,
  1043. const TensorShapeArray& output_shapes) const {
  1044. mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
  1045. return AlgoChooser<megdnn::Convolution3DForward>::setup_algo(
  1046. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1047. input(0)->format()},
  1048. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1049. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1050. megdnn_opr(), this);
  1051. }
  1052. /* ==================== Convolution3DBackwardData ==================== */
  1053. IMPL_CONV(Convolution3DBackwardData, "conv3d_bwd_data");
  1054. Convolution3DBackwardData::Convolution3DBackwardData(
  1055. VarNode* filter, VarNode* diff, VarNode* src_for_shp,
  1056. const Param& param, const ExecutionPolicy& policy,
  1057. const OperatorNodeConfig& config)
  1058. : Super{filter->owner_graph(),
  1059. config,
  1060. "conv3d_bwd_data",
  1061. {filter, diff}} {
  1062. init_megdnn_opr(*this, param);
  1063. m_policy = policy;
  1064. add_input({filter, diff});
  1065. if (src_for_shp) {
  1066. add_input({src_for_shp});
  1067. }
  1068. }
  1069. SymbolVar Convolution3DBackwardData::make(SymbolVar filter, SymbolVar diff,
  1070. SymbolVar src, const Param& param,
  1071. const ExecutionPolicy& policy,
  1072. const OperatorNodeConfig& config) {
  1073. return filter.insert_single_output_opr<Convolution3DBackwardData>(
  1074. filter.node(), diff.node(), src.node(), param, policy, config);
  1075. }
  1076. SymbolVar Convolution3DBackwardData::make(SymbolVar filter, SymbolVar data,
  1077. const Param& param,
  1078. const ExecutionPolicy& policy,
  1079. const OperatorNodeConfig& config) {
  1080. return make(filter, data, {}, param, policy, config);
  1081. }
  1082. void Convolution3DBackwardData::add_input_layout_constraint() {
  1083. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1084. }
  1085. void Convolution3DBackwardData::init_output_static_infer_desc() {
  1086. init_output_static_infer_desc_for_bwd_data<
  1087. Convolution3DBackwardData, megdnn::Convolution3DBackwardData>(this);
  1088. }
  1089. cg::OperatorNodeBase::NodeProp* Convolution3DBackwardData::do_make_node_prop()
  1090. const {
  1091. auto prop = Super::Super::do_make_node_prop();
  1092. if (input().size() == 3) {
  1093. using D = NodeProp::DepType;
  1094. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
  1095. }
  1096. return prop;
  1097. }
  1098. void Convolution3DBackwardData::scn_do_execute() {
  1099. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  1100. input(1)->dev_tensor().as_megdnn(),
  1101. output(0)->dev_tensor().as_megdnn(),
  1102. intl::get_megdnn_workspace_from_var(output(1)));
  1103. }
  1104. MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) {
  1105. mgb_assert(!out_grad[1]);
  1106. if (wrt_idx == 0) {
  1107. return Convolution3DBackwardFilter::make(out_grad[0], opr.input(1),
  1108. opr.input(0), opr.param(),
  1109. opr.execution_policy())
  1110. .node();
  1111. }
  1112. if (wrt_idx == 1) {
  1113. return Convolution3D::make(out_grad[0], opr.input(0), opr.param(),
  1114. opr.execution_policy())
  1115. .node();
  1116. }
  1117. return nullptr;
  1118. }
  1119. /* ==================== Convolution3DBackwardFilter ==================== */
  1120. IMPL_CONV(Convolution3DBackwardFilter, "conv3d_bwd_filter");
  1121. Convolution3DBackwardFilter::Convolution3DBackwardFilter(
  1122. VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
  1123. const ExecutionPolicy& policy, const OperatorNodeConfig& config)
  1124. : Super({src->owner_graph(),
  1125. config,
  1126. "conv3d_bwd_filter",
  1127. {src, diff, filter}},
  1128. 2, false) {
  1129. init_megdnn_opr(*this, param);
  1130. m_policy = policy;
  1131. add_input({src, diff, filter});
  1132. }
  1133. SymbolVar Convolution3DBackwardFilter::make(SymbolVar src, SymbolVar diff,
  1134. SymbolVar filter,
  1135. const Param& param,
  1136. const ExecutionPolicy& policy,
  1137. const OperatorNodeConfig& config) {
  1138. return src.insert_single_output_opr<Convolution3DBackwardFilter>(
  1139. src.node(), diff.node(), filter.node(), param, policy, config);
  1140. }
  1141. size_t Convolution3DBackwardFilter::get_workspace_size_bytes(
  1142. const TensorShapeArray& input_shapes,
  1143. const TensorShapeArray& output_shapes) const {
  1144. mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
  1145. return AlgoChooser<megdnn::Convolution3DBackwardFilter>::setup_algo(
  1146. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1147. input(0)->format()},
  1148. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1149. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1150. megdnn_opr(), this);
  1151. }
  1152. /* ========================== MaskConvolution ========================== */
  1153. MGB_DYN_TYPE_OBJ_FINAL_IMPL(MaskConvolution);
  1154. MaskConvolution::MaskConvolution(VarNode* src, VarNode* filter, VarNode* mask,
  1155. const Param& param,
  1156. const OperatorNodeConfig& config)
  1157. : Super(src->owner_graph(), config, "mask_conv_fwd",
  1158. {src, filter, mask}) {
  1159. init_megdnn_opr(*this, param);
  1160. add_input({src, filter, mask});
  1161. }
  1162. SymbolVar MaskConvolution::make(SymbolVar src, SymbolVar filter, SymbolVar mask,
  1163. const Param& param,
  1164. const OperatorNodeConfig& config) {
  1165. return src.insert_single_output_opr<MaskConvolution>(
  1166. src.node(), filter.node(), mask.node(), param, config);
  1167. }
