Browse Source

added more test cases (gradient tests)

tags/v0.9
Meinrad Recheis 6 years ago
parent
commit
ec319b12e6
6 changed files with 2858 additions and 43 deletions
  1. +2
    -2
      src/TensorFlowNET.Core/Keras/Layers/Conv.cs
  2. +1
    -1
      src/TensorFlowNET.Core/Operations/nn_ops.cs
  3. +1
    -40
      test/TensorFlowNET.UnitTest/control_flow_ops_test/CondTestCases.cs
  4. +507
    -0
      test/TensorFlowNET.UnitTest/gradients_test/GradientsTest.cs
  5. +1104
    -0
      test/TensorFlowNET.UnitTest/gradients_test/gradients_test.py
  6. +1243
    -0
      test/TensorFlowNET.UnitTest/nn_test/nn_test.py

+ 2
- 2
src/TensorFlowNET.Core/Keras/Layers/Conv.cs View File

@@ -101,8 +101,8 @@ namespace Tensorflow.Keras.Layers
throw new NotImplementedException("call channels_first"); throw new NotImplementedException("call channels_first");
} }
else else
{
outputs = nn_ops.bias_add(outputs, bias, data_format: "NHWC");
{
outputs = nn_ops.bias_add(outputs, bias._AsTensor(), data_format: "NHWC");
} }
} }




+ 1
- 1
src/TensorFlowNET.Core/Operations/nn_ops.cs View File

@@ -30,7 +30,7 @@ namespace Tensorflow
/// <param name="name"></param> /// <param name="name"></param>
/// <returns></returns> /// <returns></returns>
public static Tensor bias_add(Tensor value, public static Tensor bias_add(Tensor value,
RefVariable bias,
Tensor bias,
string data_format = null, string data_format = null,
string name = null) string name = null)
{ {


+ 1
- 40
test/TensorFlowNET.UnitTest/control_flow_ops_test/CondTestCases.cs View File

@@ -38,46 +38,7 @@ namespace TensorFlowNET.UnitTest.control_flow_ops_test
}); });
} }
[Ignore("Todo")]
[TestMethod]
public void testCondMissingArg1()
{
// def testCondMissingArg1(self):
// x = constant_op.constant(1)
// with self.assertRaises(TypeError):
// control_flow_ops.cond(True, false_fn=lambda: x)
}
[Ignore("Todo")]
[TestMethod]
public void testCondMissingArg2()
{
// def testCondMissingArg2(self):
// x = constant_op.constant(1)
// with self.assertRaises(TypeError):
// control_flow_ops.cond(True, lambda: x)
}
[Ignore("Todo")]
[TestMethod]
public void testCondDuplicateArg1()
{
// def testCondDuplicateArg1(self):
// x = constant_op.constant(1)
// with self.assertRaises(TypeError):
// control_flow_ops.cond(True, lambda: x, lambda: x, fn1=lambda: x)
}
[Ignore("Todo")]
[TestMethod]
public void testCondDuplicateArg2()
{
// def testCondDuplicateArg2(self):
// x = constant_op.constant(1)
// with self.assertRaises(TypeError):
// control_flow_ops.cond(True, lambda: x, lambda: x, fn2=lambda: x)
}
// NOTE: all other test python test cases of this class are either not needed due to strong typing or dest a deprecated api
} }
} }

