You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

_config.py 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. # -*- coding: utf-8 -*-
  2. import os
  3. from contextlib import contextmanager
  4. from ._imperative_rt.core2 import (
  5. _clear_algorithm_cache,
  6. get_auto_format_convert,
  7. get_option,
  8. set_auto_format_convert,
  9. set_option,
  10. )
  11. # use "default" to distinguish it from None in _reset_execution_config
  12. __compute_mode = "default"
  13. _benchmark_kernel = False
  14. _deterministic_kernel = False
  15. __all__ = [
  16. "benchmark_kernel",
  17. "deterministic_kernel",
  18. "async_level",
  19. "disable_memory_forwarding",
  20. "_compute_mode",
  21. "_auto_format_convert",
  22. "_override",
  23. ]
  24. @property
  25. def benchmark_kernel(mod):
  26. r"""Whether or not run possible algorithms on real device to find the best one. The default option is false,
  27. which means use heuristic to choose the fastest algorithm.
  28. Examples:
  29. .. code-block::
  30. import megengine as mge
  31. mge.config.benchmark_kernel = True
  32. """
  33. return _benchmark_kernel
  34. @benchmark_kernel.setter
  35. def benchmark_kernel(mod, option: bool):
  36. global _benchmark_kernel
  37. # try different strategy, then clear algorithm cache
  38. if option != _benchmark_kernel:
  39. _clear_algorithm_cache()
  40. _benchmark_kernel = option
  41. @property
  42. def deterministic_kernel(mod):
  43. r"""Whether or not the fastest algorithm choosed is reproducible. The default option is false,
  44. which means the algorithm is not reproducible.
  45. Examples:
  46. .. code-block::
  47. import megengine as mge
  48. mge.config.deterministic_kernel = True
  49. """
  50. return _deterministic_kernel
  51. @deterministic_kernel.setter
  52. def deterministic_kernel(mod, option: bool):
  53. global _deterministic_kernel
  54. _deterministic_kernel = option
  55. @property
  56. def async_level(mod) -> int:
  57. r"""Get or set config whether raise error exactly when invoking op. The default level is 2,
  58. which means both device and user side errors are async.
  59. Examples:
  60. .. code-block::
  61. import megengine as mge
  62. mge.config.async_level = 2
  63. """
  64. return get_option("async_level")
  65. @async_level.setter
  66. def async_level(mod, level: int):
  67. assert level >= 0 and level <= 2, "async_level should be 0, 1 or 2"
  68. set_option("async_level", level)
  69. @property
  70. def disable_memory_forwarding(mod) -> bool:
  71. r"""Get or set config whether to disable memory forwarding. The default option is false,
  72. which means storage may be shared among tensors.
  73. Examples:
  74. .. code-block::
  75. import megengine as mge
  76. mge.config.disable_memory_forwarding = False
  77. """
  78. return bool(get_option("disable_memory_forwarding"))
  79. @disable_memory_forwarding.setter
  80. def disable_memory_forwarding(mod, disable: bool):
  81. set_option("disable_memory_forwarding", disable)
  82. @property
  83. def _compute_mode(mod):
  84. r"""Get or set the precision of intermediate results for conv, matmul. The default
  85. option is None and will fallback to "default". When set to "float32", it will
  86. trigger mixed precision computation on TensorCore, but only effective when input and
  87. output are of float16 dtype.
  88. Examples:
  89. .. code-block::
  90. import megengine as mge
  91. mge.config._compute_mode = "float32"
  92. """
  93. return __compute_mode
  94. @_compute_mode.setter
  95. def _compute_mode(mod, _compute_mode: str):
  96. global __compute_mode
  97. __compute_mode = _compute_mode
  98. @property
  99. def _bn_format(mod):
  100. r"""Get or set batchnorm param layout format. The default option is None and will
  101. fallback to "dim_1c11" which corresponds to NCHW format. When set to "dim_111c",
  102. param format of batchnorm will be changed to NHWC.
  103. Examples:
  104. .. code-block::
  105. import megengine as mge
  106. mge.config._bn_format = "dim_111c"
  107. """
  108. return __bn_format
  109. @_bn_format.setter
  110. def _bn_format(mod, format: str):
  111. global __bn_format
  112. __bn_format = format
  113. @property
  114. def _auto_format_convert(mod):
  115. r"""Automatically convert indexing params' order for NCHW Tensor to NHWC order.
  116. The default value is False, which means no convert.
  117. Examples:
  118. .. code-block::
  119. import megengine as mge
  120. mge.config._auto_format_convert = True
  121. """
  122. return get_auto_format_convert()
  123. @_auto_format_convert.setter
  124. def _auto_format_convert(mod, option: bool):
  125. set_auto_format_convert(option)
  126. def _reset_execution_config(
  127. benchmark_kernel=None,
  128. deterministic_kernel=None,
  129. async_level=None,
  130. compute_mode=None,
  131. ):
  132. global _benchmark_kernel, _deterministic_kernel, __compute_mode
  133. orig_flags = (
  134. _benchmark_kernel,
  135. _deterministic_kernel,
  136. get_option("async_level"),
  137. __compute_mode,
  138. )
  139. if benchmark_kernel is not None:
  140. _benchmark_kernel = benchmark_kernel
  141. if deterministic_kernel is not None:
  142. _deterministic_kernel = deterministic_kernel
  143. if async_level is not None:
  144. set_option("async_level", async_level)
  145. if compute_mode is not None:
  146. __compute_mode = compute_mode
  147. return orig_flags
  148. @contextmanager
  149. def _override(
  150. benchmark_kernel=None,
  151. deterministic_kernel=None,
  152. async_level=None,
  153. compute_mode=None,
  154. ):
  155. r"""A context manager that users can opt in by attaching the decorator to set
  156. the config of the global variable.
  157. Examples:
  158. .. code-block::
  159. import megengine as mge
  160. @mge.config._override(
  161. benchmark_kernel = True,
  162. deterministic_kernel = Fasle,
  163. async_level=2,
  164. compute_mode="float32",
  165. )
  166. def train():
  167. """
  168. orig_flags = _reset_execution_config(
  169. benchmark_kernel=benchmark_kernel,
  170. deterministic_kernel=deterministic_kernel,
  171. async_level=async_level,
  172. compute_mode=compute_mode,
  173. )
  174. try:
  175. yield
  176. finally:
  177. # recover the previous values
  178. _reset_execution_config(*orig_flags)
  179. def _get_actual_op_param(function_param, config_param):
  180. return function_param if config_param == "default" else config_param