  1168. void MaskConvolution::init_output_dtype() {
  1169. auto dtype = input(2)->dtype();
  1170. mgb_assert(dtype == dtype::Int32() || dtype == dtype::Int16() ||
  1171. dtype == dtype::Int8(),
  1172. "dtype must be int8, int16 or int32, while get %s",
  1173. dtype.name());
  1174. output(0)->dtype(input(0)->dtype());
  1175. }
  1176. MGB_DYN_TYPE_OBJ_FINAL_IMPL(MaskPropagate);
  1177. MaskPropagate::MaskPropagate(VarNode* src, const Param& param,
  1178. const OperatorNodeConfig& config)
  1179. : Super(src->owner_graph(), config, "mask_propagate", {src}) {
  1180. init_megdnn_opr(*this, param);
  1181. add_input({src});
  1182. }
  1183. void MaskPropagate::init_output_dtype() {
  1184. auto dtype = input(0)->dtype();
  1185. mgb_assert(dtype == dtype::Int32() || dtype == dtype::Int16() ||
  1186. dtype == dtype::Int8());
  1187. output(0)->dtype(dtype);
  1188. }
  1189. SymbolVar MaskPropagate::make(SymbolVar src, const Param& param,
  1190. const OperatorNodeConfig& config) {
  1191. return src.insert_single_output_opr<MaskPropagate>(src.node(), param,
  1192. config);
  1193. }
  1194. /* ==================== ConvBiasForward ==================== */
  1195. IMPL_CONV(ConvBiasForward, "conv_bias_fwd");
  1196. ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter,
  1197. const Param& param,
  1198. const ExecutionPolicy& policy,
  1199. const OperatorNodeConfig& config)
  1200. : Super{src->owner_graph(), config, "conv_bias", {src, filter}} {
  1201. init_megdnn_opr(*this, param);
  1202. m_policy = policy;
  1203. add_input({src, filter});
  1204. }
  1205. ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter, VarNode* bias,
  1206. const Param& param,
  1207. const ExecutionPolicy& policy,
  1208. const OperatorNodeConfig& config)
  1209. : Super{src->owner_graph(), config, "conv_bias", {src, filter, bias}} {
  1210. m_policy = policy;
  1211. init_megdnn_opr(*this, param);
  1212. add_input({src, filter, bias});
  1213. }
  1214. ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter, VarNode* bias,
  1215. VarNode* z, const Param& param,
  1216. const ExecutionPolicy& policy,
  1217. const OperatorNodeConfig& config)
  1218. : Super{src->owner_graph(),
  1219. config,
  1220. "conv_bias",
  1221. {src, filter, bias, z}} {
  1222. m_policy = policy;
  1223. init_megdnn_opr(*this, param);
  1224. add_input({src, filter, bias, z});
  1225. }
  1226. void ConvBiasForward::add_input_layout_constraint() {
  1227. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1228. }
  1229. SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1230. const Param& param,
  1231. const ExecutionPolicy& policy,
  1232. const OperatorNodeConfig& config) {
  1233. return src.insert_single_output_opr<ConvBiasForward>(
  1234. src.node(), filter.node(), param, policy, config);
  1235. }
  1236. SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter, SymbolVar bias,
  1237. const Param& param,
  1238. const ExecutionPolicy& policy,
  1239. const OperatorNodeConfig& config) {
  1240. return src.insert_single_output_opr<ConvBiasForward>(
  1241. src.node(), filter.node(), bias.node(), param, policy, config);
  1242. }
  1243. SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter, SymbolVar bias,
  1244. SymbolVar z, const Param& param,
  1245. const ExecutionPolicy& policy,
  1246. const OperatorNodeConfig& config) {
  1247. return src.insert_single_output_opr<ConvBiasForward>(
  1248. src.node(), filter.node(), bias.node(), z.node(), param, policy,
  1249. config);
  1250. }
  1251. void ConvBiasForward::init_output_dtype() {
  1252. DType output_dtype = config().output_dtype();
  1253. DType i0, i1, i2, i3;
  1254. mgb_assert(input().size() >= 2 && input().size() <= 4);
  1255. i0 = input(0)->dtype();
  1256. i1 = input(1)->dtype();
  1257. if (input().size() >= 3)
  1258. i2 = input(2)->dtype();
  1259. if (input().size() == 4)
  1260. i3 = input(3)->dtype();
  1261. megdnn_opr()->deduce_dtype(i0, i1, i2, i3, output_dtype);
  1262. output(0)->dtype(output_dtype);
  1263. }
  1264. size_t ConvBiasForward::get_workspace_size_bytes(
  1265. const TensorShapeArray& input_shapes,
  1266. const TensorShapeArray& output_shapes) const {
  1267. auto mo = megdnn_opr();
  1268. TensorLayout i0, i1, i2, i3;
  1269. mgb_assert(input_shapes.size() >= 2 && input_shapes.size() <= 4);
  1270. i0 = {input_shapes[0], input(0)->dtype(), input(0)->format()};
  1271. i1 = {input_shapes[1], input(1)->dtype(), input(1)->format()};
  1272. if (input_shapes.size() >= 3)
  1273. i2 = {input_shapes[2], input(2)->dtype(), input(2)->format()};
  1274. else {
  1275. DType dtype;
  1276. mo->deduce_dtype(input(0)->dtype(), input(1)->dtype(), DType{}, DType{},
  1277. dtype);
  1278. i2 = {{}, dtype};
  1279. }
  1280. if (input_shapes.size() == 4)
  1281. i3 = {input_shapes[3], input(3)->dtype(), input(3)->format()};
  1282. else
  1283. i3 = {{}, output(0)->dtype(), output(0)->format()};
  1284. return AlgoChooser<megdnn::ConvBias>::setup_algo(
  1285. {i0,
  1286. i1,
  1287. i2,
  1288. i3,
  1289. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1290. mo, this);
  1291. }
  1292. void ConvBiasForward::scn_do_execute() {
  1293. auto&& inp = input();
  1294. auto mo = megdnn_opr();
  1295. if (inp.size() == 2) {
  1296. TensorLayout bias_layout;
  1297. bias_layout.ndim = 0;
  1298. if (output(0)->dtype().enumv() == DTypeEnum::QuantizedS8) {
  1299. bias_layout.dtype = dtype::QuantizedS32(
