| @@ -467,12 +467,9 @@ namespace Tensorflow | |||
| /// <param name="keepdims">If true, retains reduced dimensions with length 1.</param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The reduced tensor.</returns> | |||
| public Tensor reduce_any(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_any(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_any(input_tensor, axis: axis, keepdims: keepdims, name: name); | |||
| public Tensor reduce_any(Tensor input_tensor, int axis = 0, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_any(input_tensor, axis: new[] { axis }, keepdims: keepdims, name: name); | |||
| /// <summary> | |||
| /// Computes the "logical and" of elements across dimensions of a tensor. | |||
| /// </summary> | |||
| @@ -481,7 +478,7 @@ namespace Tensorflow | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The reduced tensor.</returns> | |||
| public Tensor reduce_all(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_all(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_all(input_tensor, axis: axis, keepdims: keepdims, name: name); | |||
| /// <summary> | |||
| @@ -492,7 +489,7 @@ namespace Tensorflow | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor reduce_prod(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_prod(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_prod(input_tensor, axis: axis, keepdims: keepdims, name: name); | |||
| /// <summary> | |||
| @@ -537,19 +534,16 @@ namespace Tensorflow | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor reduce_max(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_max(input_tensor, axis, keepdims, name); | |||
| public Tensor reduce_max(Tensor input_tensor, int axis, bool keepdims = false, string name = null) | |||
| public Tensor reduce_max(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_max(input_tensor, axis, keepdims, name); | |||
| public Tensor reduce_min(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_min(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_min(input_tensor, axis, keepdims, name); | |||
| public Tensor reduce_std(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_std(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_std(input_tensor, axis, keepdims, name); | |||
| public Tensor reduce_variance(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_variance(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_variance(input_tensor, axis, keepdims, name); | |||
| public Tensor sigmoid<T>(T x, string name = null) | |||
| @@ -558,15 +552,9 @@ namespace Tensorflow | |||
| public Tensor sum(Tensor input, int axis, bool keep_dims = false, string name = null) | |||
| => gen_math_ops._sum(input, axis, keep_dims: keep_dims, name: name); | |||
| public Tensor reduce_mean(Tensor input_tensors, int axis, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_mean(input_tensors, axis: new[] { axis }, keepdims: keepdims, name: name); | |||
| public Tensor reduce_mean(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| public Tensor reduce_mean(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| => math_ops.reduce_mean(input_tensor, axis: axis, keepdims: keepdims, name: name, reduction_indices: reduction_indices); | |||
| public Tensor reduce_mean(Tensor[] input_tensors, int? axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_mean(input_tensors, axis: axis, keepdims: keepdims, name: name); | |||
| public Tensor round(Tensor x, string name = null) | |||
| => gen_math_ops.round(x, name: name); | |||
| @@ -89,7 +89,7 @@ namespace Tensorflow | |||
| => gen_nn_ops.elu(features, name: name); | |||
| public (Tensor, Tensor) moments(Tensor x, | |||
| int[] axes, | |||
| Axis axes, | |||
| string name = null, | |||
| bool keep_dims = false) => nn_impl.moments(x, | |||
| axes, | |||
| @@ -19,7 +19,7 @@ namespace Tensorflow | |||
| public partial class tensorflow | |||
| { | |||
| public Tensor reduce_logsumexp(Tensor input_tensor, | |||
| int[] axis = null, | |||
| Axis? axis = null, | |||
| bool keepdims = false, | |||
| string name = null) => math_ops.reduce_logsumexp(input_tensor, axis, keepdims, name); | |||
