| @@ -332,3 +332,7 @@ src/TensorFlowNET.Native/bazel-* | |||
| src/TensorFlowNET.Native/c_api.h | |||
| /.vscode | |||
| test/TensorFlowNET.Examples/mnist | |||
| # training model resources | |||
| .resources | |||
| @@ -18,7 +18,7 @@ using NumSharp; | |||
| using System; | |||
| using System.Diagnostics; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples | |||
| @@ -39,7 +39,7 @@ namespace TensorFlowNET.Examples | |||
| public int? test_size = null; | |||
| public int batch_size = 1024; // The number of samples per batch | |||
| Datasets<DataSetMnist> mnist; | |||
| Datasets<MnistDataSet> mnist; | |||
| NDArray full_data_x; | |||
| int num_steps = 20; // Total steps to train | |||
| int k = 25; // The number of clusters | |||
| @@ -62,19 +62,31 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size:validation_size, test_size:test_size); | |||
| full_data_x = mnist.train.data; | |||
| var loader = new MnistModelLoader(); | |||
| var setting = new ModelLoadSetting | |||
| { | |||
| TrainDir = ".resources/mnist", | |||
| OneHot = true, | |||
| TrainSize = train_size, | |||
| ValidationSize = validation_size, | |||
| TestSize = test_size | |||
| }; | |||
| mnist = loader.LoadAsync(setting).Result; | |||
| full_data_x = mnist.Train.Data; | |||
| // download graph meta data | |||
| string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/kmeans.meta"; | |||
| Web.Download(url, "graph", "kmeans.meta"); | |||
| loader.DownloadAsync(url, ".resources/graph", "kmeans.meta").Wait(); | |||
| } | |||
| public Graph ImportGraph() | |||
| { | |||
| var graph = tf.Graph().as_default(); | |||
| tf.train.import_meta_graph("graph/kmeans.meta"); | |||
| tf.train.import_meta_graph(".resources/graph/kmeans.meta"); | |||
| return graph; | |||
| } | |||
| @@ -132,7 +144,7 @@ namespace TensorFlowNET.Examples | |||
| sw.Start(); | |||
| foreach (var i in range(idx.Count)) | |||
| { | |||
| var x = mnist.train.labels[i]; | |||
| var x = mnist.Train.Labels[i]; | |||
| counts[idx[i]] += x; | |||
| } | |||
| @@ -153,7 +165,7 @@ namespace TensorFlowNET.Examples | |||
| var accuracy_op = tf.reduce_mean(cast); | |||
| // Test Model | |||
| var (test_x, test_y) = (mnist.test.data, mnist.test.labels); | |||
| var (test_x, test_y) = (mnist.Test.Data, mnist.Test.Labels); | |||
| result = sess.run(accuracy_op, new FeedItem(X, test_x), new FeedItem(Y, test_y)); | |||
| accuray_test = result; | |||
| print($"Test Accuracy: {accuray_test}"); | |||
| @@ -19,7 +19,7 @@ using System; | |||
| using System.Diagnostics; | |||
| using System.IO; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples | |||
| @@ -45,7 +45,7 @@ namespace TensorFlowNET.Examples | |||
| private float learning_rate = 0.01f; | |||
| private int display_step = 1; | |||
| Datasets<DataSetMnist> mnist; | |||
| Datasets<MnistDataSet> mnist; | |||
| public bool Run() | |||
| { | |||
| @@ -84,11 +84,11 @@ namespace TensorFlowNET.Examples | |||
| sw.Start(); | |||
| var avg_cost = 0.0f; | |||
| var total_batch = mnist.train.num_examples / batch_size; | |||
| var total_batch = mnist.Train.NumOfExamples / batch_size; | |||
| // Loop over all batches | |||
| foreach (var i in range(total_batch)) | |||
| { | |||
| var (batch_xs, batch_ys) = mnist.train.next_batch(batch_size); | |||
| var (batch_xs, batch_ys) = mnist.Train.GetNextBatch(batch_size); | |||
| // Run optimization op (backprop) and cost op (to get loss value) | |||
| var result = sess.run(new object[] { optimizer, cost }, | |||
| new FeedItem(x, batch_xs), | |||
| @@ -115,7 +115,7 @@ namespace TensorFlowNET.Examples | |||
| var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)); | |||
| // Calculate accuracy | |||
| var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)); | |||
| float acc = accuracy.eval(new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); | |||
| float acc = accuracy.eval(new FeedItem(x, mnist.Test.Data), new FeedItem(y, mnist.Test.Labels)); | |||
