from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow.keras import Model, layers import numpy as np # MNIST dataset parameters. num_classes = 10 # total classes (0-9 digits). # Training parameters. learning_rate = 0.001 training_steps = 100 batch_size = 128 display_step = 10 # Network parameters. conv1_filters = 32 # number of filters for 1st conv layer. conv2_filters = 64 # number of filters for 2nd conv layer. fc1_units = 1024 # number of neurons for 1st fully-connected layer. # Prepare MNIST data. from tensorflow.keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # Convert to float32. x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32) # Normalize images value from [0, 255] to [0, 1]. x_train, x_test = x_train / 255., x_test / 255. # Use tf.data API to shuffle and batch data. train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) # Create TF Model. class ConvNet(Model): # Set layers. def __init__(self): super(ConvNet, self).__init__() # Convolution Layer with 32 filters and a kernel size of 5. self.conv1 = layers.Conv2D(32, kernel_size=5, activation=tf.nn.relu) # Max Pooling (down-sampling) with kernel size of 2 and strides of 2. self.maxpool1 = layers.MaxPool2D(2, strides=2) # Convolution Layer with 64 filters and a kernel size of 3. self.conv2 = layers.Conv2D(64, kernel_size=3, activation=tf.nn.relu) # Max Pooling (down-sampling) with kernel size of 2 and strides of 2. self.maxpool2 = layers.MaxPool2D(2, strides=2) # Flatten the data to a 1-D vector for the fully connected layer. self.flatten = layers.Flatten() # Fully connected layer. self.fc1 = layers.Dense(1024) # Apply Dropout (if is_training is False, dropout is not applied). self.dropout = layers.Dropout(rate=0.5) # Output layer, class prediction. self.out = layers.Dense(num_classes) # Set forward pass. def call(self, x, is_training=False): x = tf.reshape(x, [-1, 28, 28, 1]) x = self.conv1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.flatten(x) x = self.fc1(x) x = self.dropout(x) x = self.out(x) if not is_training: # tf cross entropy expect logits without softmax, so only # apply softmax when not training. x = tf.nn.softmax(x) return x ''' # Build neural network model. conv_net = ConvNet() # Cross-Entropy Loss. # Note that this will apply 'softmax' to the logits. def cross_entropy_loss(x, y): # Convert labels to int 64 for tf cross-entropy function. y = tf.cast(y, tf.int64) # Apply softmax to logits and compute cross-entropy. loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x) # Average loss across the batch. return tf.reduce_mean(loss) # Accuracy metric. def accuracy(y_pred, y_true): # Predicted class is the index of highest score in prediction vector (i.e. argmax). correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) # Stochastic gradient descent optimizer. optimizer = tf.optimizers.Adam(learning_rate) # Optimization process. def run_optimization(x, y): # Wrap computation inside a GradientTape for automatic differentiation. with tf.GradientTape() as g: # Forward pass. pred = conv_net(x, is_training=True) # Compute loss. loss = cross_entropy_loss(pred, y) # Variables to update, i.e. trainable variables. trainable_variables = conv_net.trainable_variables # Compute gradients. gradients = g.gradient(loss, trainable_variables) # Update W and b following gradients. optimizer.apply_gradients(zip(gradients, trainable_variables)) # Run training for the given number of steps. for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): # Run the optimization to update W and b values. run_optimization(batch_x, batch_y) if step % display_step == 0: pred = conv_net(batch_x) loss = cross_entropy_loss(pred, batch_y) acc = accuracy(pred, batch_y) print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) # Test model on validation set. pred = conv_net(x_test) print("Test Accuracy: %f" % accuracy(pred, y_test)) conv_net.save_weights('weights.h5') ''' conv_net = ConvNet() conv_net.build(x_test.shape) conv_net.load_weights('weights.h5') # Test model on validation set. pred = conv_net(x_test) # print("Test Accuracy: %f" % accuracy(pred, y_test)) # Visualize predictions. import matplotlib.pyplot as plt # Predict 5 images from validation set. n_images = 5 test_images = x_test[:n_images] predictions = conv_net(test_images) # Display image and model prediction. for i in range(n_images): plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction: %i" % np.argmax(predictions.numpy()[i]))