You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

convolution.cpp 38 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /**
  2. * \file dnn/test/cuda/convolution.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "megdnn/dtype.h"
  13. #include "megdnn/oprs.h"
  14. #include "megdnn/opr_param_defs.h"
  15. #include "test/cuda/fixture.h"
  16. #include "test/common/tensor.h"
  17. #include "test/common/workspace_wrapper.h"
  18. #include "test/common/checker.h"
  19. #include "test/common/convolution.h"
  20. #include "test/common/rng.h"
  21. #include "test/cuda/benchmark.h"
  22. #include "src/cuda/utils.h"
  23. #include "test/common/accuracy_shake_checker.h"
  24. #define V1(x) #x
  25. #define V(x) V1(x)
  26. #define CUDNN_VERSION_STRING \
  27. "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
  28. namespace megdnn {
  29. namespace test {
  30. TEST_F(CUDA, CONVOLUTION_8X8X32) {
  31. if (!cuda::is_compute_capability_required(6, 1)) {
  32. printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
  33. "doesn't support\n");
  34. return;
  35. }
  36. using namespace convolution;
  37. std::vector<TestArg> args;
  38. {
  39. auto v = get_args();
  40. for (auto&& a : v) {
  41. args.push_back(std::move(a));
  42. }
  43. }
  44. {
  45. auto v = get_dilated_args();
  46. for (auto&& a : v) {
  47. args.push_back(std::move(a));
  48. }
  49. }
  50. {
  51. auto v = get_chanwise_args();
  52. for (auto&& a : v) {
  53. args.push_back(std::move(a));
  54. }
  55. }
  56. Checker<ConvolutionForward> checker(handle_cuda());
  57. UniformIntRNG rng(-4, 4);
  58. for (auto arg : args) {
  59. arg.param.format = param::Convolution::Format::NHWC;
  60. arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
  61. arg.filter = cvt_filter_nchw2nhwc(arg.filter);
  62. checker.set_dtype(0, dtype::Int8())
  63. .set_dtype(1, dtype::Int8())
  64. .set_dtype(2, dtype::Int32())
  65. .set_param(arg.param)
  66. .set_rng(0, &rng)
  67. .set_rng(1, &rng)
  68. .execs({arg.src, arg.filter, {}});
  69. }
  70. }
  71. TEST_F(CUDA, CONVOLUTION_FORWARD) {
  72. using namespace convolution;
  73. std::vector<TestArg> args = get_args();
  74. Checker<ConvolutionForward> checker(handle_cuda());
  75. NormalRNG default_rng;
  76. for (auto&& arg : args) {
  77. float scale =
  78. 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
  79. UniformFloatRNG rng(scale, 2 * scale);
  80. checker.set_dtype(0, dtype::Float32())
  81. .set_dtype(1, dtype::Float32())
  82. .set_dtype(2, dtype::Float32())
  83. .set_rng(0, &default_rng)
  84. .set_rng(1, &default_rng)
  85. .set_epsilon(1e-3)
  86. .set_param(arg.param)
  87. .execs({arg.src, arg.filter, {}});
  88. checker.set_dtype(0, dtype::Float16())
  89. .set_dtype(1, dtype::Float16())
  90. .set_dtype(2, dtype::Float16())
  91. .set_rng(0, &rng)
  92. .set_rng(1, &rng)
  93. .set_epsilon(1e-1)
  94. .set_param(arg.param)
  95. .execs({arg.src, arg.filter, {}});
  96. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  97. checker.set_dtype(0, dtype::Float16())
  98. .set_dtype(1, dtype::Float16())
  99. .set_dtype(2, dtype::Float16())
  100. .set_rng(0, &rng)
  101. .set_rng(1, &rng)
  102. .set_epsilon(1e-1)
  103. .set_param(arg.param)
  104. .execs({arg.src, arg.filter, {}});
  105. checker.set_dtype(0, dtype::BFloat16())
  106. .set_dtype(1, dtype::BFloat16())
  107. .set_dtype(2, dtype::BFloat16())
  108. .set_epsilon(1e-1)
  109. .set_param(arg.param)
  110. .execs({arg.src, arg.filter, {}});
  111. }
  112. }
  113. TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
  114. if (!cuda::is_compute_capability_required(6, 1))
  115. return;
  116. using namespace convolution;
  117. Checker<Convolution> checker(handle_cuda());
  118. UniformIntRNG int_rng{-127, 127};
  119. Convolution::Param param;
  120. param.format = Convolution::Param::Format::NCHW4;
  121. checker.set_dtype(0, dtype::QuantizedS8(0.132f))
  122. .set_dtype(1, dtype::QuantizedS8(0.0239f))
  123. .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
  124. .set_rng(0, &int_rng)
  125. .set_rng(1, &int_rng)
  126. .set_param(param);
  127. checker.set_before_exec_callback(
  128. AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
  129. "DEFAULT",
  130. {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
  131. "MATMUL8X8X32", {})
  132. .c_str(),
  133. {}}}}));
  134. param.sparse = Convolution::Param::Sparse::DENSE;
  135. param.pad_h = param.pad_w = 1;
  136. param.stride_h = param.stride_w = 1;
  137. checker.set_param(param);
  138. checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
  139. checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