+ 507
- 0
test/TensorFlowNET.UnitTest/gradients_test/GradientsTest.cs View File

@@ -0,0 +1,507 @@
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Tensorflow;
namespace TensorFlowNET.UnitTest.gradients_test
{
[TestClass]
public class GradientsTest : PythonTest
{
//[Ignore("TODO")]
[TestMethod]
public void testGradients()
{
with(tf.Graph().as_default(), g =>
{
var inp = tf.constant(1.0, shape: new[]{32, 100}, name:"in");
var w = tf.constant(1.0, shape: new[] { 100, 10}, name:"w");
var b = tf.constant(1.0, shape: new[] { 10}, name:"b");
var xw = math_ops.matmul(inp, w, name: "xw");
var h = nn_ops.bias_add(xw, b, name: "h");
var w_grad = gradients_impl.gradients(new []{h}, new[] { w})[0];
self.assertEquals("MatMul", w_grad.op.type);
// TODO: Operation._original_op
//self.assertEquals(w_grad.op._original_op, xw.op);
self.assertTrue((bool)w_grad.op.get_attr("transpose_a"));
self.assertFalse((bool)w_grad.op.get_attr("transpose_b"));
});
}
[Ignore("TODO")]
[TestMethod]
public void testUnusedOutput()
{
//def testUnusedOutput(self):
// with ops.Graph().as_default():
// w = constant(1.0, shape=[2, 2])
// x = constant(1.0, shape=[2, 2])
// wx = math_ops.matmul(w, x)
// split_wx = array_ops.split(value=wx, num_or_size_splits=2, axis=0)
// c = math_ops.reduce_sum(split_wx[1])
// gw = gradients.gradients(c, [w])[0]
// self.assertEquals("MatMul", gw.op.type)
}
[Ignore("TODO")]
[TestMethod]
public void testColocateGradients()
{
//def testColocateGradients(self):
// with ops.Graph().as_default() as g:
// w = constant(1.0, shape=[1, 1])
// x = constant(1.0, shape=[1, 2])
// with g.device("/device:GPU:0"):
// wx = math_ops.matmul(w, x)
// gw = gradients.gradients(wx, [w], colocate_gradients_with_ops=True)[0]
// self.assertEqual(gw.op.colocation_groups(), wx.op.colocation_groups())
}
[Ignore("TODO")]
[TestMethod]
public void testColocateGradientsWithAggregation()
{
//def testColocateGradientsWithAggregation(self):
// with ops.Graph().as_default() as g:
// with g.device("/device:GPU:1"):
// w = constant(1.0, shape=[1, 1])
// x = constant(1.0, shape=[1, 2])
// y = constant(1.0, shape=[1, 2])
// wx = math_ops.matmul(w, x)
// wy = math_ops.matmul(w, y)
// with g.device("/device:GPU:0"):
// z = wx + wy
// gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
// self.assertEqual(gw1.op.colocation_groups(), wx.op.colocation_groups())
// gw2 = gradients.gradients(z, [w], colocate_gradients_with_ops=False)[0]
// self.assertTrue(wx.op.colocation_groups() != gw2.op.colocation_groups())
}
[Ignore("TODO")]
[TestMethod]
public void testColocateGradientsWithAggregationInMultipleDevices()
{
//def testColocateGradientsWithAggregationInMultipleDevices(self):
// with ops.Graph().as_default() as g:
// with g.device("/device:GPU:1"):
// w = constant(1.0, shape=[1, 1])
// x = constant(1.0, shape=[1, 2])
// y = constant(1.0, shape=[1, 2])
// with g.device("/task:1"):
// wx = math_ops.matmul(w, x)
// with g.device("/task:2"):
// wy = math_ops.matmul(w, y)
// with g.device("/device:GPU:0"):
// z = wx + wy
// gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
// self.assertEqual(gw1.op.colocation_groups(), w.op.colocation_groups())
// gw2 = gradients.gradients(z, [w], colocate_gradients_with_ops=False)[0]
// self.assertTrue(w.op.colocation_groups() != gw2.op.colocation_groups())
}
[Ignore("TODO")]
[TestMethod]
public void testColocateGradientsWithGateGradients()
{
//def testColocateGradientsWithGateGradients(self):
// if not test_util.is_gpu_available():
// self.skipTest("No GPU available")
// with ops.Graph().as_default() as g:
