using System;
using System.Collections;
using System.Collections.Generic;
using System.Numerics;
using System.Text;
namespace Tensorflow.NumPy
{
public partial class np
{
///
/// A convenient alias for None, useful for indexing arrays.
///
/// https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html
https://stackoverflow.com/questions/42190783/what-does-three-dots-in-python-mean-when-indexing-what-looks-like-a-number
public static readonly Slice newaxis = new Slice(null, null, 1) { IsNewAxis = true };
// https://docs.scipy.org/doc/numpy-1.16.0/user/basics.types.html
#region data type
public static readonly TF_DataType @bool = TF_DataType.TF_BOOL;
public static readonly TF_DataType @char = TF_DataType.TF_INT8;
public static readonly TF_DataType @byte = TF_DataType.TF_INT8;
public static readonly TF_DataType uint8 = TF_DataType.TF_UINT8;
public static readonly TF_DataType ubyte = TF_DataType.TF_UINT8;
public static readonly TF_DataType int16 = TF_DataType.TF_INT16;
public static readonly TF_DataType uint16 = TF_DataType.TF_UINT16;
public static readonly TF_DataType int32 = TF_DataType.TF_INT32;
public static readonly TF_DataType uint32 = TF_DataType.TF_UINT32;
public static readonly TF_DataType int64 = TF_DataType.TF_INT64;
public static readonly TF_DataType uint64 = TF_DataType.TF_UINT64;
public static readonly TF_DataType float32 = TF_DataType.TF_FLOAT;
public static readonly TF_DataType float64 = TF_DataType.TF_DOUBLE;
public static readonly TF_DataType @double = TF_DataType.TF_DOUBLE;
public static readonly TF_DataType @decimal = TF_DataType.TF_DOUBLE;
public static readonly TF_DataType complex_ = TF_DataType.TF_COMPLEX;
public static readonly TF_DataType complex64 = TF_DataType.TF_COMPLEX64;
public static readonly TF_DataType complex128 = TF_DataType.TF_COMPLEX128;
#endregion
public static double nan => double.NaN;
public static double NAN => double.NaN;
public static double NaN => double.NaN;
public static double pi => Math.PI;
public static double e => Math.E;
public static double euler_gamma => 0.57721566490153286060651209008240243d;
public static double inf => double.PositiveInfinity;
public static double infty => double.PositiveInfinity;
public static double Inf => double.PositiveInfinity;
public static double NINF => double.NegativeInfinity;
public static double PINF => double.PositiveInfinity;
public static double Infinity => double.PositiveInfinity;
public static double infinity => double.PositiveInfinity;
public static bool array_equal(NDArray a, NDArray b)
=> a.Equals(b);
public static NDArray concatenate(NDArray[] arrays, int axis = 0)
=> throw new NotImplementedException("");
public static NDArray frombuffer(byte[] bytes, string dtype)
=> throw new NotImplementedException("");
public static bool allclose(NDArray a, NDArray b, double rtol = 1.0E-5, double atol = 1.0E-8,
bool equal_nan = false) => throw new NotImplementedException("");
public static class random
{
public static NDArray permutation(int x)
{
throw new NotImplementedException("");
}
public static void shuffle(NDArray nd)
{
}
public static NDArray rand(params int[] shape)
=> throw new NotImplementedException("");
public static NDArray randint(long x)
=> throw new NotImplementedException("");
public static NDArray RandomState(int x)
=> throw new NotImplementedException("");
}
public static NpzDictionary Load_Npz(byte[] bytes)
where T : class, IList, ICloneable, ICollection, IEnumerable, IStructuralComparable, IStructuralEquatable
{
throw new NotImplementedException("");
}
}
}