| print($"Accuracy: {acc.ToString("F4")}"); | |||
| return acc > 0.9; | |||
| @@ -124,23 +124,23 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size: validation_size, test_size: test_size); | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: train_size, validationSize: validation_size, testSize: test_size).Result; | |||
| } | |||
| public void SaveModel(Session sess) | |||
| { | |||
| var saver = tf.train.Saver(); | |||
| var save_path = saver.save(sess, "logistic_regression/model.ckpt"); | |||
| tf.train.write_graph(sess.graph, "logistic_regression", "model.pbtxt", as_text: true); | |||
| var save_path = saver.save(sess, ".resources/logistic_regression/model.ckpt"); | |||
| tf.train.write_graph(sess.graph, ".resources/logistic_regression", "model.pbtxt", as_text: true); | |||
| FreezeGraph.freeze_graph(input_graph: "logistic_regression/model.pbtxt", | |||
| FreezeGraph.freeze_graph(input_graph: ".resources/logistic_regression/model.pbtxt", | |||
| input_saver: "", | |||
| input_binary: false, | |||
| input_checkpoint: "logistic_regression/model.ckpt", | |||
| input_checkpoint: ".resources/logistic_regression/model.ckpt", | |||
| output_node_names: "Softmax", | |||
| restore_op_name: "save/restore_all", | |||
| filename_tensor_name: "save/Const:0", | |||
| output_graph: "logistic_regression/model.pb", | |||
| output_graph: ".resources/logistic_regression/model.pb", | |||
| clear_devices: true, | |||
| initializer_nodes: ""); | |||
| } | |||
| @@ -148,7 +148,7 @@ namespace TensorFlowNET.Examples | |||
| public void Predict(Session sess) | |||
| { | |||
| var graph = new Graph().as_default(); | |||
| graph.Import(Path.Join("logistic_regression", "model.pb")); | |||
| graph.Import(Path.Join(".resources/logistic_regression", "model.pb")); | |||
| // restoring the model | |||
| // var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta"); | |||
| @@ -159,7 +159,7 @@ namespace TensorFlowNET.Examples | |||
| var input = x.outputs[0]; | |||
| // predict | |||
| var (batch_xs, batch_ys) = mnist.train.next_batch(10); | |||
| var (batch_xs, batch_ys) = mnist.Train.GetNextBatch(10); | |||
| var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)])); | |||
| if (results.argmax() == (batch_ys[0] as NDArray).argmax()) | |||
| @@ -17,7 +17,7 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples | |||
| @@ -31,7 +31,7 @@ namespace TensorFlowNET.Examples | |||
| { | |||
| public bool Enabled { get; set; } = true; | |||
| public string Name => "Nearest Neighbor"; | |||
| Datasets<DataSetMnist> mnist; | |||
| Datasets<MnistDataSet> mnist; | |||
| NDArray Xtr, Ytr, Xte, Yte; | |||
| public int? TrainSize = null; | |||
| public int ValidationSize = 5000; | |||
| @@ -84,10 +84,10 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: TrainSize, validation_size:ValidationSize, test_size:TestSize); | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: TrainSize, validationSize: ValidationSize, testSize: TestSize).Result; | |||
| // In this example, we limit mnist data | |||
| (Xtr, Ytr) = mnist.train.next_batch(TrainSize==null ? 5000 : TrainSize.Value / 100); // 5000 for training (nn candidates) | |||
| (Xte, Yte) = mnist.test.next_batch(TestSize==null ? 200 : TestSize.Value / 100); // 200 for testing | |||
| (Xtr, Ytr) = mnist.Train.GetNextBatch(TrainSize == null ? 5000 : TrainSize.Value / 100); // 5000 for training (nn candidates) | |||
| (Xte, Yte) = mnist.Test.GetNextBatch(TestSize == null ? 200 : TestSize.Value / 100); // 200 for testing | |||
| } | |||
| public Graph ImportGraph() | |||
| @@ -18,7 +18,7 @@ using NumSharp; | |||
| using System; | |||
| using System.Diagnostics; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples.ImageProcess | |||
| @@ -46,7 +46,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| int epochs = 5; // accuracy > 98% | |||
| int batch_size = 100; | |||
| float learning_rate = 0.001f; | |||
| Datasets<DataSetMnist> mnist; | |||