  140. checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
  141. }
  142. TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
  143. using namespace convolution;
  144. std::vector<TestArg> args = get_1x1_args();
  145. Checker<ConvolutionForward> checker(handle_cuda());
  146. NormalRNG default_rng;
  147. for (auto&& arg : args) {
  148. float scale =
  149. 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
  150. UniformFloatRNG rng(scale, 2 * scale);
  151. checker.set_dtype(0, dtype::Float32())
  152. .set_dtype(1, dtype::Float32())
  153. .set_rng(0, &default_rng)
  154. .set_rng(1, &default_rng)
  155. .set_epsilon(1e-3)
  156. .set_param(arg.param)
  157. .execs({arg.src, arg.filter, {}});
  158. }
  159. }
  160. TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
  161. using namespace convolution;
  162. std::vector<TestArg> args = get_1x1_args();
  163. Benchmarker<ConvolutionForward> marker(handle_cuda());
  164. NormalRNG default_rng;
  165. for (auto&& arg : args) {
  166. float scale =
  167. 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
  168. UniformFloatRNG rng(scale, 2 * scale);
  169. marker.set_dtype(0, dtype::Float32())
  170. .set_dtype(1, dtype::Float32())
  171. .set_rng(0, &default_rng)
  172. .set_rng(1, &default_rng)
  173. .set_param(arg.param)
  174. .execs({arg.src, arg.filter, {}});
  175. }
  176. }
  177. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
  178. using namespace convolution;
  179. std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
  180. Checker<ConvolutionBackwardData> checker(handle_cuda());
  181. NormalRNG default_rng;
  182. for (auto&& arg : args) {
  183. float scale =
  184. 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
  185. UniformFloatRNG rng(scale, 2 * scale);
  186. auto src = TensorLayout(arg.src, dtype::Float32());
  187. auto filter = TensorLayout(arg.filter, dtype::Float32());
  188. TensorLayout dst;
  189. {
  190. auto opr = handle_cuda()->create_operator<Convolution>();
  191. opr->param() = arg.param;
  192. opr->deduce_layout(src, filter, dst);
  193. }
  194. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  195. checker.set_rng(0, &default_rng)
  196. .set_rng(1, &default_rng)
  197. .set_epsilon(1e-3)
  198. .set_param(arg.param)
  199. .exec(TensorLayoutArray{filter, dst, src});
  200. if (!cuda::is_compute_capability_required(6, 0)) {
  201. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  202. checker.set_rng(0, &rng)
  203. .set_rng(1, &rng)
  204. .set_epsilon(1e-1)
  205. .set_param(arg.param)
  206. .exec(TensorLayoutArray{filter, dst, src});
  207. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  208. checker.set_rng(0, &rng)
  209. .set_rng(1, &rng)
  210. .set_epsilon(1e-1)
  211. .set_param(arg.param)
  212. .exec(TensorLayoutArray{filter, dst, src});
  213. }
  214. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  215. ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_DATD_BFLOAT16",
  216. {{"MATMUL", {{"CUBLAS", {}}}}}}));
  217. src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
  218. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  219. checker.set_rng(0, &rng)
  220. .set_rng(1, &rng)
  221. .set_epsilon(1e-1)
  222. .set_param(arg.param)
  223. .exec(TensorLayoutArray{filter, dst, src});
  224. checker.reset_before_exec_callback();
  225. checker.opr()->execution_policy() = {};
  226. }
  227. }
  228. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_CUDNN) {
  229. if (cuda::is_compute_capability_required(7, 0))
  230. return;
  231. using namespace convolution;
  232. Checker<ConvolutionBackwardData> checker(handle_cuda());
  233. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  234. "CUDNN_CONVOLUTION"));
  235. //! noncontiguous case
  236. {
  237. param::Convolution param;
  238. param.pad_h = param.pad_w = 1;
  239. checker.set_param(param).execl(TensorLayoutArray{
  240. {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
  241. {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
  242. {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
  243. });
  244. }
  245. }
  246. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
  247. using namespace convolution;
  248. std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
  249. Checker<ConvolutionBackwardData> checker(handle_cuda());
  250. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  251. ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
  252. NormalRNG default_rng;
  253. for (auto&& arg : args) {
  254. float scale =
  255. 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
  256. UniformFloatRNG rng(scale, 2 * scale);
  257. auto src = TensorLayout(arg.src, dtype::Float32());