| @@ -0,0 +1,31 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow | |||
| { | |||
| public record Axis(params int[] axis) | |||
| { | |||
| public int this[int index] => axis[index]; | |||
| public static implicit operator int[]?(Axis axis) | |||
| => axis?.axis; | |||
| public static implicit operator Axis(int axis) | |||
| => new Axis(axis); | |||
| public static implicit operator Axis((int, int) axis) | |||
| => new Axis(axis); | |||
| public static implicit operator Axis((int, int, int) axis) | |||
| => new Axis(axis); | |||
| public static implicit operator Axis(int[] axis) | |||
| => new Axis(axis); | |||
| } | |||
| } | |||
| namespace System.Runtime.CompilerServices | |||
| { | |||
| internal static class IsExternalInit { } | |||
| } | |||
| @@ -12,8 +12,8 @@ namespace Tensorflow.NumPy | |||
| public static NDArray log(NDArray x) | |||
| => throw new NotImplementedException(""); | |||
| public static NDArray prod(NDArray array, int? axis = null, Type dtype = null, bool keepdims = false) | |||
| => tf.reduce_prod(ops.convert_to_tensor(array)); | |||
| public static NDArray prod(NDArray array, Axis? axis = null, Type? dtype = null, bool keepdims = false) | |||
| => tf.reduce_prod(ops.convert_to_tensor(array), axis: axis); | |||
| public static NDArray prod<T>(params T[] array) where T : unmanaged | |||
| => tf.reduce_prod(ops.convert_to_tensor(array)); | |||
| @@ -3,7 +3,7 @@ using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| namespace Tensorflow.NumPy | |||
| namespace Tensorflow | |||
| { | |||
| public class Shape | |||
| { | |||
| @@ -11,6 +11,13 @@ namespace Tensorflow.NumPy | |||
| long[] _dims; | |||
| public long[] dims => _dims; | |||
| public Shape() | |||
| { | |||
| } | |||
| public Shape(params int[] dims) | |||
| => _dims = dims.Select(x => Convert.ToInt64(x)).ToArray(); | |||
| public Shape(params long[] dims) | |||
| => _dims = dims; | |||
| @@ -21,14 +28,27 @@ namespace Tensorflow.NumPy | |||
| => new Shape(dims); | |||
| public static implicit operator Shape(int[] dims) | |||
| => new Shape(dims.Select(x => Convert.ToInt64(x)).ToArray()); | |||
| => new Shape(dims); | |||
| public static implicit operator Shape((int, int) dims) | |||
| => new Shape(dims.Item1, dims.Item2); | |||
| public static implicit operator Shape((long, long) dims) | |||
| => new Shape(dims.Item1, dims.Item2); | |||
| public bool IsSliced => throw new NotImplementedException(""); | |||
| public bool IsScalar => throw new NotImplementedException(""); | |||
| public bool IsBroadcasted => throw new NotImplementedException(""); | |||
| public static implicit operator Shape((int, int, int) dims) | |||
| => new Shape(dims.Item1, dims.Item2, dims.Item3); | |||
| public static implicit operator Shape((long, long, long) dims) | |||
| => new Shape(dims.Item1, dims.Item2, dims.Item3); | |||
| public static implicit operator Shape((int, int, int, int) dims) | |||
| => new Shape(dims.Item1, dims.Item2, dims.Item3, dims.Item4); | |||
| public static implicit operator Shape((long, long, long, long) dims) | |||
| => new Shape(dims.Item1, dims.Item2, dims.Item3, dims.Item4); | |||
| public bool IsScalar => ndim == 0; | |||
| public static Shape Scalar | |||
| => new Shape(new long[0]); | |||
| @@ -55,6 +75,18 @@ namespace Tensorflow.NumPy | |||
| public bool IsEmpty => throw new NotImplementedException(""); | |||
| public override bool Equals(object obj) | |||
| { | |||
| if(obj is Shape shape) | |||
| { | |||
| if (shape.ndim != ndim) | |||
| return false; | |||
| if (Enumerable.SequenceEqual(dims, shape.dims)) | |||
| return true; | |||
| } | |||
| return base.Equals(obj); | |||
| } | |||
| public override string ToString() | |||
| { | |||
| return "(" + string.Join(", ", _dims) + ")"; | |||
| @@ -4,7 +4,7 @@ using System.Linq; | |||
| using System.Text; | |||
| using System.Text.RegularExpressions; | |||
| namespace Tensorflow.NumPy | |||
| namespace Tensorflow | |||
| { | |||
| /// <summary> <br></br> | |||
| /// NDArray can be indexed using slicing <br></br> | |||
