using Microsoft.VisualStudio.TestTools.UnitTesting; using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; using System.Threading.Tasks; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Saving.SavedModel; using Tensorflow.Keras.Losses; using Tensorflow.Keras.Metrics; using Tensorflow; using Tensorflow.Keras.Optimizers; using static Tensorflow.KerasApi; namespace TensorFlowNET.Keras.UnitTest.SaveModel; [TestClass] public class SequentialModelLoad { [TestMethod] public void SimpleModelFromSequential() { //new SequentialModelSave().SimpleModelFromSequential(); var model = keras.models.load_model(@"D:\development\tf.net\tf_test\tf.net.simple.sequential"); model.summary(); model.compile(new Adam(0.0001f), new LossesApi().SparseCategoricalCrossentropy(), new string[] { "accuracy" }); var data_loader = new MnistModelLoader(); var num_epochs = 1; var batch_size = 8; var dataset = data_loader.LoadAsync(new ModelLoadSetting { TrainDir = "mnist", OneHot = false, ValidationSize = 50000, }).Result; model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); model.summary(); } }