  258. auto filter = TensorLayout(arg.filter, dtype::Float32());
  259. TensorLayout dst;
  260. {
  261. auto opr = handle_cuda()->create_operator<Convolution>();
  262. opr->param() = arg.param;
  263. opr->deduce_layout(src, filter, dst);
  264. }
  265. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  266. checker.set_rng(0, &default_rng)
  267. .set_rng(1, &default_rng)
  268. .set_epsilon(1e-3)
  269. .set_param(arg.param)
  270. .exec(TensorLayoutArray{filter, dst, src});
  271. }
  272. //! noncontiguous case
  273. {
  274. param::Convolution param;
  275. param.pad_h = param.pad_w = 1;
  276. checker.set_param(param).execl(TensorLayoutArray{
  277. {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
  278. {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
  279. {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
  280. });
  281. }
  282. }
  283. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
  284. if (!cuda::is_compute_capability_required(6, 1)) {
  285. printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
  286. "current device doesn't support\n");
  287. return;
  288. }
  289. using namespace convolution;
  290. std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
  291. struct AlgoParam {
  292. int threadblock_m;
  293. int threadblock_n;
  294. int threadblock_k;
  295. int warp_m;
  296. int warp_n;
  297. int warp_k;
  298. int stage;
  299. std::string to_string() {
  300. return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m,
  301. threadblock_n, threadblock_k, warp_m, warp_n,
  302. warp_k, stage);
  303. }
  304. };
  305. std::vector<AlgoParam> all_params;
  306. all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
  307. all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
  308. all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
  309. all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});
  310. all_params.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2});
  311. for (auto algo_param : all_params) {
  312. Checker<ConvolutionBackwardData> checker(handle_cuda());
  313. std::string algo_name(ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s",
  314. algo_param.to_string().c_str()));
  315. checker.set_before_exec_callback(
  316. AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));
  317. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
  318. for (auto&& arg : args) {
  319. UniformIntRNG rng(-3, 3);
  320. auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
  321. auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
  322. TensorLayout dst;
  323. dst.dtype = dtype::QuantizedS8{1.2f};
  324. {
  325. auto opr = handle_cuda()->create_operator<Convolution>();
  326. opr->param() = arg.param;
  327. opr->deduce_layout(src, filter, dst);
  328. }
  329. checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
  330. TensorLayoutArray{filter, dst, src});
  331. }
  332. }
  333. }
  334. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
  335. if (!cuda::is_compute_capability_required(6, 1)) {
  336. printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
  337. "current device doesn't support\n");
  338. return;
  339. }
  340. using namespace convolution;
  341. std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
  342. Checker<ConvolutionBackwardData> checker(handle_cuda());
  343. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  344. "INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
  345. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
  346. for (auto&& arg : args) {
  347. UniformIntRNG rng(-3, 3);
  348. auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
  349. auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
  350. TensorLayout dst;
  351. dst.dtype = dtype::QuantizedS8{1.2f};
  352. {
  353. auto opr = handle_cuda()->create_operator<Convolution>();
  354. opr->param() = arg.param;
  355. opr->deduce_layout(src, filter, dst);
  356. }
  357. checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
  358. TensorLayoutArray{filter, dst, src});
  359. //! noncontiguous case
  360. {
  361. param::Convolution param;
  362. param.pad_h = param.pad_w = 1;
  363. checker.set_param(param).execl(TensorLayoutArray{
  364. {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::QuantizedS8{1.3f}},
  365. {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::QuantizedS8{1.2f}},
  366. {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::QuantizedS8{1.2f}}
  367. });
  368. }
  369. }
  370. }
  371. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
  372. // BRAIN-481 failed on architectures 7.0, remove the following if statement,
  373. // when cudnn fixed the problem.
