You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

grad.h 1.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. /**
  2. * \file imperative/python/src/grad.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "./tensor.h"
  13. #include <megbrain/utils/small_vector.h>
  14. #include <memory>
  15. namespace mgb::imperative::python {
  16. apply_result_t apply_grad(ApplyContext& ctx);
  17. struct GradKey : std::enable_shared_from_this<GradKey>, NonCopyableObj {
  18. std::string name;
  19. bool active = true;
  20. GradInfo::head_t free_vars_head;
  21. std::vector<std::weak_ptr<GradFn>> tape;
  22. ~GradKey();
  23. void attach(Tensor* tensor, pybind11::object callback);
  24. void backward(std::vector<TensorWrapper*>, std::vector<TensorWrapper*>);
  25. void cleanup();
  26. };
  27. struct GradKeyWrapper {
  28. using wrap_t = pyext17::wrap<GradKeyWrapper>;
  29. static constexpr auto tp_name = pybind11::detail::_("GradKey");
  30. std::shared_ptr<GradKey> m_key;
  31. inline GradKeyWrapper() : m_key(std::make_shared<GradKey>()) {}
  32. void attach(PyObject*const* args, size_t nargs);
  33. void backward(std::vector<TensorWrapper*>, std::vector<TensorWrapper*>);
  34. };
  35. } // namespace mgb::imperative::python
  36. namespace pybind11::detail {
  37. template<> struct type_caster<mgb::imperative::python::GradKeyWrapper> : mgb::imperative::python::GradKeyWrapper::wrap_t::caster {};
  38. } // namespace pybind11::detail

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台