| @@ -2,6 +2,7 @@ | |||
| using System; | |||
| using Tensorflow.Keras.Optimizers; | |||
| using Tensorflow.NumPy; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.UnitTest | |||
| @@ -66,5 +67,79 @@ namespace Tensorflow.Keras.UnitTest | |||
| var pred = model.predict((x1, x2)); | |||
| Console.WriteLine(pred); | |||
| } | |||
| [TestMethod] | |||
| public void LeNetModelDataset() | |||
| { | |||
| var inputs = keras.Input((28, 28, 1)); | |||
| var conv1 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs); | |||
| var pool1 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv1); | |||
| var conv2 = keras.layers.Conv2D(32, (3, 3), activation: "relu", padding: "same").Apply(pool1); | |||
| var pool2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2); | |||
| var flat1 = keras.layers.Flatten().Apply(pool2); | |||
| var inputs_2 = keras.Input((28, 28, 1)); | |||
| var conv1_2 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs_2); | |||
| var pool1_2 = keras.layers.MaxPooling2D((4, 4), 4).Apply(conv1_2); | |||
| var conv2_2 = keras.layers.Conv2D(32, (1, 1), activation: "relu", padding: "same").Apply(pool1_2); | |||
| var pool2_2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2_2); | |||
| var flat1_2 = keras.layers.Flatten().Apply(pool2_2); | |||
| var concat = keras.layers.Concatenate().Apply((flat1, flat1_2)); | |||
| var dense1 = keras.layers.Dense(512, activation: "relu").Apply(concat); | |||
| var dense2 = keras.layers.Dense(128, activation: "relu").Apply(dense1); | |||
| var dense3 = keras.layers.Dense(10, activation: "relu").Apply(dense2); | |||
| var output = keras.layers.Softmax(-1).Apply(dense3); | |||
| var model = keras.Model((inputs, inputs_2), output); | |||
| model.summary(); | |||
| var data_loader = new MnistModelLoader(); | |||
| var dataset = data_loader.LoadAsync(new ModelLoadSetting | |||
| { | |||
| TrainDir = "mnist", | |||
| OneHot = false, | |||
| ValidationSize = 59900, | |||
| }).Result; | |||
| var loss = keras.losses.SparseCategoricalCrossentropy(); | |||
| var optimizer = new Adam(0.001f); | |||
| model.compile(optimizer, loss, new string[] { "accuracy" }); | |||
| NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); | |||
| var multiInputDataset = tf.data.Dataset.zip( | |||
| tf.data.Dataset.from_tensor_slices(x1), | |||
| tf.data.Dataset.from_tensor_slices(x1), | |||
| tf.data.Dataset.from_tensor_slices(dataset.Train.Labels) | |||
| ).batch(8); | |||
| multiInputDataset.FirstInputTensorCount = 2; | |||
| model.fit(multiInputDataset, epochs: 3); | |||
| x1 = x1["0:8"]; | |||
| multiInputDataset = tf.data.Dataset.zip( | |||
| tf.data.Dataset.from_tensor_slices(x1), | |||
| tf.data.Dataset.from_tensor_slices(x1), | |||
| tf.data.Dataset.from_tensor_slices(dataset.Train.Labels["0:8"]) | |||
| ).batch(8); | |||
| multiInputDataset.FirstInputTensorCount = 2; | |||
| (model as Engine.Model).evaluate(multiInputDataset); | |||
| x1 = np.ones((1, 28, 28, 1), TF_DataType.TF_FLOAT); | |||
| var x2 = np.zeros((1, 28, 28, 1), TF_DataType.TF_FLOAT); | |||
| multiInputDataset = tf.data.Dataset.zip( | |||
| tf.data.Dataset.from_tensor_slices(x1), | |||
| tf.data.Dataset.from_tensor_slices(x2) | |||
| ).batch(8); | |||
| multiInputDataset.FirstInputTensorCount = 2; | |||
| var pred = model.predict(multiInputDataset); | |||
| Console.WriteLine(pred); | |||
| } | |||
| } | |||
| } | |||