  374. if (cuda::is_compute_capability_required(7, 0))
  375. return;
  376. using namespace convolution;
  377. std::vector<TestArg> args = get_args_cudnn_7_5_failures();
  378. Checker<ConvolutionBackwardData> checker(handle_cuda());
  379. NormalRNG default_rng;
  380. for (auto&& arg : args) {
  381. float scale =
  382. 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
  383. scale = std::max(scale, 1.f);
  384. UniformFloatRNG rng(scale, 2 * scale);
  385. auto src = TensorLayout(arg.src, dtype::Float32());
  386. auto filter = TensorLayout(arg.filter, dtype::Float32());
  387. TensorLayout dst;
  388. {
  389. auto opr = handle_cuda()->create_operator<Convolution>();
  390. opr->param() = arg.param;
  391. opr->deduce_layout(src, filter, dst);
  392. }
  393. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  394. checker.set_rng(0, &default_rng)
  395. .set_rng(1, &default_rng)
  396. .set_epsilon(1e-3)
  397. .set_param(arg.param)
  398. .exec(TensorLayoutArray{filter, dst, src});
  399. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  400. checker.set_rng(0, &rng)
  401. .set_rng(1, &rng)
  402. .set_epsilon(1e-1)
  403. .set_param(arg.param)
  404. .exec(TensorLayoutArray{filter, dst, src});
  405. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  406. checker.set_rng(0, &rng)
  407. .set_rng(1, &rng)
  408. .set_epsilon(1e-1)
  409. .set_param(arg.param)
  410. .exec(TensorLayoutArray{filter, dst, src});
  411. }
  412. }
  413. TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
  414. using namespace convolution;
  415. std::vector<TestArg> args = get_args();
  416. Checker<ConvolutionBackwardFilter> checker(handle_cuda());
  417. bool f16_checked = false;
  418. for (auto&& arg : args) {
  419. auto src = TensorLayout(arg.src, dtype::Float32());
  420. auto filter = TensorLayout(arg.filter, dtype::Float32());
  421. TensorLayout dst;
  422. {
  423. auto opr = handle_cuda()->create_operator<Convolution>();
  424. opr->param() = arg.param;
  425. opr->deduce_layout(src, filter, dst);
  426. }
  427. float scale = 1.0f / sqrt(dst[2] * dst[3]);
  428. UniformFloatRNG rng(scale, 2 * scale);
  429. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  430. checker.set_rng(0, &rng)
  431. .set_rng(1, &rng)
  432. .set_epsilon(1e-3)
  433. .set_param(arg.param)
  434. .exec(TensorLayoutArray{src, dst, filter});
  435. // reduce on large f16 array may introduce significant error
  436. if (dst.total_nr_elems() >= 1000 && f16_checked)
  437. continue;
  438. f16_checked = true;
  439. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  440. checker.set_rng(0, &rng)
  441. .set_rng(1, &rng)
  442. .set_epsilon(1e-1)
  443. .set_param(arg.param)
  444. .exec(TensorLayoutArray{src, dst, filter});
  445. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  446. checker.set_rng(0, &rng)
  447. .set_rng(1, &rng)
  448. .set_epsilon(1e-1)
  449. .set_param(arg.param)
  450. .exec(TensorLayoutArray{src, dst, filter});
  451. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
  452. ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
  453. {{"MATMUL", {{"CUBLAS", {}}}}}}));
  454. src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
  455. checker.set_rng(0, &rng)
  456. .set_rng(1, &rng)
  457. .set_epsilon(1e-1)
  458. .set_param(arg.param)
  459. .exec(TensorLayoutArray{src, dst, filter});
  460. checker.reset_before_exec_callback();
  461. checker.opr()->execution_policy() = {};
  462. }
  463. }
  464. TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
  465. using namespace convolution;
  466. std::vector<TestArg> args = get_args();
  467. Checker<ConvolutionBackwardFilter> checker(handle_cuda());
  468. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
  469. ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
  470. for (auto&& arg : args) {
  471. auto src = TensorLayout(arg.src, dtype::Float32());
  472. auto filter = TensorLayout(arg.filter, dtype::Float32());
  473. TensorLayout dst;
  474. {
  475. auto opr = handle_cuda()->create_operator<Convolution>();
  476. opr->param() = arg.param;
  477. opr->deduce_layout(src, filter, dst);
  478. }
  479. float scale = 1.0f / sqrt(dst[2] * dst[3]);
  480. UniformFloatRNG rng(scale, 2 * scale);
  481. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  482. checker.set_rng(0, &rng)