| Datasets<MnistDataSet> mnist; | |||
| // Network configuration | |||
| // 1st Convolutional Layer | |||
| @@ -310,14 +310,14 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true); | |||
| (x_train, y_train) = Reformat(mnist.train.data, mnist.train.labels); | |||
| (x_valid, y_valid) = Reformat(mnist.validation.data, mnist.validation.labels); | |||
| (x_test, y_test) = Reformat(mnist.test.data, mnist.test.labels); | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true).Result; | |||
| (x_train, y_train) = Reformat(mnist.Train.Data, mnist.Train.Labels); | |||
| (x_valid, y_valid) = Reformat(mnist.Validation.Data, mnist.Validation.Labels); | |||
| (x_test, y_test) = Reformat(mnist.Test.Data, mnist.Test.Labels); | |||
| print("Size of:"); | |||
| print($"- Training-set:\t\t{len(mnist.train.data)}"); | |||
| print($"- Validation-set:\t{len(mnist.validation.data)}"); | |||
| print($"- Training-set:\t\t{len(mnist.Train.Data)}"); | |||
| print($"- Validation-set:\t{len(mnist.Validation.Data)}"); | |||
| } | |||
| /// <summary> | |||
| @@ -17,7 +17,7 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples.ImageProcess | |||
| @@ -44,7 +44,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| int batch_size = 100; | |||
| float learning_rate = 0.001f; | |||
| int h1 = 200; // number of nodes in the 1st hidden layer | |||
| Datasets<DataSetMnist> mnist; | |||
| Datasets<MnistDataSet> mnist; | |||
| Tensor x, y; | |||
| Tensor loss, accuracy; | |||
| @@ -121,13 +121,13 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true); | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true).Result; | |||
| } | |||
| public void Train(Session sess) | |||
| { | |||
| // Number of training iterations in each epoch | |||
| var num_tr_iter = mnist.train.labels.shape[0] / batch_size; | |||
| var num_tr_iter = mnist.Train.Labels.shape[0] / batch_size; | |||
| var init = tf.global_variables_initializer(); | |||
| sess.run(init); | |||
| @@ -139,13 +139,13 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| { | |||
| print($"Training epoch: {epoch + 1}"); | |||
| // Randomly shuffle the training data at the beginning of each epoch | |||
| var (x_train, y_train) = randomize(mnist.train.data, mnist.train.labels); | |||
| var (x_train, y_train) = mnist.Randomize(mnist.Train.Data, mnist.Train.Labels); | |||
| foreach (var iteration in range(num_tr_iter)) | |||
| { | |||
| var start = iteration * batch_size; | |||
| var end = (iteration + 1) * batch_size; | |||
| var (x_batch, y_batch) = get_next_batch(x_train, y_train, start, end); | |||
| var (x_batch, y_batch) = mnist.GetNextBatch(x_train, y_train, start, end); | |||
| // Run optimization op (backprop) | |||
| sess.run(optimizer, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); | |||
| @@ -161,7 +161,8 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| } | |||
| // Run validation after every epoch | |||
| var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.data), new FeedItem(y, mnist.validation.labels)); | |||
| var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.Validation.Data), new FeedItem(y, mnist.Validation.Labels)); | |||
| loss_val = results1[0]; | |||
| accuracy_val = results1[1]; | |||
| print("---------------------------------------------------------"); | |||
| @@ -172,35 +173,12 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| public void Test(Session sess) | |||
| { | |||
| var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); | |||
| var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.Test.Data), new FeedItem(y, mnist.Test.Labels)); | |||
| loss_test = result[0]; | |||
| accuracy_test = result[1]; | |||
| print("---------------------------------------------------------"); | |||
| print($"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}"); | |||
| print("---------------------------------------------------------"); | |||
| } | |||
| private (NDArray, NDArray) randomize(NDArray x, NDArray y) | |||