  1300. output(0)->dtype().param<dtype::QuantizedS8>().scale);
  1301. } else {
  1302. bias_layout.dtype = output(0)->dtype();
  1303. }
  1304. TensorLayout z_layout;
  1305. z_layout.ndim = 0;
  1306. z_layout.dtype = output(0)->dtype();
  1307. megdnn::TensorND bias_tensor{nullptr, bias_layout};
  1308. megdnn::TensorND z_tensor{nullptr, z_layout};
  1309. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1310. inp[1]->dev_tensor().as_megdnn(), bias_tensor, z_tensor,
  1311. output(0)->dev_tensor().as_megdnn(),
  1312. nullptr,
  1313. intl::get_megdnn_workspace_from_var(output().back()));
  1314. } else if (inp.size() == 3) {
  1315. TensorLayout z_layout;
  1316. z_layout.ndim = 0;
  1317. z_layout.dtype = output(0)->dtype();
  1318. megdnn::TensorND z_tensor{nullptr, z_layout};
  1319. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1320. inp[1]->dev_tensor().as_megdnn(),
  1321. inp[2]->dev_tensor().as_megdnn(), z_tensor,
  1322. output(0)->dev_tensor().as_megdnn(),
  1323. nullptr,
  1324. intl::get_megdnn_workspace_from_var(output().back()));
  1325. } else {
  1326. mgb_assert(inp.size() == 4);
  1327. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1328. inp[1]->dev_tensor().as_megdnn(),
  1329. inp[2]->dev_tensor().as_megdnn(),
  1330. inp[3]->dev_tensor().as_megdnn(),
  1331. output(0)->dev_tensor().as_megdnn(),
  1332. nullptr,
  1333. intl::get_megdnn_workspace_from_var(output().back()));
  1334. }
  1335. }
  1336. void ConvBiasForward::get_output_var_shape(const TensorShapeArray& inp_shape,
  1337. TensorShapeArray& out_shape) const {
  1338. auto mo = megdnn_opr();
  1339. TensorLayout dst;
  1340. mo->deduce_layout({inp_shape[0], input(0)->dtype(), input(0)->format()},
  1341. {inp_shape[1], input(1)->dtype(), input(0)->format()}, {},
  1342. {}, dst);
  1343. out_shape[0] = dst;
  1344. }
  1345. void ConvBiasForward::init_output_static_infer_desc() {
  1346. Super::set_nr_managed_outputs(this->output().size() - 1);
  1347. Super::init_output_static_infer_desc();
  1348. this->init_output_static_infer_desc_workspace(
  1349. intl::AutoAddWorkspaceNeedLimitGetter<
  1350. megdnn::ConvBiasForward>::val);
  1351. }
  1352. void ConvBiasForward::init_output_format() {
  1353. mgb_assert(output().size() == 2);
  1354. output(0)->format(input(0)->format());
  1355. }
  1356. void ConvBiasForward::check_winograd_param_valid(
  1357. const megdnn::ConvBias::WinogradParam& param,
  1358. const DType& dtype) {
  1359. if (dtype.enumv() == DTypeEnum::Float32) {
  1360. mgb_assert(param.channel_block_size == 1 ||
  1361. param.channel_block_size == 4 ||
  1362. param.channel_block_size == 8,
  1363. "only support 1/4/8 for the channel_block_size of "
  1364. "winograd param, got %u",
  1365. param.channel_block_size);
  1366. } else {
  1367. mgb_assert((MEGDNN_FLOAT16_SELECT(dtype.enumv() == DTypeEnum::Float16,
  1368. false) ||
  1369. dtype.enumv() == DTypeEnum::QuantizedS8 ||
  1370. dtype.enumv() == DTypeEnum::Quantized8Asymm) &&
  1371. (param.channel_block_size == 1 ||
  1372. param.channel_block_size == 4 ||
  1373. param.channel_block_size == 8),
  1374. "only support 1/4/8 for the channel_block_size of "
  1375. "winograd param, got %u",
  1376. param.channel_block_size);
  1377. }
  1378. }
  1379. megdnn::param::MatrixMul::Format ConvBiasForward::get_matmul_format(
  1380. const megdnn::ConvBias::WinogradParam& param) {
  1381. switch (param.channel_block_size) {
  1382. case 1:
  1383. return megdnn::param::MatrixMul::Format::DEFAULT;
  1384. break;
  1385. case 4:
  1386. return megdnn::param::MatrixMul::Format::MK4;
  1387. break;
  1388. case 8:
  1389. return megdnn::param::MatrixMul::Format::MK8;
  1390. break;
  1391. default:
  1392. mgb_throw(InternalError,
  1393. "Only Support 1/4/8 for "
  1394. "channel_block_size, got: %u",
  1395. param.channel_block_size);
  1396. }
  1397. }
  1398. /* ===================== LocalShareForward ==================== */
  1399. IMPL_CONV(LocalShareForward, "local_share");
  1400. LocalShareForward::LocalShareForward(VarNode* src, VarNode* filter,
  1401. const Param& param,
  1402. const ExecutionPolicy& policy,
  1403. const OperatorNodeConfig& config)
  1404. : Super{src->owner_graph(), config, "local_share", {src, filter}} {
  1405. init_megdnn_opr(*this, param);
  1406. m_policy = policy;
  1407. add_input({src, filter});
  1408. }
  1409. SymbolVar LocalShareForward::make(SymbolVar src, SymbolVar filter,
  1410. const Param& param,
  1411. const ExecutionPolicy& policy,
  1412. const OperatorNodeConfig& config) {
  1413. return src.insert_single_output_opr<LocalShareForward>(
  1414. src.node(), filter.node(), param, policy, config);
  1415. }
  1416. void LocalShareForward::init_output_dtype() {
  1417. DType output_dtype = config().output_dtype();
  1418. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1419. output_dtype = dtype::Float32();
  1420. output(0)->dtype(output_dtype);
  1421. }
  1422. void LocalShareForward::init_output_format() {
  1423. mgb_assert(output().size() == 2);
  1424. output(0)->format(input(0)->format());
  1425. }
  1426. size_t LocalShareForward::get_workspace_size_bytes(
  1427. const TensorShapeArray& input_shapes,
  1428. const TensorShapeArray& output_shapes) const {
  1429. mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
  1430. return AlgoChooser<megdnn::LocalShareForward>::setup_algo(
  1431. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1432. input(0)->format()},