  483. .set_rng(1, &rng)
  484. .set_epsilon(1e-3)
  485. .set_param(arg.param)
  486. .exec(TensorLayoutArray{src, dst, filter});
  487. }
  488. }
  489. TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
  490. auto eps_getter = [](bool f16, int stage, const char* name) -> float {
  491. if (f16) {
  492. return stage == 2 ? 0.5 : 0.2;
  493. }
  494. if (strstr(name, "WINOGRAD_NONFUSED"))
  495. return 0.3;
  496. return 1e-3;
  497. };
  498. convolution::test_conv_config_combinations(2, handle_cuda(), false, true,
  499. true, eps_getter, true);
  500. convolution::test_conv_config_combinations(3, handle_cuda(), false, true,
  501. true, eps_getter, true);
  502. convolution::test_conv_config_combinations(5, handle_cuda(), false, true,
  503. true, eps_getter, true);
  504. }
  505. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
  506. if (cuda::is_compute_capability_required(7, 0))
  507. return;
  508. using namespace convolution;
  509. Checker<ConvolutionBackwardData> checker(handle_cuda());
  510. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  511. "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
  512. NormalRNG default_rng;
  513. TensorShape s_filter = TensorShape{8, 8, 2, 2},
  514. s_src = TensorShape{2, 8, 18, 18};
  515. float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
  516. UniformFloatRNG rng(scale, 2 * scale);
  517. auto src = TensorLayout(s_src, dtype::Float16());
  518. auto filter = TensorLayout(s_filter, dtype::Float16());
  519. TensorLayout dst;
  520. param::Convolution param;
  521. param.pad_h = param.pad_w = 2;
  522. param.stride_h = param.stride_w = 2;
  523. {
  524. auto opr = handle_cuda()->create_operator<Convolution>();
  525. opr->param() = param;
  526. opr->deduce_layout(src, filter, dst);
  527. }
  528. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  529. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  530. checker.set_rng(0, &rng)
  531. .set_rng(1, &rng)
  532. .set_epsilon(0.2)
  533. .set_param(param)
  534. .exec(TensorLayoutArray{filter, dst, src});
  535. }
  536. #if MEGDNN_WITH_BENCHMARK
  537. TEST_F(CUDA, CONV_FWD_BENCHMARK) {
  538. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  539. size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1,
  540. size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) {
  541. auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
  542. benchmarker.set_dtype(0, dtype::Float16())
  543. .set_dtype(1, dtype::Float16())
  544. .set_dtype(2, dtype::Float16());
  545. ConvolutionForward::Param param;
  546. param.stride_h = SH;
  547. param.stride_w = SW;
  548. param.pad_h = PH;
  549. param.pad_w = PW;
  550. if (fp16io_c32) {
  551. param.compute_mode =
  552. ConvolutionForward::Param::ComputeMode::FLOAT32;
  553. }
  554. benchmarker.set_param(param);
  555. std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
  556. new OprProxy<ConvolutionForward>{true}};
  557. benchmarker.set_proxy(proxy);
  558. size_t OH = (IH - FH + 2 * PH) / SH + 1;
  559. size_t OW = (IW - FW + 2 * PW) / SW + 1;
  560. auto time = benchmarker.execs(
  561. {{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
  562. time /= 1000.0 * 10.0;
  563. auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
  564. auto flops = flo / time / 1e12;
  565. printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
  566. printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
  567. };
  568. run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
  569. run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
  570. }
  571. TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
  572. CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
  573. std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
  574. new OprProxy<ConvolutionForward>{true}};
  575. size_t RUNS = 10;
  576. bench.set_proxy(proxy).set_times(RUNS);
  577. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  578. size_t FH, size_t SH, size_t PH) {
  579. bench.set_dtype(0, dtype::Float32())
  580. .set_dtype(1, dtype::Float32())
  581. .set_dtype(2, dtype::Float32());
  582. param::Convolution param;
  583. param.stride_h = param.stride_w = SH;
  584. param.pad_h = param.pad_w = PH;
  585. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  586. bench.set_param(param);