| { | |||
| var perm = np.random.permutation(y.shape[0]); | |||
| np.random.shuffle(perm); | |||
| return (mnist.train.data[perm], mnist.train.labels[perm]); | |||
| } | |||
| /// <summary> | |||
| /// selects a few number of images determined by the batch_size variable (if you don't know why, read about Stochastic Gradient Method) | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="start"></param> | |||
| /// <param name="end"></param> | |||
| /// <returns></returns> | |||
| private (NDArray, NDArray) get_next_batch(NDArray x, NDArray y, int start, int end) | |||
| { | |||
| var x_batch = x[$"{start}:{end}"]; | |||
| var y_batch = y[$"{start}:{end}"]; | |||
| return (x_batch, y_batch); | |||
| } | |||
| } | |||
| } | |||
| @@ -17,7 +17,7 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples.ImageProcess | |||
| @@ -45,7 +45,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| int n_inputs = 28; | |||
| int n_outputs = 10; | |||
| Datasets<DataSetMnist> mnist; | |||
| Datasets<MnistDataSet> mnist; | |||
| Tensor x, y; | |||
| Tensor loss, accuracy, cls_prediction; | |||
| @@ -143,15 +143,15 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true); | |||
| (x_train, y_train) = (mnist.train.data, mnist.train.labels); | |||
| (x_valid, y_valid) = (mnist.validation.data, mnist.validation.labels); | |||
| (x_test, y_test) = (mnist.test.data, mnist.test.labels); | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true).Result; | |||
| (x_train, y_train) = (mnist.Train.Data, mnist.Train.Labels); | |||
| (x_valid, y_valid) = (mnist.Validation.Data, mnist.Validation.Labels); | |||
| (x_test, y_test) = (mnist.Test.Data, mnist.Test.Labels); | |||
| print("Size of:"); | |||
| print($"- Training-set:\t\t{len(mnist.train.data)}"); | |||
| print($"- Validation-set:\t{len(mnist.validation.data)}"); | |||
| print($"- Test-set:\t\t{len(mnist.test.data)}"); | |||
| print($"- Training-set:\t\t{len(mnist.Train.Data)}"); | |||
| print($"- Validation-set:\t{len(mnist.Validation.Data)}"); | |||
| print($"- Test-set:\t\t{len(mnist.Test.Data)}"); | |||
| } | |||
| public Graph ImportGraph() => throw new NotImplementedException(); | |||
| @@ -18,5 +18,6 @@ | |||
| <ProjectReference Include="..\..\src\KerasNET.Core\Keras.Core.csproj" /> | |||
| <ProjectReference Include="..\..\src\TensorFlowNET.Core\TensorFlowNET.Core.csproj" /> | |||
| <ProjectReference Include="..\..\src\TensorFlowText\TensorFlowText.csproj" /> | |||
| <ProjectReference Include="..\..\src\TensorFlowHub\TensorFlowHub.csproj" /> | |||
| </ItemGroup> | |||
| </Project> | |||
| @@ -1,95 +0,0 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class DataSetMnist : IDataSet | |||
| { | |||
| public int num_examples { get; } | |||
| public int epochs_completed { get; private set; } | |||
| public int index_in_epoch { get; private set; } | |||
| public NDArray data { get; private set; } | |||
| public NDArray labels { get; private set; } | |||
| public DataSetMnist(NDArray images, NDArray labels, TF_DataType dtype, bool reshape) | |||
| { | |||
| num_examples = images.shape[0]; | |||
| images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]); | |||
| images.astype(dtype.as_numpy_datatype()); | |||
| images = np.multiply(images, 1.0f / 255.0f); | |||
| labels.astype(dtype.as_numpy_datatype()); | |||
| data = images; | |||
| this.labels = labels; | |||
| epochs_completed = 0; | |||
| index_in_epoch = 0; | |||
| } | |||
| public (NDArray, NDArray) next_batch(int batch_size, bool fake_data = false, bool shuffle = true) | |||
| { | |||
| var start = index_in_epoch; | |||
| // Shuffle for the first epoch | |||
| if(epochs_completed == 0 && start == 0 && shuffle) | |||
| { | |||
| var perm0 = np.arange(num_examples); | |||
| np.random.shuffle(perm0); | |||
| data = data[perm0]; | |||
| labels = labels[perm0]; | |||
| } | |||
| // Go to the next epoch | |||
| if (start + batch_size > num_examples) | |||
