using System; using System.Collections; using System.Collections.Generic; using System.Numerics; using System.Text; namespace Tensorflow.NumPy { public partial class np { /// /// A convenient alias for None, useful for indexing arrays. /// /// https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html



https://stackoverflow.com/questions/42190783/what-does-three-dots-in-python-mean-when-indexing-what-looks-like-a-number
public static readonly Slice newaxis = new Slice(null, null, 1) { IsNewAxis = true }; // https://docs.scipy.org/doc/numpy-1.16.0/user/basics.types.html #region data type public static readonly TF_DataType @bool = TF_DataType.TF_BOOL; public static readonly TF_DataType @char = TF_DataType.TF_INT8; public static readonly TF_DataType @byte = TF_DataType.TF_INT8; public static readonly TF_DataType uint8 = TF_DataType.TF_UINT8; public static readonly TF_DataType ubyte = TF_DataType.TF_UINT8; public static readonly TF_DataType int16 = TF_DataType.TF_INT16; public static readonly TF_DataType uint16 = TF_DataType.TF_UINT16; public static readonly TF_DataType int32 = TF_DataType.TF_INT32; public static readonly TF_DataType uint32 = TF_DataType.TF_UINT32; public static readonly TF_DataType int64 = TF_DataType.TF_INT64; public static readonly TF_DataType uint64 = TF_DataType.TF_UINT64; public static readonly TF_DataType float32 = TF_DataType.TF_FLOAT; public static readonly TF_DataType float64 = TF_DataType.TF_DOUBLE; public static readonly TF_DataType @double = TF_DataType.TF_DOUBLE; public static readonly TF_DataType @decimal = TF_DataType.TF_DOUBLE; public static readonly TF_DataType complex_ = TF_DataType.TF_COMPLEX; public static readonly TF_DataType complex64 = TF_DataType.TF_COMPLEX64; public static readonly TF_DataType complex128 = TF_DataType.TF_COMPLEX128; #endregion public static double nan => double.NaN; public static double NAN => double.NaN; public static double NaN => double.NaN; public static double pi => Math.PI; public static double e => Math.E; public static double euler_gamma => 0.57721566490153286060651209008240243d; public static double inf => double.PositiveInfinity; public static double infty => double.PositiveInfinity; public static double Inf => double.PositiveInfinity; public static double NINF => double.NegativeInfinity; public static double PINF => double.PositiveInfinity; public static double Infinity => double.PositiveInfinity; public static double infinity => double.PositiveInfinity; public static bool array_equal(NDArray a, NDArray b) => a.Equals(b); public static NDArray concatenate(NDArray[] arrays, int axis = 0) => throw new NotImplementedException(""); public static NDArray frombuffer(byte[] bytes, string dtype) => throw new NotImplementedException(""); public static bool allclose(NDArray a, NDArray b, double rtol = 1.0E-5, double atol = 1.0E-8, bool equal_nan = false) => throw new NotImplementedException(""); public static class random { public static NDArray permutation(int x) { throw new NotImplementedException(""); } public static void shuffle(NDArray nd) { } public static NDArray rand(params int[] shape) => throw new NotImplementedException(""); public static NDArray randint(long x) => throw new NotImplementedException(""); public static NDArray RandomState(int x) => throw new NotImplementedException(""); } public static NpzDictionary Load_Npz(byte[] bytes) where T : class, IList, ICloneable, ICollection, IEnumerable, IStructuralComparable, IStructuralEquatable { throw new NotImplementedException(""); } } }