  587. bench.proxy()->target_execution_policy.algo.reset();
  588. TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
  589. filter{{OC, IC, FH, FH}, dtype::Float32()};
  590. TensorLayout dst;
  591. {
  592. auto&& opr = handle_cuda()->create_operator<Convolution>();
  593. opr->param() = param;
  594. opr->deduce_layout(src, filter, dst);
  595. }
  596. auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
  597. src.dtype = filter.dtype = dst.dtype = dtype::Float16();
  598. bench.proxy()->target_execution_policy.algo.reset();
  599. bench.set_dtype(0, dtype::Float16())
  600. .set_dtype(1, dtype::Float16())
  601. .set_dtype(2, dtype::Float16());
  602. auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
  603. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  604. bench.proxy()->target_execution_policy.algo.reset();
  605. bench.set_param(param);
  606. auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
  607. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  608. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  609. filter.to_string().c_str(), dst.to_string().c_str());
  610. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
  611. "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
  612. time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
  613. (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
  614. (flo / (time_ms_pseudo_fp16 * 1e9)));
  615. printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
  616. time_ms_fp32 / time_ms_true_fp16,
  617. time_ms_pseudo_fp16 / time_ms_true_fp16);
  618. };
  619. run(32, 64, 3, 224, 224, 7, 2, 3);
  620. run(32, 128, 128, 28, 28, 3, 1, 1);
  621. run(32, 256, 256, 14, 14, 3, 1, 1);
  622. run(32, 512, 512, 7, 7, 3, 1, 1);
  623. run(32, 64, 64, 56, 56, 3, 1, 1);
  624. run(32, 512, 256, 56, 56, 1, 2, 0);
  625. run(32, 1024, 512, 28, 28, 1, 2, 0);
  626. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  627. run(32, 512, 128, 28, 28, 1, 1, 0);
  628. run(32, 128, 512, 28, 28, 1, 1, 0);
  629. run(32, 1024, 256, 14, 14, 1, 1, 0);
  630. run(32, 256, 1024, 14, 14, 1, 1, 0);
  631. run(32, 2048, 512, 7, 7, 1, 1, 0);
  632. run(32, 512, 2048, 7, 7, 1, 1, 0);
  633. run(32, 256, 64, 56, 56, 1, 1, 0);
  634. run(32, 64, 256, 56, 56, 1, 1, 0);
  635. run(32, 128, 256, 56, 56, 1, 2, 0);
  636. run(32, 256, 512, 28, 28, 1, 2, 0);
  637. run(32, 512, 1024, 14, 14, 1, 2, 0);
  638. run(32, 64, 64, 56, 56, 1, 1, 0);
  639. }
  640. TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
  641. CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
  642. std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
  643. new OprProxy<ConvolutionBackwardData>{true}};
  644. size_t RUNS = 10;
  645. bench.set_proxy(proxy).set_times(RUNS);
  646. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  647. size_t FH, size_t SH, size_t PH) {
  648. bench.set_dtype(0, dtype::Float32())
  649. .set_dtype(1, dtype::Float32())
  650. .set_dtype(2, dtype::Float32());
  651. param::Convolution param;
  652. param.stride_h = param.stride_w = SH;
  653. param.pad_h = param.pad_w = PH;
  654. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  655. bench.set_param(param);
  656. bench.proxy()->target_execution_policy.algo.reset();
  657. TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
  658. filter{{OC, IC, FH, FH}, dtype::Float32()};
  659. TensorLayout dst;
  660. {
  661. auto&& opr = handle_cuda()->create_operator<Convolution>();
  662. opr->param() = param;
  663. opr->deduce_layout(src, filter, dst);
  664. }
  665. auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
  666. src.dtype = filter.dtype = dst.dtype = dtype::Float16();
  667. bench.proxy()->target_execution_policy.algo.reset();
  668. bench.set_dtype(0, dtype::Float16())
  669. .set_dtype(1, dtype::Float16())
  670. .set_dtype(2, dtype::Float16());
  671. auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
  672. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  673. bench.proxy()->target_execution_policy.algo.reset();
  674. bench.set_param(param);
  675. auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
  676. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  677. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  678. filter.to_string().c_str(), dst.to_string().c_str());
  679. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
