You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

batch_normalization.cpp 3.1 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. /**
  2. * \file dnn/src/common/batch_normalization.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megdnn/oprs.h"
  12. #include "src/common/utils.h"
  13. namespace megdnn {
  14. void BNForward::deduce_layout(const TensorLayout& src, TensorLayout&,
  15. TensorLayout&, TensorLayout&, TensorLayout&,
  16. TensorLayout&, TensorLayout&, TensorLayout& dst) {
  17. dst = src;
  18. }
  19. void BNForward::check_exec(const TensorLayout& src, const TensorLayout& bn_scale,
  20. const TensorLayout& bn_bias, const TensorLayout& mean,
  21. const TensorLayout& variance,
  22. const TensorLayout& batch_mean,
  23. const TensorLayout& batch_inv_variance,
  24. const TensorLayout& dst, size_t workspace_in_bytes) {
  25. megdnn_assert_contiguous(src);
  26. megdnn_assert_eq_layout(src, dst);
  27. megdnn_assert_eq_layout(bn_scale, bn_bias);
  28. megdnn_assert(src.dtype.category() == DTypeCategory::FLOAT);
  29. megdnn_assert(bn_scale.dtype.category() == DTypeCategory::FLOAT);
  30. auto required_workspace_in_bytes =
  31. get_workspace_in_bytes(src, bn_scale, bn_bias, mean, variance,
  32. batch_mean, batch_inv_variance, dst);
  33. megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
  34. }
  35. void BNBackward::check_exec(const TensorLayout& x, const TensorLayout& dy,
  36. const TensorLayout& saved_batch_mean,
  37. const TensorLayout& saved_batch_variance,
  38. const TensorLayout& bn_scale,
  39. const TensorLayout& d_bn_scale,
  40. const TensorLayout& d_bn_bias,
  41. const TensorLayout& dx, size_t workspace_in_bytes) {
  42. megdnn_assert_contiguous(x);
  43. megdnn_assert_eq_layout(x, dy);
  44. megdnn_assert_eq_layout(x, dx);
  45. megdnn_assert_eq_layout(saved_batch_mean, d_bn_bias);
  46. megdnn_assert_eq_layout(saved_batch_mean, d_bn_scale);
  47. megdnn_assert_eq_layout(saved_batch_mean, saved_batch_variance);
  48. megdnn_assert_eq_layout(saved_batch_mean, bn_scale);
  49. megdnn_assert(x.dtype.category() == DTypeCategory::FLOAT);
  50. megdnn_assert(bn_scale.dtype.category() == DTypeCategory::FLOAT);
  51. auto required_workspace_in_bytes =
  52. get_workspace_in_bytes(x, dy, saved_batch_mean, saved_batch_variance,
  53. bn_scale, d_bn_scale, d_bn_bias, dx);
  54. megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
  55. megdnn_assert(param().fwd_mode == Param::FwdMode::TRAINING, "BNBackward only support TRAINING mode");
  56. }
  57. } // namespace megdnn
  58. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台