  1433. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1434. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1435. megdnn_opr(), this);
  1436. }
  1437. MGB_IMPL_OPR_GRAD(LocalShareForward) {
  1438. mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
  1439. "only float data type supported for grad");
  1440. mgb_assert(wrt_idx == 0 || wrt_idx == 1);
  1441. mgb_assert(out_grad.size() == 2);
  1442. if (wrt_idx == 0) {
  1443. // data
  1444. SymbolVar grad = LocalShareBackwardData::make(
  1445. opr.input(1), out_grad[0], opr.input(0),
  1446. opr.param(), opr.execution_policy());
  1447. return grad.node();
  1448. } else {
  1449. // filter
  1450. SymbolVar grad = LocalShareBackwardFilter::make(
  1451. opr.input(0), out_grad[0], opr.input(1),
  1452. opr.param(), opr.execution_policy());
  1453. return grad.node();
  1454. }
  1455. }
  1456. /* ===================== LocalShareBackwardData ==================== */
  1457. IMPL_CONV(LocalShareBackwardData, "local_share_bwd_data");
  1458. LocalShareBackwardData::LocalShareBackwardData(VarNode* filter, VarNode* diff,
  1459. VarNode* src_for_shp,
  1460. const Param& param,
  1461. const ExecutionPolicy& policy,
  1462. const OperatorNodeConfig& config)
  1463. : Super{filter->owner_graph(), config, "local_share_bwd_data", {filter, diff}} {
  1464. init_megdnn_opr(*this, param);
  1465. m_policy = policy;
  1466. add_input({filter, diff});
  1467. if (src_for_shp) {
  1468. add_input({src_for_shp});
  1469. }
  1470. }
  1471. SymbolVar LocalShareBackwardData::make(SymbolVar filter, SymbolVar diff,
  1472. SymbolVar src, const Param& param,
  1473. const ExecutionPolicy& policy,
  1474. const OperatorNodeConfig& config) {
  1475. return filter.insert_single_output_opr<LocalShareBackwardData>(
  1476. filter.node(), diff.node(), src.node(), param, policy, config);
  1477. }
  1478. void LocalShareBackwardData::init_output_static_infer_desc() {
  1479. init_output_static_infer_desc_for_bwd_data<LocalShareBackwardData,
  1480. megdnn::LocalShareBackwardData>(
  1481. this);
  1482. }
  1483. void LocalShareBackwardData::init_output_dtype() {
  1484. DType output_dtype = config().output_dtype();
  1485. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1486. output_dtype = dtype::Float32();
  1487. output(0)->dtype(output_dtype);
  1488. }
  1489. void LocalShareBackwardData::add_input_layout_constraint() {
  1490. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1491. }
  1492. cg::OperatorNodeBase::NodeProp* LocalShareBackwardData::do_make_node_prop()
  1493. const {
  1494. auto prop = Super::Super::do_make_node_prop();
  1495. mgb_assert(input().size() == 3);
  1496. using D = NodeProp::DepType;
  1497. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
  1498. return prop;
  1499. }
  1500. void LocalShareBackwardData::scn_do_execute() {
  1501. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  1502. input(1)->dev_tensor().as_megdnn(),
  1503. output(0)->dev_tensor().as_megdnn(),
  1504. intl::get_megdnn_workspace_from_var(output(1)));
  1505. }
  1506. MGB_IMPL_OPR_GRAD(LocalShareBackwardData) {
  1507. mgb_assert(!out_grad[1]);
  1508. if (wrt_idx == 0) {
  1509. return LocalShareBackwardFilter::make(out_grad[0], opr.input(1),
  1510. opr.input(0), opr.param(),
  1511. opr.execution_policy())
  1512. .node();
  1513. }
  1514. if (wrt_idx == 1) {
  1515. return LocalShare::make(out_grad[0], opr.input(0), opr.param(),
  1516. opr.execution_policy())
  1517. .node();
  1518. }
  1519. return nullptr;
  1520. }
  1521. /* ==================== LocalShareBackwardFilter ==================== */
  1522. IMPL_CONV(LocalShareBackwardFilter, "local_share_bwd_filter");
  1523. LocalShareBackwardFilter::LocalShareBackwardFilter(
  1524. VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
  1525. const ExecutionPolicy& policy, const OperatorNodeConfig& config)
  1526. : Super({src->owner_graph(),
  1527. config,
  1528. "local_share_bwd_filter",
  1529. {src, diff, filter}},
  1530. 2, false) {
  1531. init_megdnn_opr(*this, param);
  1532. m_policy = policy;
  1533. add_input({src, diff, filter});
  1534. }
  1535. SymbolVar LocalShareBackwardFilter::make(
  1536. SymbolVar src, SymbolVar diff, SymbolVar filter,
  1537. const Param &param,
  1538. const ExecutionPolicy &policy,
  1539. const OperatorNodeConfig &config) {
  1540. return src.insert_single_output_opr<LocalShareBackwardFilter>(
  1541. src.node(), diff.node(), filter.node(), param, policy, config);
  1542. }
  1543. size_t LocalShareBackwardFilter::get_workspace_size_bytes(
  1544. const TensorShapeArray &input_shapes,
  1545. const TensorShapeArray &output_shapes) const {
  1546. mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
  1547. return AlgoChooser<megdnn::LocalShareBackwardFilter>::setup_algo(
  1548. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1549. input(0)->format()},
  1550. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1551. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1552. megdnn_opr(), this);
  1553. }
  1554. MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) {
  1555. mgb_assert(!out_grad[1]);
  1556. if (wrt_idx == 0) {
  1557. return LocalShareBackwardData::make(out_grad[0], opr.input(1),
  1558. opr.input(0), opr.param(), opr.execution_policy()).node();
  1559. }
  1560. if (wrt_idx == 1) {
  1561. return LocalShare::make(
  1562. opr.input(0), out_grad[0], opr.param(), opr.execution_policy()).