  680. "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
  681. time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
  682. (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
  683. (flo / (time_ms_pseudo_fp16 * 1e9)));
  684. printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
  685. time_ms_fp32 / time_ms_true_fp16,
  686. time_ms_pseudo_fp16 / time_ms_true_fp16);
  687. };
  688. run(32, 64, 3, 224, 224, 7, 2, 3);
  689. run(32, 128, 128, 28, 28, 3, 1, 1);
  690. run(32, 256, 256, 14, 14, 3, 1, 1);
  691. run(32, 512, 512, 7, 7, 3, 1, 1);
  692. run(32, 64, 64, 56, 56, 3, 1, 1);
  693. run(32, 512, 256, 56, 56, 1, 2, 0);
  694. run(32, 1024, 512, 28, 28, 1, 2, 0);
  695. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  696. run(32, 512, 128, 28, 28, 1, 1, 0);
  697. run(32, 128, 512, 28, 28, 1, 1, 0);
  698. run(32, 1024, 256, 14, 14, 1, 1, 0);
  699. run(32, 256, 1024, 14, 14, 1, 1, 0);
  700. run(32, 2048, 512, 7, 7, 1, 1, 0);
  701. run(32, 512, 2048, 7, 7, 1, 1, 0);
  702. run(32, 256, 64, 56, 56, 1, 1, 0);
  703. run(32, 64, 256, 56, 56, 1, 1, 0);
  704. run(32, 128, 256, 56, 56, 1, 2, 0);
  705. run(32, 256, 512, 28, 28, 1, 2, 0);
  706. run(32, 512, 1024, 14, 14, 1, 2, 0);
  707. run(32, 64, 64, 56, 56, 1, 1, 0);
  708. }
  709. TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
  710. CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
  711. std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
  712. new OprProxy<ConvolutionBackwardData>{true}};
  713. size_t RUNS = 10;
  714. bench.set_proxy(proxy).set_times(RUNS);
  715. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  716. size_t FH, size_t SH, size_t PH) {
  717. bench.set_dtype(0, dtype::BFloat16())
  718. .set_dtype(1, dtype::BFloat16())
  719. .set_dtype(2, dtype::BFloat16());
  720. param::Convolution param;
  721. param.stride_h = param.stride_w = SH;
  722. param.pad_h = param.pad_w = PH;
  723. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  724. bench.set_param(param);
  725. bench.proxy()->target_execution_policy = {};
  726. TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
  727. filter{{OC, IC, FH, FH}, dtype::BFloat16()};
  728. TensorLayout dst;
  729. {
  730. auto&& opr = handle_cuda()->create_operator<Convolution>();
  731. opr->param() = param;
  732. opr->deduce_layout(src, filter, dst);
  733. }
  734. auto used = bench.execl({filter, dst, src}) / RUNS;
  735. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  736. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  737. filter.to_string().c_str(), dst.to_string().c_str());
  738. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
  739. (flo / (used * 1e9)));
  740. };
  741. run(32, 64, 3, 224, 224, 7, 2, 3);
  742. run(32, 128, 128, 28, 28, 3, 1, 1);
  743. run(32, 256, 256, 14, 14, 3, 1, 1);
  744. run(32, 512, 512, 7, 7, 3, 1, 1);
  745. run(32, 64, 64, 56, 56, 3, 1, 1);
  746. run(32, 512, 256, 56, 56, 1, 2, 0);
  747. run(32, 1024, 512, 28, 28, 1, 2, 0);
  748. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  749. run(32, 512, 128, 28, 28, 1, 1, 0);
  750. run(32, 128, 512, 28, 28, 1, 1, 0);
  751. run(32, 1024, 256, 14, 14, 1, 1, 0);
  752. run(32, 256, 1024, 14, 14, 1, 1, 0);
  753. run(32, 2048, 512, 7, 7, 1, 1, 0);
  754. run(32, 512, 2048, 7, 7, 1, 1, 0);
  755. run(32, 256, 64, 56, 56, 1, 1, 0);
  756. run(32, 64, 256, 56, 56, 1, 1, 0);
  757. run(32, 128, 256, 56, 56, 1, 2, 0);
  758. run(32, 256, 512, 28, 28, 1, 2, 0);
  759. run(32, 512, 1024, 14, 14, 1, 2, 0);
  760. run(32, 64, 64, 56, 56, 1, 1, 0);
  761. }
  762. TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
  763. CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
  764. std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
  765. new OprProxy<ConvolutionBackwardData>{true}};
  766. size_t RUNS = 10;
  767. bench.set_proxy(proxy).set_times(RUNS);
  768. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  769. size_t FH, size_t SH, size_t PH) {
  770. bench.set_dtype(0, dtype::QuantizedS8{1.0f})
  771. .set_dtype(1, dtype::QuantizedS8{1.0f})
  772. .set_dtype(2, dtype::QuantizedS8{1.0f});
  773. param::Convolution param;
  774. param.format = param::Convolution::Format::NCHW4;
  775. param.stride_h = param.stride_w = SH;
  776. param.pad_h = param.pad_w = PH;
  777. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  778. bench.set_param(param);
