You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

grad_override.cpp 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /**
  2. * \file imperative/python/src/grad_override.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./grad.h"
  12. #include "megbrain/imperative/ops/autogen.h"
  13. #include "megbrain/imperative/transformations/grad.h"
  14. namespace mgb::imperative::python {
  15. class CustomGradMaker {
  16. bool output_size_set = false, input_has_grad_initialized = false;
  17. CustomBackward& target;
  18. size_t nr_inputs;
  19. void init_input_has_grad() {
  20. if (!input_has_grad_initialized) {
  21. input_has_grad_initialized = true;
  22. target.m_input_has_grad.resize(nr_inputs, true);
  23. }
  24. }
  25. public:
  26. CustomGradMaker(CustomBackward& target, size_t nr_inputs)
  27. : target(target), nr_inputs(nr_inputs) {}
  28. CustomGradMaker& backward(CustomBackward::BackwardFn f) {
  29. mgb_assert(!target.m_backward);
  30. target.m_backward = f;
  31. return *this;
  32. }
  33. // mandatory
  34. CustomGradMaker& output_size(size_t sz) {
  35. mgb_assert(!output_size_set);
  36. output_size_set = true;
  37. target.m_output_attrs.resize(sz);
  38. return *this;
  39. }
  40. // optional, defaults to all true
  41. CustomGradMaker& input_has_grad(size_t i, bool v) {
  42. init_input_has_grad();
  43. target.m_input_has_grad.at(i) = v;
  44. return *this;
  45. }
  46. // optional, defaults to all true
  47. CustomGradMaker& output_requires_grad(size_t i, bool v) {
  48. target.m_output_attrs.at(i).requires_grad = v;
  49. return *this;
  50. }
  51. // optional, defaults to all true
  52. CustomGradMaker& output_captured(size_t i, bool v) {
  53. target.m_output_attrs.at(i).captured = v;
  54. return *this;
  55. }
  56. void finalize() {
  57. mgb_assert(output_size_set);
  58. init_input_has_grad();
  59. }
  60. };
  61. namespace {
  62. ValueRef get_shape(ValueRef x) {
  63. static auto op = GetVarShape::make();
  64. return imperative::apply(*op, x)[0];
  65. }
  66. ValueRef reduce_to(ValueRef x, ValueRef s) {
  67. static auto op = Reduce::make();
  68. return imperative::apply(*op, x, s)[0];
  69. }
  70. ValueRef reshape_to(ValueRef x, ValueRef s) {
  71. static auto op = Reshape::make();
  72. return imperative::apply(*op, x, s)[0];
  73. }
  74. ValueRef broadcast_to(ValueRef x, ValueRef s) {
  75. static auto op = Broadcast::make();
  76. return imperative::apply(*op, x, s)[0];
  77. }
  78. ValueRef make_empty_tensor(
  79. CompNodeValue::ref_t device, ValueRef shape, DTypeValue::ref_t dtype) {
  80. HostTensorStorage storage(*device);
  81. storage.ensure_size(dtype->size());
  82. std::memset(storage.ptr(), 0, dtype->size());
  83. auto t = imperative::apply(
  84. CreateTensor(CreateTensor::Unique, *device, *dtype, ValueShape()),
  85. HostStorage::make(storage))[0];
  86. auto res = broadcast_to(t, shape);
  87. return res;
  88. }
  89. std::optional<std::vector<ValueRef>> elemwise_grad_rule(
  90. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  91. CustomBackward& backward) {
  92. auto& elemwise = op.cast_final_safe<Elemwise>();
  93. if (elemwise.mode != Elemwise::Mode::ADD) {
  94. return {};
  95. }
  96. mgb_assert(inputs.size() == 2);
  97. std::array<ValueRef, 2> input_shapes;
  98. for (size_t i = 0; i < 2; ++i) {
  99. if (inputs_require_grad[i]) {
  100. input_shapes[i] = get_shape(inputs[i]);
  101. }
  102. }
  103. auto maker = CustomGradMaker(backward, inputs.size());
  104. maker.output_size(1).output_captured(0, false);
  105. maker.backward([shapes = std::move(input_shapes)](Span<ValueRef> grads) {
  106. mgb_assert(grads.size() == 1);
  107. ValueRef grad = grads[0];
  108. std::vector<ValueRef> ret(2);
  109. if (!grad) {
  110. return ret;
  111. }
  112. for (size_t i = 0; i < 2; ++i) {
  113. if (shapes[i]) {
  114. ret[i] = reduce_to(grad, shapes[i]);
  115. }
  116. }
  117. return ret;
  118. });
  119. maker.finalize();
  120. return imperative::apply(ApplyOp(op), inputs);
  121. }