  1563. node();
  1564. }
  1565. return nullptr;
  1566. }
  1567. /* ===================== DeformableConvForward ==================== */
  1568. IMPL_CONV(DeformableConvForward, "deformable_conv");
  1569. DeformableConvForward::DeformableConvForward(VarNode* src, VarNode* filter,
  1570. VarNode* offset, VarNode* mask,
  1571. const Param& param,
  1572. const ExecutionPolicy& policy,
  1573. const OperatorNodeConfig& config)
  1574. : Super{src->owner_graph(),
  1575. config,
  1576. "deformable_conv",
  1577. {src, filter, offset, mask}} {
  1578. mgb_assert(src->dtype() == dtype::Float32() &&
  1579. filter->dtype() == dtype::Float32() &&
  1580. offset->dtype() == dtype::Float32() &&
  1581. mask->dtype() == dtype::Float32(),
  1582. "input should be float32, got %s, %s, %s, %s",
  1583. src->dtype().name(), filter->dtype().name(),
  1584. offset->dtype().name(), mask->dtype().name());
  1585. init_megdnn_opr(*this, param);
  1586. m_policy = policy;
  1587. add_input({src, filter, offset, mask});
  1588. }
  1589. SymbolVar DeformableConvForward::make(SymbolVar src, SymbolVar filter,
  1590. SymbolVar offset, SymbolVar mask,
  1591. const Param& param,
  1592. const ExecutionPolicy& policy,
  1593. const OperatorNodeConfig& config) {
  1594. return src.insert_single_output_opr<DeformableConvForward>(
  1595. src.node(), filter.node(), offset.node(), mask.node(), param,
  1596. policy, config);
  1597. }
  1598. void DeformableConvForward::init_output_dtype() {
  1599. DType output_dtype = config().output_dtype();
  1600. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1601. output_dtype = dtype::Float32();
  1602. output(0)->dtype(output_dtype);
  1603. }
  1604. void DeformableConvForward::init_output_format() {
  1605. mgb_assert(output().size() == 2);
  1606. output(0)->format(input(0)->format());
  1607. }
  1608. size_t DeformableConvForward::get_workspace_size_bytes(
  1609. const TensorShapeArray& input_shapes,
  1610. const TensorShapeArray& output_shapes) const {
  1611. mgb_assert(input_shapes.size() == 4 && output_shapes.size() == 1);
  1612. return AlgoChooser<megdnn::DeformableConvForward>::setup_algo(
  1613. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1614. input(0)->format()},
  1615. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1616. {input_shapes[2], input(2)->dtype(), input(2)->format()},
  1617. {input_shapes[3], input(3)->dtype(), input(3)->format()},
  1618. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1619. megdnn_opr(), this);
  1620. }
  1621. MGB_IMPL_OPR_GRAD(DeformableConvForward) {
  1622. mgb_assert(opr.input(0)->dtype() == dtype::Float32(),
  1623. "only float data type supported for grad");
  1624. mgb_assert(wrt_idx < 4);
  1625. mgb_assert(!out_grad[1]);
  1626. mgb_assert(out_grad.size() == 2);
  1627. // data, offset and mask
  1628. auto grad_arr = DeformableConvBackwardData::make_all(
  1629. opr.input(0), opr.input(1), opr.input(2), opr.input(3), out_grad[0],
  1630. opr.param(), opr.execution_policy(), opr.config());
  1631. // filter
  1632. auto filter_grad = DeformableConvBackwardFilter::make(
  1633. opr.input(0), opr.input(1), opr.input(2), opr.input(3), out_grad[0],
  1634. opr.param(), opr.execution_policy(), opr.config());
  1635. SymbolVarArray grads = {grad_arr[0], filter_grad, grad_arr[1], grad_arr[2]};
  1636. return grads[wrt_idx].node();
  1637. }
  1638. /* ==================== DeformableConvBackwardData ==================== */
  1639. IMPL_CONV(DeformableConvBackwardData, "deformalbe_conv_backward_data");
  1640. DeformableConvBackwardData::DeformableConvBackwardData(
  1641. VarNode* src, VarNode* filter, VarNode* offset, VarNode* mask,
  1642. VarNode* diff, const Param& param, const ExecutionPolicy& policy,
  1643. const OperatorNodeConfig& config)
  1644. : Super{filter->owner_graph(),
  1645. config,
  1646. "deformable_conv_backward_data",
  1647. {src, filter, offset, mask, diff}} {
  1648. mgb_assert(src->dtype() == dtype::Float32() and
  1649. filter->dtype() == dtype::Float32() and
  1650. offset->dtype() == dtype::Float32() and
  1651. mask->dtype() == dtype::Float32() and
  1652. diff->dtype() == dtype::Float32(),
  1653. "input should be float32, got %s, %s, %s, %s %s",
  1654. src->dtype().name(), filter->dtype().name(),
  1655. offset->dtype().name(), mask->dtype().name(),
  1656. diff->dtype().name());
  1657. init_megdnn_opr(*this, param);
  1658. m_policy = policy;
  1659. add_input({src, filter, offset, mask, diff});
  1660. }
  1661. SymbolVarArray DeformableConvBackwardData::make_all(
  1662. SymbolVar src, SymbolVar filter, SymbolVar offset, SymbolVar mask,