  779. bench.proxy()->target_execution_policy = {};
  780. TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
  781. filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
  782. TensorLayout dst;
  783. dst.dtype = dtype::QuantizedS8{1.0f};
  784. {
  785. auto&& opr = handle_cuda()->create_operator<Convolution>();
  786. opr->param() = param;
  787. opr->deduce_layout(src, filter, dst);
  788. }
  789. auto used = bench.execl({filter, dst, src}) / RUNS;
  790. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  791. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  792. filter.to_string().c_str(), dst.to_string().c_str());
  793. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
  794. (flo / (used * 1e9)));
  795. };
  796. run(64, 32, 32, 92, 180, 4, 2, 2);
  797. run(64, 32, 32, 46, 80, 4, 2, 2);
  798. run(16, 16, 16, 92, 180, 4, 2, 2);
  799. run(16, 16, 16, 46, 80, 4, 2, 2);
  800. }
  801. TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
  802. CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
  803. std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
  804. new OprProxy<ConvolutionBackwardFilter>{true}};
  805. size_t RUNS = 10;
  806. bench.set_proxy(proxy).set_times(RUNS);
  807. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  808. size_t FH, size_t SH, size_t PH) {
  809. bench.set_dtype(0, dtype::Float32())
  810. .set_dtype(1, dtype::Float32())
  811. .set_dtype(2, dtype::Float32());
  812. param::Convolution param;
  813. param.stride_h = param.stride_w = SH;
  814. param.pad_h = param.pad_w = PH;
  815. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  816. bench.set_param(param);
  817. bench.proxy()->target_execution_policy.algo.reset();
  818. TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
  819. filter{{OC, IC, FH, FH}, dtype::Float32()};
  820. TensorLayout dst;
  821. {
  822. auto&& opr = handle_cuda()->create_operator<Convolution>();
  823. opr->param() = param;
  824. opr->deduce_layout(src, filter, dst);
  825. }
  826. auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
  827. src.dtype = filter.dtype = dst.dtype = dtype::Float16();
  828. bench.proxy()->target_execution_policy.algo.reset();
  829. bench.set_dtype(0, dtype::Float16())
  830. .set_dtype(1, dtype::Float16())
  831. .set_dtype(2, dtype::Float16());
  832. auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
  833. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  834. bench.proxy()->target_execution_policy.algo.reset();
  835. bench.set_param(param);
  836. auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
  837. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  838. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  839. filter.to_string().c_str(), dst.to_string().c_str());
  840. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
  841. "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
  842. time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
  843. (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
  844. (flo / (time_ms_pseudo_fp16 * 1e9)));
  845. printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
  846. time_ms_fp32 / time_ms_true_fp16,
  847. time_ms_pseudo_fp16 / time_ms_true_fp16);
  848. };
  849. run(32, 64, 3, 224, 224, 7, 2, 3);
  850. run(32, 128, 128, 28, 28, 3, 1, 1);
  851. run(32, 256, 256, 14, 14, 3, 1, 1);
  852. run(32, 512, 512, 7, 7, 3, 1, 1);
  853. run(32, 64, 64, 56, 56, 3, 1, 1);
  854. run(32, 512, 256, 56, 56, 1, 2, 0);
  855. run(32, 1024, 512, 28, 28, 1, 2, 0);
  856. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  857. run(32, 512, 128, 28, 28, 1, 1, 0);
  858. run(32, 128, 512, 28, 28, 1, 1, 0);
  859. run(32, 1024, 256, 14, 14, 1, 1, 0);
  860. run(32, 256, 1024, 14, 14, 1, 1, 0);
  861. run(32, 2048, 512, 7, 7, 1, 1, 0);
  862. run(32, 512, 2048, 7, 7, 1, 1, 0);
  863. run(32, 256, 64, 56, 56, 1, 1, 0);
  864. run(32, 64, 256, 56, 56, 1, 1, 0);
  865. run(32, 128, 256, 56, 56, 1, 2, 0);
  866. run(32, 256, 512, 28, 28, 1, 2, 0);
  867. run(32, 512, 1024, 14, 14, 1, 2, 0);
  868. run(32, 64, 64, 56, 56, 1, 1, 0);
  869. }
  870. #endif
  871. #undef CUDNN_VERSION_STRING
  872. #undef V
  873. #undef V1
  874. } // namespace test
  875. } // namespace megdnn
  876. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台