  122. std::optional<std::vector<ValueRef>> reshape_grad_rule(
  123. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  124. CustomBackward& backward) {
  125. mgb_assert(inputs.size() == 2);
  126. std::array<ValueRef, 2> input_shapes;
  127. for (size_t i = 0; i < 2; ++i) {
  128. if (inputs_require_grad[i]) {
  129. input_shapes[i] = get_shape(inputs[i]);
  130. }
  131. }
  132. auto maker = CustomGradMaker(backward, inputs.size());
  133. maker.output_size(1).output_captured(0, false);
  134. maker.backward([shapes = std::move(input_shapes)](Span<ValueRef> grads) {
  135. mgb_assert(grads.size() == 1);
  136. ValueRef grad = grads[0];
  137. std::vector<ValueRef> ret(2);
  138. if (!grad) {
  139. return ret;
  140. }
  141. for (size_t i = 0; i < 2; ++i) {
  142. if (shapes[i]) {
  143. ret[i] = reshape_to(grad, shapes[i]);
  144. }
  145. }
  146. return ret;
  147. });
  148. maker.finalize();
  149. return imperative::apply(ApplyOp(op), inputs);
  150. }
  151. std::optional<std::vector<ValueRef>> subtensor_grad_rule(
  152. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  153. CustomBackward& backward) {
  154. auto&& subtensor = op.cast_final_safe<Subtensor>();
  155. auto&& grad_op = SetSubtensor::make(subtensor.items);
  156. SmallVector<ValueRef> inputs2;
  157. if (inputs_require_grad[0]) {
  158. inputs2.push_back(get_shape(inputs[0]));
  159. for (size_t i = 1; i < inputs.size(); ++i) {
  160. inputs2.push_back(inputs[i]);
  161. }
  162. }
  163. auto maker = CustomGradMaker(backward, inputs.size());
  164. maker.output_size(1).output_captured(0, false);
  165. maker.backward([inputs = std::move(inputs2),
  166. grad_op_ = std::move(grad_op)](Span<ValueRef> grads) {
  167. mgb_assert(grads.size() == 1);
  168. ValueRef grad = grads[0];
  169. std::vector<ValueRef> ret(1);
  170. if (grad && inputs[0]) {
  171. SmallVector<ValueRef> args_(inputs.size() + 1);
  172. auto&& zeros = make_empty_tensor(grad.device(), inputs[0], grad.dtype());
  173. args_[0] = zeros;
  174. args_[1] = grad;
  175. for (size_t i = 1; i < inputs.size(); ++i) {
  176. args_[i + 1] = inputs[i];
  177. }
  178. ret[0] = imperative::apply(ApplyOp(*grad_op_), args_)[0];
  179. }
  180. return ret;
  181. });
  182. maker.finalize();
  183. return imperative::apply(ApplyOp(op), inputs);
  184. }
  185. std::optional<std::vector<ValueRef>> indexingMultiAxisVec_grad_rule(
  186. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  187. CustomBackward& backward) {
  188. auto&& indexingMultiAxisVec = op.cast_final_safe<IndexingMultiAxisVec>();
  189. auto&& grad_op = IndexingSetMultiAxisVec::make(indexingMultiAxisVec.items);
  190. SmallVector<ValueRef> inputs2;
  191. if (inputs_require_grad[0]) {
  192. inputs2.push_back(get_shape(inputs[0]));
  193. for (size_t i = 1; i < inputs.size(); ++i) {
  194. inputs2.push_back(inputs[i]);
  195. }
  196. }
  197. auto maker = CustomGradMaker(backward, inputs.size());
  198. maker.output_size(1).output_captured(0, false);
  199. maker.backward([inputs = std::move(inputs2),
  200. grad_op_ = std::move(grad_op)](Span<ValueRef> grads) {
  201. mgb_assert(grads.size() == 1);
  202. ValueRef grad = grads[0];
  203. std::vector<ValueRef> ret(1);
  204. if (grad && inputs[0]) {
  205. SmallVector<ValueRef> args_(inputs.size() + 1);
  206. auto&& zeros = make_empty_tensor(grad.device(), inputs[0], grad.dtype());
  207. args_[0] = zeros;
  208. args_[1] = grad;
  209. for (size_t i = 1; i < inputs.size(); ++i) {
  210. args_[i + 1] = inputs[i];
  211. }
  212. ret[0] = imperative::apply(ApplyOp(*grad_op_), args_)[0];
  213. }
  214. return ret;
  215. });
  216. maker.finalize();
  217. return imperative::apply(ApplyOp(op), inputs);
  218. }
  219. std::optional<std::vector<ValueRef>> reduce_grad_rule(
  220. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  221. CustomBackward& backward) {
  222. auto& reduce = op.cast_final_safe<Reduce>();
  223. if (reduce.mode != Reduce::Mode::SUM) {
  224. return {};
  225. }
  226. if (inputs.size() != 1) {
  227. return {};
  228. }