  1663. SymbolVar diff, const Param& param, const ExecutionPolicy& policy,
  1664. const OperatorNodeConfig& config) {
  1665. auto graph = src.node()->owner_graph();
  1666. auto back_node =
  1667. graph->insert_opr(std::make_unique<DeformableConvBackwardData>(
  1668. src.node(), filter.node(), offset.node(), mask.node(),
  1669. diff.node(), param, policy, config));
  1670. return {back_node->output(0), back_node->output(1), back_node->output(2)};
  1671. }
  1672. SymbolVar DeformableConvBackwardData::make(SymbolVar src, SymbolVar filter,
  1673. SymbolVar offset, SymbolVar mask,
  1674. SymbolVar diff, const Param& param,
  1675. const ExecutionPolicy& policy,
  1676. const OperatorNodeConfig& config) {
  1677. auto&& all =
  1678. make_all(src, filter, offset, mask, diff, param, policy, config);
  1679. return all[0];
  1680. }
  1681. void DeformableConvBackwardData::scn_do_execute() {
  1682. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), // src
  1683. input(1)->dev_tensor().as_megdnn(), // filter
  1684. input(2)->dev_tensor().as_megdnn(), // offset
  1685. input(3)->dev_tensor().as_megdnn(), // mask
  1686. input(4)->dev_tensor().as_megdnn(), // diff
  1687. output(0)->dev_tensor().as_megdnn(), // src_grad
  1688. output(1)->dev_tensor().as_megdnn(), // offset_grad
  1689. output(2)->dev_tensor().as_megdnn(), // mask_grad
  1690. intl::get_megdnn_workspace_from_var(output(3)));
  1691. }
  1692. void DeformableConvBackwardData::get_output_var_shape(
  1693. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  1694. TensorShape im_shp = inp_shape[0];
  1695. TensorShape offset_shp = inp_shape[2];
  1696. TensorShape mask_shp = inp_shape[3];
  1697. mgb_assert(im_shp.ndim == 4, "invalid src shape: %s",
  1698. im_shp.to_string().c_str());
  1699. mgb_assert(offset_shp.ndim == 4, "invalid offset shape: %s",
  1700. offset_shp.to_string().c_str());
  1701. mgb_assert(mask_shp.ndim == 4, "invalid mask shape: %s",
  1702. mask_shp.to_string().c_str());
  1703. mgb_assert(out_shape.size() == 3);
  1704. out_shape[0] = im_shp;
  1705. out_shape[1] = offset_shp;
  1706. out_shape[2] = mask_shp;
  1707. }
  1708. size_t DeformableConvBackwardData::get_workspace_size_bytes(
  1709. const TensorShapeArray& inp_shape,
  1710. const TensorShapeArray& out_shape) const {
  1711. size_t ws = AlgoChooser<megdnn::DeformableConvBackwardData>::setup_algo(
  1712. {TensorLayout{inp_shape[0], input(0)->dtype(), input(0)->format()},
  1713. {inp_shape[1], input(1)->dtype(), input(1)->format()},
  1714. {inp_shape[2], input(2)->dtype(), input(2)->format()},
  1715. {inp_shape[3], input(3)->dtype(), input(3)->format()},
  1716. {inp_shape[4], input(4)->dtype(), input(4)->format()},
  1717. {out_shape[0], output(0)->dtype(), output(0)->format()},
  1718. {out_shape[1], output(1)->dtype(), output(1)->format()},
  1719. {out_shape[2], output(2)->dtype(), output(2)->format()}},
  1720. megdnn_opr(), this);
  1721. return ws;
  1722. }
  1723. void DeformableConvBackwardData::init_output_dtype() {
  1724. DType output_dtype = config().output_dtype();
  1725. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1726. output_dtype = dtype::Float32();
  1727. output(0)->dtype(output_dtype);
  1728. output(1)->dtype(output_dtype);
  1729. output(2)->dtype(output_dtype);
  1730. }
  1731. void DeformableConvBackwardData::init_output_format() {
  1732. mgb_assert(output().size() == 4);
  1733. output(0)->format(input(0)->format());
  1734. output(1)->format(input(2)->format());
  1735. output(2)->format(input(3)->format());
  1736. }
  1737. cg::OperatorNodeBase::NodeProp* DeformableConvBackwardData::do_make_node_prop()
  1738. const {
  1739. auto prop = Super::Super::do_make_node_prop();
  1740. using D = NodeProp::DepType;
  1741. mgb_assert(input().size() == 5);
  1742. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::DEV_VALUE,
  1743. D::DEV_VALUE, D::DEV_VALUE});
  1744. return prop;
  1745. }
  1746. void DeformableConvBackwardData::init_output_static_infer_desc() {
  1747. Super::set_nr_managed_outputs(this->output().size() - 1);
  1748. Super::init_output_static_infer_desc();
  1749. this->init_output_static_infer_desc_workspace(
  1750. intl::AutoAddWorkspaceNeedLimitGetter<
  1751. megdnn::DeformableConvBackwardData>::val);
  1752. }
  1753. /* ==================== DeformableConvBackwardFilter ==================== */
  1754. IMPL_CONV(DeformableConvBackwardFilter, "deformalbe_conv_backward_filter");
  1755. DeformableConvBackwardFilter::DeformableConvBackwardFilter(
  1756. VarNode* src, VarNode* filter, VarNode* offset, VarNode* mask,
