diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs index 280e91e2..2c55f8fd 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs @@ -10,14 +10,14 @@ namespace Tensorflow.Keras.Layers { public ILayer ELU ( float alpha = 0.1f ) => new ELU(new ELUArgs { Alpha = alpha }); public ILayer SELU () - => new SELU(new LayerArgs { }); + => new SELU(new SELUArgs { }); public ILayer Softmax(int axis = -1) => new Softmax(new SoftmaxArgs { axis = axis }); public ILayer Softmax ( Axis axis ) => new Softmax(new SoftmaxArgs { axis = axis }); - public ILayer Softplus () => new Softplus(new LayerArgs { }); - public ILayer HardSigmoid () => new HardSigmoid(new LayerArgs { }); - public ILayer Softsign () => new Softsign(new LayerArgs { }); - public ILayer Swish () => new Swish(new LayerArgs { }); - public ILayer Tanh () => new Tanh(new LayerArgs { }); - public ILayer Exponential () => new Exponential(new LayerArgs { }); + public ILayer Softplus () => new Softplus(new SoftplusArgs { }); + public ILayer HardSigmoid () => new HardSigmoid(new HardSigmoidArgs { }); + public ILayer Softsign () => new Softsign(new SoftsignArgs { }); + public ILayer Swish () => new Swish(new SwishArgs { }); + public ILayer Tanh () => new Tanh(new TanhArgs { }); + public ILayer Exponential () => new Exponential(new ExponentialArgs { }); } } diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs index d94bfb4d..bf06b141 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs @@ -14,7 +14,7 @@ namespace Tensorflow.Keras.Layers /// Axis along which to concatenate. /// public ILayer Concatenate(int axis = -1) - => new Concatenate(new MergeArgs + => new Concatenate(new ConcatenateArgs { Axis = axis }); diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs index a04a9c05..9155c774 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs @@ -240,7 +240,7 @@ namespace Tensorflow.Keras.Layers string kernel_regularizer = null, string bias_regularizer = null, string activity_regularizer = null) - => new Conv2DTranspose(new Conv2DArgs + => new Conv2DTranspose(new Conv2DTransposeArgs { Rank = 2, Filters = filters, @@ -568,7 +568,7 @@ namespace Tensorflow.Keras.Layers int? strides = null, string padding = "valid", string data_format = null) - => new MaxPooling1D(new Pooling1DArgs + => new MaxPooling1D(new MaxPooling1DArgs { PoolSize = pool_size ?? 2, Strides = strides ?? (pool_size ?? 2), @@ -944,21 +944,21 @@ namespace Tensorflow.Keras.Layers /// /// public ILayer Add() - => new Add(new MergeArgs { }); + => new Add(new AddArgs { }); /// /// /// /// public ILayer Subtract() - => new Subtract(new MergeArgs { }); + => new Subtract(new SubtractArgs { }); /// /// Global max pooling operation for spatial data. /// /// public ILayer GlobalAveragePooling2D() - => new GlobalAveragePooling2D(new Pooling2DArgs { }); + => new GlobalAveragePooling2D(new GlobalAveragePooling2DArgs { }); /// /// Global average pooling operation for temporal data. @@ -968,7 +968,7 @@ namespace Tensorflow.Keras.Layers /// /// public ILayer GlobalAveragePooling1D(string data_format = "channels_last") - => new GlobalAveragePooling1D(new Pooling1DArgs { DataFormat = data_format }); + => new GlobalAveragePooling1D(new GlobalAveragePooling1DArgs { DataFormat = data_format }); /// /// Global max pooling operation for spatial data. @@ -977,7 +977,7 @@ namespace Tensorflow.Keras.Layers /// channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). /// public ILayer GlobalAveragePooling2D(string data_format = "channels_last") - => new GlobalAveragePooling2D(new Pooling2DArgs { DataFormat = data_format }); + => new GlobalAveragePooling2D(new GlobalAveragePooling2DArgs { DataFormat = data_format }); /// /// Global max pooling operation for 1D temporal data. @@ -988,7 +988,7 @@ namespace Tensorflow.Keras.Layers /// /// public ILayer GlobalMaxPooling1D(string data_format = "channels_last") - => new GlobalMaxPooling1D(new Pooling1DArgs { DataFormat = data_format }); + => new GlobalMaxPooling1D(new GlobalMaxPooling1DArgs { DataFormat = data_format }); /// /// Global max pooling operation for spatial data. @@ -997,7 +997,7 @@ namespace Tensorflow.Keras.Layers /// channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). /// public ILayer GlobalMaxPooling2D(string data_format = "channels_last") - => new GlobalMaxPooling2D(new Pooling2DArgs { DataFormat = data_format }); + => new GlobalMaxPooling2D(new GlobalMaxPooling2DArgs { DataFormat = data_format }); /// /// Get an weights initializer from its name.