  229. std::array<ValueRef, 1> input_shapes;
  230. if (inputs_require_grad[0]) {
  231. input_shapes[0] = get_shape(inputs[0]);
  232. }
  233. auto maker = CustomGradMaker(backward, inputs.size());
  234. maker.output_size(1).output_captured(0, false);
  235. maker.backward([shapes = std::move(input_shapes)](Span<ValueRef> grads) {
  236. mgb_assert(grads.size() == 1);
  237. ValueRef grad = grads[0];
  238. std::vector<ValueRef> ret(1);
  239. if (grad && shapes[0]) {
  240. ret[0] = broadcast_to(grad, shapes[0]);
  241. }
  242. return ret;
  243. });
  244. maker.finalize();
  245. return imperative::apply(ApplyOp(op), inputs);
  246. }
  247. std::optional<std::vector<ValueRef>> addAxis_grad_rule(
  248. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  249. CustomBackward& backward) {
  250. auto&& addAxis = op.cast_final_safe<AddAxis>();
  251. mgb_assert(inputs.size() == 1);
  252. bool flag = inputs_require_grad[0];
  253. auto&& grad_op = RemoveAxis::make(addAxis.axis);
  254. std::sort(grad_op->axis.begin(), grad_op->axis.end(), std::greater<int32_t>());
  255. auto maker = CustomGradMaker(backward, inputs.size());
  256. maker.output_size(1).output_captured(0, false);
  257. maker.backward([grad_op_ = std::move(grad_op), flag_ = flag](Span<ValueRef> grads) {
  258. mgb_assert(grads.size() == 1);
  259. ValueRef grad = grads[0];
  260. std::vector<ValueRef> ret(1);
  261. if (grad && flag_) {
  262. ret[0] = imperative::apply(*grad_op_, grad)[0];
  263. }
  264. return ret;
  265. });
  266. maker.finalize();
  267. return imperative::apply(op, inputs);
  268. }
  269. std::optional<std::vector<ValueRef>> removeAxis_grad_rule(
  270. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  271. CustomBackward& backward) {
  272. auto&& removeAxis = op.cast_final_safe<RemoveAxis>();
  273. mgb_assert(inputs.size() == 1);
  274. bool flag = inputs_require_grad[0];
  275. auto&& grad_op = AddAxis::make(removeAxis.axis);
  276. std::sort(grad_op->axis.begin(), grad_op->axis.end());
  277. auto maker = CustomGradMaker(backward, inputs.size());
  278. maker.output_size(1).output_captured(0, false);
  279. maker.backward([grad_op_ = std::move(grad_op), flag_ = flag](Span<ValueRef> grads) {
  280. mgb_assert(grads.size() == 1);
  281. ValueRef grad = grads[0];
  282. std::vector<ValueRef> ret(1);
  283. if (grad && flag_) {
  284. ret[0] = imperative::apply(*grad_op_, grad)[0];
  285. }
  286. return ret;
  287. });
  288. maker.finalize();
  289. return imperative::apply(op, inputs);
  290. }
  291. std::optional<std::vector<ValueRef>> fastpathcopy_grad_rule(
  292. const OpDef& op, Span<ValueRef> inputs, Span<bool> inputs_require_grad,
  293. CustomBackward& backward) {
  294. mgb_assert(inputs.size() == 1);
  295. auto maker = CustomGradMaker(backward, inputs.size());
  296. maker.output_size(1).output_captured(0, false);
  297. maker.backward([](Span<ValueRef> grads) {
  298. mgb_assert(grads.size() == 1);
  299. ValueRef grad = grads[0];
  300. std::vector<ValueRef> ret(1);
  301. if (grad) {
  302. ret[0] = grad;
  303. }
  304. return ret;
  305. });
  306. maker.finalize();
  307. return imperative::apply(op, inputs);
  308. }
  309. struct Init {
  310. Init() {
  311. CustomBackward::register_grad_rule(Elemwise::typeinfo(), elemwise_grad_rule);
  312. CustomBackward::register_grad_rule(Reshape::typeinfo(), reshape_grad_rule);
  313. CustomBackward::register_grad_rule(Subtensor::typeinfo(), subtensor_grad_rule);
  314. CustomBackward::register_grad_rule(
  315. IndexingMultiAxisVec::typeinfo(), indexingMultiAxisVec_grad_rule);
  316. CustomBackward::register_grad_rule(Reduce::typeinfo(), reduce_grad_rule);
  317. CustomBackward::register_grad_rule(AddAxis::typeinfo(), addAxis_grad_rule);
  318. CustomBackward::register_grad_rule(
  319. RemoveAxis::typeinfo(), removeAxis_grad_rule);
  320. CustomBackward::register_grad_rule(
  321. FastpathCopy::typeinfo(), fastpathcopy_grad_rule);
  322. }
  323. } _;
  324. } // namespace
  325. } // namespace mgb::imperative::python