diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs
index 280e91e2..2c55f8fd 100644
--- a/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs
+++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs
@@ -10,14 +10,14 @@ namespace Tensorflow.Keras.Layers {
public ILayer ELU ( float alpha = 0.1f )
=> new ELU(new ELUArgs { Alpha = alpha });
public ILayer SELU ()
- => new SELU(new LayerArgs { });
+ => new SELU(new SELUArgs { });
public ILayer Softmax(int axis = -1) => new Softmax(new SoftmaxArgs { axis = axis });
public ILayer Softmax ( Axis axis ) => new Softmax(new SoftmaxArgs { axis = axis });
- public ILayer Softplus () => new Softplus(new LayerArgs { });
- public ILayer HardSigmoid () => new HardSigmoid(new LayerArgs { });
- public ILayer Softsign () => new Softsign(new LayerArgs { });
- public ILayer Swish () => new Swish(new LayerArgs { });
- public ILayer Tanh () => new Tanh(new LayerArgs { });
- public ILayer Exponential () => new Exponential(new LayerArgs { });
+ public ILayer Softplus () => new Softplus(new SoftplusArgs { });
+ public ILayer HardSigmoid () => new HardSigmoid(new HardSigmoidArgs { });
+ public ILayer Softsign () => new Softsign(new SoftsignArgs { });
+ public ILayer Swish () => new Swish(new SwishArgs { });
+ public ILayer Tanh () => new Tanh(new TanhArgs { });
+ public ILayer Exponential () => new Exponential(new ExponentialArgs { });
}
}
diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs
index d94bfb4d..bf06b141 100644
--- a/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs
+++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs
@@ -14,7 +14,7 @@ namespace Tensorflow.Keras.Layers
/// Axis along which to concatenate.
///
public ILayer Concatenate(int axis = -1)
- => new Concatenate(new MergeArgs
+ => new Concatenate(new ConcatenateArgs
{
Axis = axis
});
diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
index a04a9c05..9155c774 100644
--- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs
+++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
@@ -240,7 +240,7 @@ namespace Tensorflow.Keras.Layers
string kernel_regularizer = null,
string bias_regularizer = null,
string activity_regularizer = null)
- => new Conv2DTranspose(new Conv2DArgs
+ => new Conv2DTranspose(new Conv2DTransposeArgs
{
Rank = 2,
Filters = filters,
@@ -568,7 +568,7 @@ namespace Tensorflow.Keras.Layers
int? strides = null,
string padding = "valid",
string data_format = null)
- => new MaxPooling1D(new Pooling1DArgs
+ => new MaxPooling1D(new MaxPooling1DArgs
{
PoolSize = pool_size ?? 2,
Strides = strides ?? (pool_size ?? 2),
@@ -944,21 +944,21 @@ namespace Tensorflow.Keras.Layers
///
///
public ILayer Add()
- => new Add(new MergeArgs { });
+ => new Add(new AddArgs { });
///
///
///
///
public ILayer Subtract()
- => new Subtract(new MergeArgs { });
+ => new Subtract(new SubtractArgs { });
///
/// Global max pooling operation for spatial data.
///
///
public ILayer GlobalAveragePooling2D()
- => new GlobalAveragePooling2D(new Pooling2DArgs { });
+ => new GlobalAveragePooling2D(new GlobalAveragePooling2DArgs { });
///
/// Global average pooling operation for temporal data.
@@ -968,7 +968,7 @@ namespace Tensorflow.Keras.Layers
///
///
public ILayer GlobalAveragePooling1D(string data_format = "channels_last")
- => new GlobalAveragePooling1D(new Pooling1DArgs { DataFormat = data_format });
+ => new GlobalAveragePooling1D(new GlobalAveragePooling1DArgs { DataFormat = data_format });
///
/// Global max pooling operation for spatial data.
@@ -977,7 +977,7 @@ namespace Tensorflow.Keras.Layers
/// channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
///
public ILayer GlobalAveragePooling2D(string data_format = "channels_last")
- => new GlobalAveragePooling2D(new Pooling2DArgs { DataFormat = data_format });
+ => new GlobalAveragePooling2D(new GlobalAveragePooling2DArgs { DataFormat = data_format });
///
/// Global max pooling operation for 1D temporal data.
@@ -988,7 +988,7 @@ namespace Tensorflow.Keras.Layers
///
///
public ILayer GlobalMaxPooling1D(string data_format = "channels_last")
- => new GlobalMaxPooling1D(new Pooling1DArgs { DataFormat = data_format });
+ => new GlobalMaxPooling1D(new GlobalMaxPooling1DArgs { DataFormat = data_format });
///
/// Global max pooling operation for spatial data.
@@ -997,7 +997,7 @@ namespace Tensorflow.Keras.Layers
/// channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
///
public ILayer GlobalMaxPooling2D(string data_format = "channels_last")
- => new GlobalMaxPooling2D(new Pooling2DArgs { DataFormat = data_format });
+ => new GlobalMaxPooling2D(new GlobalMaxPooling2DArgs { DataFormat = data_format });
///
/// Get an weights initializer from its name.