| @@ -968,9 +968,9 @@ new_height, new_width"); | |||
| var num_pixels_ = array_ops.shape(image).dims; | |||
| num_pixels_ = num_pixels_.Skip(num_pixels_.Length - 3).Take(num_pixels_.Length - (num_pixels_.Length - 3)).ToArray(); | |||
| Tensor num_pixels = math_ops.reduce_prod(new Tensor(num_pixels_)); | |||
| Tensor image_mean = math_ops.reduce_mean(image, axis: new int[] { -1, -2, -3 }, keepdims: true); | |||
| Tensor image_mean = math_ops.reduce_mean(image, axis: new(-1, -2, -3), keepdims: true); | |||
| var stddev = math_ops.reduce_std(image, axis: new int[] { -1, -2, -3 }, keepdims: true); | |||
| var stddev = math_ops.reduce_std(image, axis: new(-1, -2, -3), keepdims: true); | |||
| var min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, image.dtype)); | |||
| var adjusted_stddev = math_ops.maximum(stddev, min_stddev); | |||
| @@ -1408,7 +1408,7 @@ new_height, new_width"); | |||
| max_val = convert_image_dtype(max_val, dtypes.float32); | |||
| a = convert_image_dtype(a, dtypes.float32); | |||
| b = convert_image_dtype(b, dtypes.float32); | |||
| Tensor mse = math_ops.reduce_mean(gen_math_ops.squared_difference(a, b), new int[] { -3, -2, -1 }); | |||
| Tensor mse = math_ops.reduce_mean(gen_math_ops.squared_difference(a, b), new(-3, -2, -1)); | |||
| var psnr_val = math_ops.subtract( | |||
| (20 * math_ops.log(max_val)) / math_ops.log(ops.convert_to_tensor(10.0)), | |||
| math_ops.cast(10 / math_ops.log(ops.convert_to_tensor(10)), dtypes.float32) * math_ops.log(mse), | |||
| @@ -1503,8 +1503,8 @@ new_height, new_width"); | |||
| (Tensor luminance, Tensor cs) = _ssim_helper(img1, img2, reducer, max_val, compensation, k1, k2); | |||
| var axes = constant_op.constant(new[] { -3, -2 }, dtype: dtypes.int32); | |||
| var ssim_val = math_ops.reduce_mean(luminance * cs, axes.dims); | |||
| cs = math_ops.reduce_mean(cs, axes.dims); | |||
| var ssim_val = math_ops.reduce_mean(luminance * cs, new(axes.dims)); | |||
| cs = math_ops.reduce_mean(cs, new(axes.dims)); | |||
| return (ssim_val, cs); | |||
| } | |||
| @@ -1527,7 +1527,7 @@ new_height, new_width"); | |||
| (Tensor ssim_per_channel, Tensor ___) = _ssim_per_channel(img1, img2, max_val, filter_size, | |||
| filter_sigma, k1, k2); | |||
| return math_ops.reduce_mean(ssim_per_channel, new int[] { -1 }); | |||
| return math_ops.reduce_mean(ssim_per_channel, new(-1)); | |||
| }); | |||
| } | |||
| @@ -1645,9 +1645,9 @@ new_height, new_width"); | |||
| var mcs_and_ssim = array_ops.stack( | |||
| math_ops.add(mcs, new[] { gen_nn_ops.relu(ssim_per_channel) }), axis: -1); | |||
| var ms_ssim = math_ops.reduce_prod( | |||
| math_ops.pow(mcs_and_ssim, power_factors), new int[] { -1 }); | |||
| math_ops.pow(mcs_and_ssim, power_factors), new(-1)); | |||
| return math_ops.reduce_mean(ms_ssim, new int[] { -1 }); | |||
| return math_ops.reduce_mean(ms_ssim, new(-1)); | |||
| }); | |||
| } | |||
| @@ -1830,7 +1830,7 @@ new_height, new_width"); | |||
| new object[] { batch_size, tile_size, 4 }); | |||
| var iou = _bbox_overlap(new_slice, box_slice); | |||
| var box_slice_after_suppression = array_ops.expand_dims( | |||
| math_ops.cast(math_ops.reduce_all(iou < iou_threshold, new int[] { 1 }), | |||
| math_ops.cast(math_ops.reduce_all(iou < iou_threshold, new(1)), | |||
| box_slice.dtype), | |||
| 2) * box_slice; | |||
| return (boxes, box_slice_after_suppression, iou_threshold, inner_idx + 1); | |||
| @@ -1913,7 +1913,7 @@ new_height, new_width"); | |||
| output_size = output_size + math_ops.reduce_sum( | |||
| math_ops.cast( | |||
| math_ops.reduce_any(box_slice > 0, new int[] { 2 }), dtypes.int32), new int[] { 1 }); | |||
| math_ops.reduce_any(box_slice > 0, new(2)), dtypes.int32), new int[] { 1 }); | |||
| } | |||
| return (boxes, iou_threshold, output_size, idx + 1); | |||
| } | |||
| @@ -2074,7 +2074,7 @@ new_height, new_width"); | |||
| (Tensor values, Tensor indices) = gen_ops.top_k_v2( | |||
| math_ops.cast(math_ops.reduce_any( | |||
| (Tensor)selboxes__output_size_[0] > 0, new int[] { 2 }), dtypes.int32) * | |||
| (Tensor)selboxes__output_size_[0] > 0, new(2)), dtypes.int32) * | |||