// with g.device("/device:CPU:0"):
// x = constant(1.0, shape=[1, 1])
// y = constant(1.0, shape=[1, 1])
// s = x + y
// with g.device("/device:GPU:0"):
// z = math_ops.reduce_sum(s)
// gz_x = gradients.gradients(z, [x], colocate_gradients_with_ops=True,
// gate_gradients=True)[0]
// with session.Session():
// # Make sure the placer doesn't complain.
// self.evaluate(gz_x)
}
[Ignore("TODO")]
[TestMethod]
public void testBoundaryStop()
{
//def testBoundaryStop(self):
// # Test that we don't differentiate 'x'. The gradient function for 'x' is
// # set explicitly to None so we will get an exception if the gradient code
// # tries to differentiate 'x'.
// with ops.Graph().as_default():
// c = constant(1.0)
// x = array_ops.identity(c)
// y = x + 1.0
// z = y + 1
// grads = gradients.gradients(z, [x])
// self.assertTrue(all(x is not None for x in grads))
}
[Ignore("TODO")]
[TestMethod]
public void testBoundaryContinue()
{
//@test_util.run_v1_only("b/120545219")
//def testBoundaryContinue(self):
// # Test that we differentiate both 'x' and 'y' correctly when x is a
// # predecessor of y.
// with self.cached_session():
// x = constant(1.0)
// y = x * 2.0
// z = y * 3.0
// grads = gradients.gradients(z, [x, y])
// self.assertTrue(all(x is not None for x in grads))
// self.assertEqual(6.0, grads[0].eval())
}
[Ignore("TODO")]
[TestMethod]
public void testAggregationMethodAccumulateN()
{
//@test_util.run_v1_only("b/120545219")
//def testAggregationMethodAccumulateN(self):
// with self.cached_session():
// x = constant(1.0)
// y = x * 2.0
// z = y + y + y + y + y + y + y + y + y + y
// grads = gradients.gradients(
// z, [x, y],
// aggregation_method=gradients.AggregationMethod.
// EXPERIMENTAL_ACCUMULATE_N)
// self.assertTrue(all(x is not None for x in grads))
// self.assertEqual(20.0, grads[0].eval())
// self.assertEqual(10.0, grads[1].eval())
}
[Ignore("TODO")]
[TestMethod]
public void testAggregationMethodAddN()
{
//@test_util.run_v1_only("b/120545219")
//def testAggregationMethodAddN(self):
// with self.cached_session():
// x = constant(1.0)
// y = x * 2.0
// z = y + y + y + y + y + y + y + y + y + y
// grads = gradients.gradients(
// z, [x, y], aggregation_method=gradients.AggregationMethod.ADD_N)
// self.assertTrue(all(x is not None for x in grads))
// self.assertEqual(20.0, grads[0].eval())
// self.assertEqual(10.0, grads[1].eval())
}
[Ignore("TODO")]
[TestMethod]
public void testAggregationMethodTree()
{
//@test_util.run_v1_only("b/120545219")
//def testAggregationMethodTree(self):
// with self.cached_session():
// x = constant(1.0)
// y = x * 2.0
// z = y + y + y + y + y + y + y + y + y + y
// grads = gradients.gradients(
// z, [x, y],
// aggregation_method=gradients.AggregationMethod.EXPERIMENTAL_TREE)
// self.assertTrue(all(x is not None for x in grads))
// self.assertEqual(20.0, grads[0].eval())
// self.assertEqual(10.0, grads[1].eval())
}
[Ignore("TODO")]
[TestMethod]
public void testNoGradientForStringOutputs()
{
//def testNoGradientForStringOutputs(self):
// with ops.Graph().as_default():
// def _TestOpGrad(_, float_grad, string_grad):
// """Gradient function for TestStringOutput."""
// self.assertEquals(float_grad.dtype, dtypes.float32)
// self.assertFalse(string_grad)
// return float_grad
// ops.RegisterGradient("TestStringOutput")(_TestOpGrad)
// c = constant(1.0)
// x, _ = test_ops.test_string_output(c)
// z = x * 2.0
// w = z * 3.0
// grads = gradients.gradients(z, [c])
// self.assertTrue(isinstance(grads[0], ops.Tensor))
// grads = gradients.gradients(w, [c])