| { | |||
| // Finished epoch | |||
| epochs_completed += 1; | |||
| // Get the rest examples in this epoch | |||
| var rest_num_examples = num_examples - start; | |||
| //var images_rest_part = _images[np.arange(start, _num_examples)]; | |||
| //var labels_rest_part = _labels[np.arange(start, _num_examples)]; | |||
| // Shuffle the data | |||
| if (shuffle) | |||
| { | |||
| var perm = np.arange(num_examples); | |||
| np.random.shuffle(perm); | |||
| data = data[perm]; | |||
| labels = labels[perm]; | |||
| } | |||
| start = 0; | |||
| index_in_epoch = batch_size - rest_num_examples; | |||
| var end = index_in_epoch; | |||
| var images_new_part = data[np.arange(start, end)]; | |||
| var labels_new_part = labels[np.arange(start, end)]; | |||
| /*return (np.concatenate(new float[][] { images_rest_part.Data<float>(), images_new_part.Data<float>() }, axis: 0), | |||
| np.concatenate(new float[][] { labels_rest_part.Data<float>(), labels_new_part.Data<float>() }, axis: 0));*/ | |||
| return (images_new_part, labels_new_part); | |||
| } | |||
| else | |||
| { | |||
| index_in_epoch += batch_size; | |||
| var end = index_in_epoch; | |||
| return (data[np.arange(start, end)], labels[np.arange(start, end)]); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -1,46 +0,0 @@ | |||
| using NumSharp; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class Datasets<T> where T : IDataSet | |||
| { | |||
| private T _train; | |||
| public T train => _train; | |||
| private T _validation; | |||
| public T validation => _validation; | |||
| private T _test; | |||
| public T test => _test; | |||
| public Datasets(T train, T validation, T test) | |||
| { | |||
| _train = train; | |||
| _validation = validation; | |||
| _test = test; | |||
| } | |||
| public (NDArray, NDArray) Randomize(NDArray x, NDArray y) | |||
| { | |||
| var perm = np.random.permutation(y.shape[0]); | |||
| np.random.shuffle(perm); | |||
| return (x[perm], y[perm]); | |||
| } | |||
| /// <summary> | |||
| /// selects a few number of images determined by the batch_size variable (if you don't know why, read about Stochastic Gradient Method) | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="start"></param> | |||
| /// <param name="end"></param> | |||
| /// <returns></returns> | |||
| public (NDArray, NDArray) GetNextBatch(NDArray x, NDArray y, int start, int end) | |||
| { | |||
| var x_batch = x[$"{start}:{end}"]; | |||
| var y_batch = y[$"{start}:{end}"]; | |||
| return (x_batch, y_batch); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +0,0 @@ | |||
| using NumSharp; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public interface IDataSet | |||
| { | |||
| NDArray data { get; } | |||
| NDArray labels { get; } | |||
| } | |||
| } | |||
| @@ -1,131 +0,0 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using System; | |||
| using System.IO; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class MNIST | |||
| { | |||
| private const string DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"; | |||
| private const string TRAIN_IMAGES = "train-images-idx3-ubyte.gz"; | |||
| private const string TRAIN_LABELS = "train-labels-idx1-ubyte.gz"; | |||
| private const string TEST_IMAGES = "t10k-images-idx3-ubyte.gz"; | |||
| private const string TEST_LABELS = "t10k-labels-idx1-ubyte.gz"; | |||
| public static Datasets<DataSetMnist> read_data_sets(string train_dir, | |||
| bool one_hot = false, | |||
| TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
| bool reshape = true, | |||
| int validation_size = 5000, | |||
| int? train_size = null, | |||
| int? test_size = null, | |||
| string source_url = DEFAULT_SOURCE_URL) | |||
| { | |||
| if (train_size!=null && validation_size >= train_size) | |||
| throw new ArgumentException("Validation set should be smaller than training set"); | |||
| Web.Download(source_url + TRAIN_IMAGES, train_dir, TRAIN_IMAGES); | |||