| array_ops.expand_dims( | |||
| math_ops.range(num_boxes_after_padding, 0, -1), 0), | |||
| max_output_size); | |||
| @@ -305,7 +305,7 @@ namespace Tensorflow | |||
| /// dimensions.Must be in the range `[-rank(input_tensor), rank(input_tensor))`.</param> | |||
| /// <param name="keepdims"> If true, retains reduced dimensions with length 1.</param> | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| public static Tensor reduce_mean(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| public static Tensor reduce_mean(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| { | |||
| var r = _ReductionDims(input_tensor, axis); | |||
| var axis_tensor = axis == null ? r : ops.convert_to_tensor(axis); | |||
| @@ -313,14 +313,6 @@ namespace Tensorflow | |||
| return _may_reduce_to_scalar(keepdims, axis_tensor, m); | |||
| } | |||
| public static Tensor reduce_mean(Tensor[] input_tensors, int? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| var r = _ReductionDims(input_tensors, axis); | |||
| var axis_tensor = axis == null ? r : ops.convert_to_tensor(axis.Value); | |||
| var m = gen_math_ops.mean(input_tensors, axis_tensor, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis, m); | |||
| } | |||
| /// <summary> | |||
| /// Computes the product of elements across dimensions of a tensor. | |||
| /// </summary> | |||
| @@ -329,7 +321,7 @@ namespace Tensorflow | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor reduce_prod(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_prod(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| var r = _ReductionDims(input_tensor, axis); | |||
| if (axis == null) | |||
| @@ -344,7 +336,7 @@ namespace Tensorflow | |||
| } | |||
| } | |||
| public static Tensor reduce_std(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_std(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| if (name == null) | |||
| name = "reduce_std"; | |||
| @@ -357,7 +349,7 @@ namespace Tensorflow | |||
| }); | |||
| } | |||
| public static Tensor reduce_variance(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_variance(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| if (name == null) | |||
| name = "reduce_variance"; | |||
| @@ -513,7 +505,7 @@ namespace Tensorflow | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor reduce_all(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_all(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| var all = gen_math_ops._all(input_tensor, | |||
| _ReductionDims(input_tensor, axis), | |||
| @@ -545,7 +537,7 @@ namespace Tensorflow | |||
| /// dimensions.Must be in the range `[-rank(input_tensor), rank(input_tensor))`.</param> | |||
| /// <param name="keepdims"></param> | |||
| /// <returns> The reduced tensor.</returns> | |||
| public static Tensor reduce_logsumexp(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_logsumexp(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "ReduceLogSumExp", new { input_tensor }), scope => | |||
| { | |||
| @@ -565,7 +557,7 @@ namespace Tensorflow | |||
| }); | |||
| } | |||
| public static Tensor reduce_any(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_any(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| var r = _ReductionDims(input_tensor, axis); | |||
| var max = (axis != null) ? gen_math_ops._any(input_tensor, axis, keepdims, name) : | |||
| @@ -573,7 +565,7 @@ namespace Tensorflow | |||
| return _may_reduce_to_scalar(keepdims, axis, max); | |||
| } | |||
| public static Tensor reduce_max(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_max(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| var r = _ReductionDims(input_tensor, axis); | |||
| var max = (axis != null) ? gen_math_ops._max(input_tensor, axis, keepdims, name) : | |||
| @@ -588,7 +580,7 @@ namespace Tensorflow | |||
| return _may_reduce_to_scalar(keepdims, axis, max); | |||
| } | |||
| public static Tensor reduce_min(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public static Tensor reduce_min(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| var r = _ReductionDims(input_tensor, axis); | |||