// self.assertTrue(isinstance(grads[0], ops.Tensor))
}
[Ignore("TODO")]
[TestMethod]
public void testSingletonIndexedSlices()
{
//def testSingletonIndexedSlices(self):
// with ops.Graph().as_default():
// x = array_ops.placeholder(dtypes.float32)
// y = array_ops.identity(x)
// dy = ops.IndexedSlices(
// array_ops.placeholder(dtypes.float32),
// array_ops.placeholder(dtypes.int32))
// dx, = gradients.gradients(y, x, grad_ys=dy)
// # The IndexedSlices gradient of tf.identity is the identity map.
// with self.cached_session() as sess:
// vdx, vdy = sess.run(
// [dx, dy], feed_dict={x: [1.0], dy.indices: [0], dy.values: [2.0]})
// self.assertEqual(vdx, vdy)
}
[Ignore("TODO")]
[TestMethod]
public void testNonDifferentiableSwitchInWhileLoop()
{
//@test_util.run_v1_only("b/120545219")
//def testNonDifferentiableSwitchInWhileLoop(self):
// with ops.Graph().as_default():
// v = array_ops.placeholder(dtypes.float32, [])
// def _Step(i, a, ta):
// a += math_ops.cast(v, dtypes.int32)
// return (i + 1, a, ta.write(i, a))
// n = 4
// i, _, ta = control_flow_ops.while_loop(
// lambda i, *_: i < n,
// _Step, [0, 0, tensor_array_ops.TensorArray(
// dtypes.int32, size=n)])
// target = ta.read(i - 1)
// grad, = gradients.gradients(target, v)
// self.assertIsNone(grad)
}
[Ignore("TODO")]
[TestMethod]
public void testVariableReadValueGradient()
{
//def testVariableReadValueGradient(self):
// with ops.Graph().as_default():
// init = constant_op.constant(100.0)
// var = variables.Variable(init)
// gradient = gradients.gradients(var.read_value(), var)
// self.assertIsNotNone(gradient)
}
[Ignore("TODO")]
[TestMethod]
public void testVariableAsGraphElementGradient()
{
//def testVariableAsGraphElementGradient(self):
// with ops.Graph().as_default() as graph:
// init = constant_op.constant(100.0)
// var = variables.Variable(init)
// gradient = gradients.gradients(graph.as_graph_element(var), var)
// self.assertIsNotNone(gradient)
}
[Ignore("TODO")]
[TestMethod]
public void testVariableRefGradient()
{
//@test_util.run_v1_only("b/120545219")
//def testVariableRefGradient(self):
// with ops.Graph().as_default():
// init = constant_op.constant(100.0)
// var = variables.VariableV1(init)
// gradient = gradients.gradients(var._ref(), var)
// self.assertIsNotNone(gradient)
}
[Ignore("TODO")]
[TestMethod]
public void testDependentYs()
{
//@test_util.run_v1_only("b/120545219")
//def testDependentYs(self):
// with self.cached_session():
// x = constant_op.constant(3.0)
// y = math_ops.square(x)
// y1 = math_ops.square(y)
// y2 = math_ops.square(y1)
// g = gradients.gradients([y, y2], x)
// self.assertAllClose(17502.0, g[0].eval())
// g = gradients.gradients(y + y2, x)
// self.assertAllClose(17502.0, g[0].eval())
// z = array_ops.identity(y)
// z2 = array_ops.identity(y2)
// g = gradients.gradients([z, z2], x)
// self.assertAllClose(17502.0, g[0].eval())
}
[Ignore("TODO")]
[TestMethod]
public void testPartialDerivatives()
{
//@test_util.run_v1_only("b/120545219")
//def testPartialDerivatives(self):
// with self.cached_session():
// x = constant_op.constant(1.)
// y = 2 * x
// z = x + y
// totalg = gradients.gradients(z, [x, y])
// self.assertEqual([3.0, 1.0], [g.eval() for g in totalg])
// partialg = gradients.gradients(z, [x, y], stop_gradients=[x, y])
// self.assertEqual([1.0, 1.0], [g.eval() for g in partialg])
}
[Ignore("TODO")]
[TestMethod]
public void testStopGradients()
{
//@test_util.run_v1_only("b/120545219")
//def testStopGradients(self):
// def _MakeGraph(rng, stop_gradients=()):
// def _FunctionOf(xs, k=3):
// return ops.convert_to_tensor(