| Compress.ExtractGZip(Path.Join(train_dir, TRAIN_IMAGES), train_dir); | |||
| var train_images = extract_images(Path.Join(train_dir, TRAIN_IMAGES.Split('.')[0]), limit: train_size); | |||
| Web.Download(source_url + TRAIN_LABELS, train_dir, TRAIN_LABELS); | |||
| Compress.ExtractGZip(Path.Join(train_dir, TRAIN_LABELS), train_dir); | |||
| var train_labels = extract_labels(Path.Join(train_dir, TRAIN_LABELS.Split('.')[0]), one_hot: one_hot, limit: train_size); | |||
| Web.Download(source_url + TEST_IMAGES, train_dir, TEST_IMAGES); | |||
| Compress.ExtractGZip(Path.Join(train_dir, TEST_IMAGES), train_dir); | |||
| var test_images = extract_images(Path.Join(train_dir, TEST_IMAGES.Split('.')[0]), limit: test_size); | |||
| Web.Download(source_url + TEST_LABELS, train_dir, TEST_LABELS); | |||
| Compress.ExtractGZip(Path.Join(train_dir, TEST_LABELS), train_dir); | |||
| var test_labels = extract_labels(Path.Join(train_dir, TEST_LABELS.Split('.')[0]), one_hot: one_hot, limit:test_size); | |||
| int end = train_images.shape[0]; | |||
| var validation_images = train_images[np.arange(validation_size)]; | |||
| var validation_labels = train_labels[np.arange(validation_size)]; | |||
| train_images = train_images[np.arange(validation_size, end)]; | |||
| train_labels = train_labels[np.arange(validation_size, end)]; | |||
| var train = new DataSetMnist(train_images, train_labels, dtype, reshape); | |||
| var validation = new DataSetMnist(validation_images, validation_labels, dtype, reshape); | |||
| var test = new DataSetMnist(test_images, test_labels, dtype, reshape); | |||
| return new Datasets<DataSetMnist>(train, validation, test); | |||
| } | |||
| public static NDArray extract_images(string file, int? limit=null) | |||
| { | |||
| using (var bytestream = new FileStream(file, FileMode.Open)) | |||
| { | |||
| var magic = _read32(bytestream); | |||
| if (magic != 2051) | |||
| throw new ValueError($"Invalid magic number {magic} in MNIST image file: {file}"); | |||
| var num_images = _read32(bytestream); | |||
| num_images = limit == null ? num_images : Math.Min(num_images, (uint)limit); | |||
| var rows = _read32(bytestream); | |||
| var cols = _read32(bytestream); | |||
| var buf = new byte[rows * cols * num_images]; | |||
| bytestream.Read(buf, 0, buf.Length); | |||
| var data = np.frombuffer(buf, np.uint8); | |||
| data = data.reshape((int)num_images, (int)rows, (int)cols, 1); | |||
| return data; | |||
| } | |||
| } | |||
| public static NDArray extract_labels(string file, bool one_hot = false, int num_classes = 10, int? limit = null) | |||
| { | |||
| using (var bytestream = new FileStream(file, FileMode.Open)) | |||
| { | |||
| var magic = _read32(bytestream); | |||
| if (magic != 2049) | |||
| throw new ValueError($"Invalid magic number {magic} in MNIST label file: {file}"); | |||
| var num_items = _read32(bytestream); | |||
| num_items = limit == null ? num_items : Math.Min(num_items,(uint) limit); | |||
| var buf = new byte[num_items]; | |||
| bytestream.Read(buf, 0, buf.Length); | |||
| var labels = np.frombuffer(buf, np.uint8); | |||
| if (one_hot) | |||
| return dense_to_one_hot(labels, num_classes); | |||
| return labels; | |||
| } | |||
| } | |||
| private static NDArray dense_to_one_hot(NDArray labels_dense, int num_classes) | |||
| { | |||
| var num_labels = labels_dense.shape[0]; | |||
| var index_offset = np.arange(num_labels) * num_classes; | |||
| var labels_one_hot = np.zeros(num_labels, num_classes); | |||
| var bytes = labels_dense.Data<byte>(); | |||
| for (int row = 0; row < num_labels; row++) | |||
| { | |||
| var col = bytes[row]; | |||
| labels_one_hot.SetData(1.0, row, col); | |||
| } | |||
| return labels_one_hot; | |||
| } | |||
| private static uint _read32(FileStream bytestream) | |||
| { | |||
| var buffer = new byte[sizeof(uint)]; | |||
| var count = bytestream.Read(buffer, 0, 4); | |||
| return np.frombuffer(buffer, ">u4").Data<uint>()[0]; | |||
| } | |||
| } | |||
| } | |||