  1757. VarNode* diff, const Param& param, const ExecutionPolicy& policy,
  1758. const OperatorNodeConfig& config)
  1759. : Super({src->owner_graph(),
  1760. config,
  1761. "deformable_conv_backward_filter",
  1762. {src, filter, offset, mask, diff}},
  1763. 1, false) {
  1764. mgb_assert(src->dtype() == dtype::Float32() and
  1765. filter->dtype() == dtype::Float32() and
  1766. offset->dtype() == dtype::Float32() and
  1767. mask->dtype() == dtype::Float32() and
  1768. diff->dtype() == dtype::Float32(),
  1769. "input should be float32, got %s, %s, %s, %s %s",
  1770. src->dtype().name(), filter->dtype().name(),
  1771. offset->dtype().name(), mask->dtype().name(),
  1772. diff->dtype().name());
  1773. init_megdnn_opr(*this, param);
  1774. m_policy = policy;
  1775. add_input({src, filter, offset, mask, diff});
  1776. }
  1777. SymbolVar DeformableConvBackwardFilter::make(SymbolVar src, SymbolVar filter,
  1778. SymbolVar offset, SymbolVar mask,
  1779. SymbolVar diff, const Param& param,
  1780. const ExecutionPolicy& policy,
  1781. const OperatorNodeConfig& config) {
  1782. return src.insert_single_output_opr<DeformableConvBackwardFilter>(
  1783. src.node(), filter.node(), offset.node(), mask.node(), diff.node(),
  1784. param, policy, config);
  1785. }
  1786. void DeformableConvBackwardFilter::scn_do_execute() {
  1787. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), // src
  1788. input(2)->dev_tensor().as_megdnn(), // offset
  1789. input(3)->dev_tensor().as_megdnn(), // mask
  1790. input(4)->dev_tensor().as_megdnn(), // diff
  1791. output(0)->dev_tensor().as_megdnn(), // filter_diff
  1792. intl::get_megdnn_workspace_from_var(output(1)));
  1793. }
  1794. size_t DeformableConvBackwardFilter::get_workspace_size_bytes(
  1795. const TensorShapeArray& input_shapes,
  1796. const TensorShapeArray& output_shapes) const {
  1797. mgb_assert(input_shapes.size() == 5 && output_shapes.size() == 1);
  1798. return AlgoChooser<megdnn::DeformableConvBackwardFilter>::setup_algo(
  1799. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1800. input(0)->format()},
  1801. {input_shapes[2], input(2)->dtype(), input(2)->format()},
  1802. {input_shapes[3], input(3)->dtype(), input(3)->format()},
  1803. {input_shapes[4], input(4)->dtype(), input(4)->format()},
  1804. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1805. megdnn_opr(), this);
  1806. }
  1807. /* ==================== BatchConvBiasForward ==================== */
  1808. IMPL_CONV(BatchConvBiasForward, "batch_conv_bias_fwd");
  1809. BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
  1810. const Param& param,
  1811. const ExecutionPolicy& policy,
  1812. const OperatorNodeConfig& config)
  1813. : Super{src->owner_graph(), config, "batch_conv_bias", {src, filter}} {
  1814. init_megdnn_opr(*this, param);
  1815. m_policy = policy;
  1816. add_input({src, filter});
  1817. }
  1818. BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
  1819. VarNode* bias, const Param& param,
  1820. const ExecutionPolicy& policy,
  1821. const OperatorNodeConfig& config)
  1822. : Super{src->owner_graph(),
  1823. config,
  1824. "batch_conv_bias",
  1825. {src, filter, bias}} {
  1826. m_policy = policy;
  1827. init_megdnn_opr(*this, param);
  1828. add_input({src, filter, bias});
  1829. }
  1830. BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
  1831. VarNode* bias, VarNode* z,
  1832. const Param& param,
  1833. const ExecutionPolicy& policy,
  1834. const OperatorNodeConfig& config)
  1835. : Super{src->owner_graph(),
  1836. config,
  1837. "batch_conv_bias",
  1838. {src, filter, bias, z}} {
  1839. m_policy = policy;
  1840. init_megdnn_opr(*this, param);
  1841. add_input({src, filter, bias, z});
  1842. }
  1843. void BatchConvBiasForward::add_input_layout_constraint() {
  1844. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1845. }
  1846. SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1847. const Param& param,
  1848. const ExecutionPolicy& policy,
  1849. const OperatorNodeConfig& config) {
  1850. return src.insert_single_output_opr<BatchConvBiasForward>(
  1851. src.node(), filter.node(), param, policy, config);
  1852. }
  1853. SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1854. SymbolVar bias, const Param& param,
  1855. const ExecutionPolicy& policy,
  1856. const OperatorNodeConfig& config) {
  1857. return src.insert_single_output_opr<BatchConvBiasForward>(
  1858. src.node(), filter.node(), bias.node(), param, policy, config);
  1859. }
  1860. SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1861. SymbolVar bias, SymbolVar z,