// sum(math_ops.matmul(rng.rand(k, k), x) for x in xs)
// + rng.rand(k, k))
// a = _FunctionOf([])
// if "a" in stop_gradients: a = array_ops.stop_gradient(a)
// b = _FunctionOf([a])
// if "b" in stop_gradients: b = array_ops.stop_gradient(b)
// c = _FunctionOf([a, b])
// if "c" in stop_gradients: c = array_ops.stop_gradient(c)
// d = _FunctionOf([b, c])
// if "d" in stop_gradients: d = array_ops.stop_gradient(d)
// return dict(a=a, b=b, c=c, d=d)
// def _Gradients(ys, xs, **kwargs):
// dydxs = gradients.gradients(ys, xs, **kwargs)
// dydxs = [0. * x if dydx is None else dydx
// for x, dydx in zip(xs, dydxs)]
// return dydxs
// seed = np.random.randint(1000)
// cases = []
// subsets = [""] + "a b c d ab ac ad bc bd cd abc abd acd bcd abcd".split()
// graph = _MakeGraph(np.random.RandomState(seed))
// for constants in subsets:
// graph_with_stops = _MakeGraph(np.random.RandomState(seed), constants)
// for variables_ in subsets:
// # compute the gradient when stopped using tf.stop_gradients
// grad1 = _Gradients([graph_with_stops["d"]],
// [graph_with_stops[v] for v in variables_])
// # compute the gradient when stopped using the stop_gradients kwarg
// grad2 = _Gradients([graph["d"]],
// [graph[v] for v in variables_],
// stop_gradients=[graph[v] for v in constants])
// cases.append(dict(grad1=grad1, grad2=grad2,
// constants=constants, variables=variables_))
// # evaluate all tensors in one call to session.run for speed
// with self.cached_session() as sess:
// results = sess.run([(case["grad1"], case["grad2"]) for case in cases])
// for (npgrad1, npgrad2), case in zip(results, cases):
// for a, b in zip(npgrad1, npgrad2):
// np.testing.assert_allclose(a, b)
}
[Ignore("TODO")]
[TestMethod]
public void testUnconnectedGradientsNoneUnconnectedGradients()
{
//def testUnconnectedGradientsNoneUnconnectedGradients(self):
// with ops.Graph().as_default():
// x = constant(1.0, shape=[2, 2])
// y = constant(3.0, shape=[3, 1])
// grad = gradients.gradients(
// [y], [x], unconnected_gradients="none")
// self.assertIsNone(grad[0])
}
[Ignore("TODO")]
[TestMethod]
public void testUnconnectedGradientsZerosUnconnectedGradients()
{
//def testUnconnectedGradientsZerosUnconnectedGradients(self):
// with ops.Graph().as_default():
// x = constant(1.0, shape=[2, 2])
// y = constant(3.0, shape=[3, 1])
// grads = gradients.gradients(
// [y], [x], unconnected_gradients="zero")
// with self.cached_session() as sess:
// self.assertAllEqual([[0.0, 0.0], [0.0, 0.0]], self.evaluate(grads)[0])
}
[Ignore("TODO")]
[TestMethod]
public void testUnconnectedGradientsZeroConnectedGradients()
{
//def testUnconnectedGradientsZeroConnectedGradients(self):
// with ops.Graph().as_default():
// x = constant(1.0)
// y = x * 3.0
// grad = gradients.gradients(
// [y], [x], unconnected_gradients="zero")
// with self.cached_session() as sess:
// self.assertEquals(3.0, self.evaluate(grad)[0])
}
[Ignore("TODO")]
[TestMethod]
public void testUnknownUnconnectedGradientsValueGiven()
{
//def testUnknownUnconnectedGradientsValueGiven(self):
// with ops.Graph().as_default():
// x = constant(1.0)
// y = constant(1.0)
// with self.assertRaisesRegexp(
// ValueError, "Unknown value for unconnected_gradients: 'nonsense'"):
// gradients.gradients([y], [x], unconnected_gradients="nonsense")
}
/*
*/
}
}

+ 1104
- 0
test/TensorFlowNET.UnitTest/gradients_test/gradients_test.py
File diff suppressed because it is too large
View File


+ 1243
- 0
test/TensorFlowNET.UnitTest/nn_test/nn_test.py
File diff suppressed because it is too large
View File


Loading…
Cancel
Save