# Chapter. Session TensorFlow **session** runs parts of the graph across a set of local and remote devices. A session allows to execute graphs or part of graphs. It allocates resources (on one or more machines) for that and holds the actual values of intermediate results and variables. ### Running Computations in a Session Let's complete the example in last chapter. ```csharp with(tf.Graph(), graph => { var variable = tf.Variable(31, name: "tree"); var init = tf.global_variables_initializer(); var sess = tf.Session(graph); sess.run(init); var result = sess.run(variable); // 31 var assign = variable.assign(12); result = sess.run(assign); // 12 }); ```