  1862. const Param& param,
  1863. const ExecutionPolicy& policy,
  1864. const OperatorNodeConfig& config) {
  1865. return src.insert_single_output_opr<BatchConvBiasForward>(
  1866. src.node(), filter.node(), bias.node(), z.node(), param, policy,
  1867. config);
  1868. }
  1869. void BatchConvBiasForward::init_output_dtype() {
  1870. DType output_dtype = config().output_dtype();
  1871. DType i0, i1, i2, i3;
  1872. mgb_assert(input().size() >= 2 && input().size() <= 4);
  1873. i0 = input(0)->dtype();
  1874. i1 = input(1)->dtype();
  1875. if (input().size() >= 3)
  1876. i2 = input(2)->dtype();
  1877. if (input().size() == 4)
  1878. i3 = input(3)->dtype();
  1879. megdnn_opr()->deduce_dtype(i0, i1, i2, i3, output_dtype);
  1880. output(0)->dtype(output_dtype);
  1881. }
  1882. size_t BatchConvBiasForward::get_workspace_size_bytes(
  1883. const TensorShapeArray& input_shapes,
  1884. const TensorShapeArray& output_shapes) const {
  1885. auto mo = megdnn_opr();
  1886. TensorLayout i0, i1, i2, i3;
  1887. mgb_assert(input_shapes.size() >= 2 && input_shapes.size() <= 4);
  1888. i0 = {input_shapes[0], input(0)->dtype(), input(0)->format()};
  1889. i1 = {input_shapes[1], input(1)->dtype(), input(1)->format()};
  1890. if (input_shapes.size() >= 3)
  1891. i2 = {input_shapes[2], input(2)->dtype(), input(2)->format()};
  1892. else {
  1893. DType dtype;
  1894. mo->deduce_dtype(input(0)->dtype(), input(1)->dtype(), DType{}, DType{},
  1895. dtype);
  1896. i2 = {{}, dtype};
  1897. }
  1898. if (input_shapes.size() == 4)
  1899. i3 = {input_shapes[3], input(3)->dtype(), input(3)->format()};
  1900. else
  1901. i3 = {{}, output(0)->dtype(), output(0)->format()};
  1902. return AlgoChooser<megdnn::BatchConvBias>::setup_algo(
  1903. {i0,
  1904. i1,
  1905. i2,
  1906. i3,
  1907. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1908. mo, this);
  1909. }
  1910. void BatchConvBiasForward::scn_do_execute() {
  1911. auto&& inp = input();
  1912. auto mo = megdnn_opr();
  1913. if (inp.size() == 2) {
  1914. TensorLayout bias_layout;
  1915. bias_layout.ndim = 0;
  1916. if (output(0)->dtype().enumv() == DTypeEnum::QuantizedS8) {
  1917. bias_layout.dtype = dtype::QuantizedS32(
  1918. output(0)->dtype().param<dtype::QuantizedS8>().scale);
  1919. } else {
  1920. bias_layout.dtype = output(0)->dtype();
  1921. }
  1922. TensorLayout z_layout;
  1923. z_layout.ndim = 0;
  1924. z_layout.dtype = output(0)->dtype();
  1925. megdnn::TensorND bias_tensor{nullptr, bias_layout};
  1926. megdnn::TensorND z_tensor{nullptr, z_layout};
  1927. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1928. inp[1]->dev_tensor().as_megdnn(), bias_tensor, z_tensor,
  1929. output(0)->dev_tensor().as_megdnn(),
  1930. intl::get_megdnn_workspace_from_var(output().back()));
  1931. } else if (inp.size() == 3) {
  1932. TensorLayout z_layout;
  1933. z_layout.ndim = 0;
  1934. z_layout.dtype = output(0)->dtype();
  1935. megdnn::TensorND z_tensor{nullptr, z_layout};
  1936. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1937. inp[1]->dev_tensor().as_megdnn(),
  1938. inp[2]->dev_tensor().as_megdnn(), z_tensor,
  1939. output(0)->dev_tensor().as_megdnn(),
  1940. intl::get_megdnn_workspace_from_var(output().back()));
  1941. } else {
  1942. mgb_assert(inp.size() == 4);
  1943. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1944. inp[1]->dev_tensor().as_megdnn(),
  1945. inp[2]->dev_tensor().as_megdnn(),
  1946. inp[3]->dev_tensor().as_megdnn(),
  1947. output(0)->dev_tensor().as_megdnn(),
  1948. intl::get_megdnn_workspace_from_var(output().back()));
  1949. }
  1950. }
  1951. void BatchConvBiasForward::get_output_var_shape(
  1952. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  1953. auto mo = megdnn_opr();
  1954. TensorLayout dst;
  1955. mo->deduce_layout({inp_shape[0], input(0)->dtype(), input(0)->format()},
  1956. {inp_shape[1], input(1)->dtype(), input(0)->format()}, {},
  1957. {}, dst);
  1958. out_shape[0] = dst;
  1959. }
  1960. void BatchConvBiasForward::init_output_static_infer_desc() {
  1961. Super::set_nr_managed_outputs(this->output().size() - 1);
  1962. Super::init_output_static_infer_desc();
  1963. this->init_output_static_infer_desc_workspace(
  1964. intl::AutoAddWorkspaceNeedLimitGetter<
  1965. megdnn::BatchConvBiasForward>::val);
  1966. }
  1967. void BatchConvBiasForward::init_output_format() {
  1968. mgb_assert(output().size() == 2);
  1969. output(0)->format(input(0)->format());
  1970. }
  1971. #undef IMPL_CONV
  1972. #undef MGB_FOREACH_FASTRUN_OPR
  1973. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台