| var min = gen_math_ops._min(input_tensor, r, keepdims, name); | |||
| @@ -711,7 +703,7 @@ namespace Tensorflow | |||
| return range(0, array_ops.rank(x)); | |||
| } | |||
| private static Tensor _ReductionDims(Tensor x, int[] axis) | |||
| private static Tensor _ReductionDims(Tensor x, Axis? axis) | |||
| { | |||
| if (axis != null) | |||
| { | |||
| @@ -79,7 +79,7 @@ namespace Tensorflow | |||
| /// <param name="keep_dims"> Produce moments with the same dimensionality as the input.</param> | |||
| /// <returns> Two `Tensor` objects: `mean` and `variance`.</returns> | |||
| public static (Tensor, Tensor) moments(Tensor x, | |||
| int[] axes, | |||
| Axis axes, | |||
| string name = null, | |||
| bool keep_dims = false) | |||
| { | |||
| @@ -7,6 +7,7 @@ | |||
| <TargetTensorFlow>2.2.0</TargetTensorFlow> | |||
| <Version>0.60.0</Version> | |||
| <LangVersion>9.0</LangVersion> | |||
| <Nullable>enable</Nullable> | |||
| <Authors>Haiping Chen, Meinrad Recheis, Eli Belash</Authors> | |||
| <Company>SciSharp STACK</Company> | |||
| <GeneratePackageOnBuild>true</GeneratePackageOnBuild> | |||
| @@ -156,6 +156,8 @@ namespace Tensorflow | |||
| Tensor[] tensors => array_ops._autopacking_helper(tensors, dtype, name == null ? "packed" : name), | |||
| RefVariable varVal => varVal._TensorConversionFunction(dtype: dtype, name: name, as_ref: as_ref), | |||
| ResourceVariable varVal => varVal._TensorConversionFunction(dtype: dtype, name: name, as_ref: as_ref), | |||
| Axis ts => constant_op.constant(ts.axis, dtype: dtype, name: name), | |||
| Shape ts => constant_op.constant(ts.dims, dtype: dtype, name: name), | |||
| TensorShape ts => constant_op.constant(ts.dims, dtype: dtype, name: name), | |||
| string str => constant_op.constant(str, dtype: tf.@string, name: name), | |||
| string[] str => constant_op.constant(str, dtype: tf.@string, name: name), | |||
| @@ -142,7 +142,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| if (x.dtype.as_base_dtype() == TF_DataType.TF_BOOL) | |||
| x = math_ops.cast(x, TF_DataType.TF_FLOAT); | |||
| return math_ops.reduce_mean(x, axis: new[] { axis }, keepdims: false); | |||
| return math_ops.reduce_mean(x, axis: axis, keepdims: false); | |||
| } | |||
| public GraphLearningPhase learning_phase() | |||
| @@ -15,9 +15,9 @@ namespace Tensorflow.Keras.Layers | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_mean(inputs, new int[] { 1 }, false); | |||
| return math_ops.reduce_mean(inputs, 1, false); | |||
| else | |||
| return math_ops.reduce_mean(inputs, new int[] { 2 }, false); | |||
| return math_ops.reduce_mean(inputs, 2, false); | |||
| } | |||
| } | |||
| } | |||
| @@ -15,9 +15,9 @@ namespace Tensorflow.Keras.Layers | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_mean(inputs, new int[] { 1, 2 }, false); | |||
| return math_ops.reduce_mean(inputs, (1, 2), false); | |||
| else | |||
| return math_ops.reduce_mean(inputs, new int[] { 2, 3 }, false); | |||
| return math_ops.reduce_mean(inputs, (2, 3), false); | |||
| } | |||
| } | |||
| } | |||
| @@ -15,9 +15,9 @@ namespace Tensorflow.Keras.Layers | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_max(inputs, new int[] { 1 }, false); | |||
| return math_ops.reduce_max(inputs, 1, false); | |||
| else | |||
| return math_ops.reduce_max(inputs, new int[] { 2 }, false); | |||
| return math_ops.reduce_max(inputs, 2, false); | |||
| } | |||
| } | |||
| } | |||
| @@ -15,9 +15,9 @@ namespace Tensorflow.Keras.Layers | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_max(inputs, new int[] { 1, 2 }, false); | |||
| return math_ops.reduce_max(inputs, (1, 2), false); | |||
| else | |||
| return math_ops.reduce_max(inputs, new int[] { 2, 3 }, false); | |||
| return math_ops.reduce_max(inputs, (2, 3), false); | |||
| } | |||
| } | |||
| } | |||
| @@ -3,7 +3,8 @@ | |||
| <PropertyGroup> | |||
| <TargetFramework>netstandard2.1</TargetFramework> | |||
| <AssemblyName>Tensorflow.Keras</AssemblyName> | |||
| <LangVersion>8.0</LangVersion> | |||
| <LangVersion>9.0</LangVersion> | |||
| <Nullable>enable</Nullable> | |||
| <RootNamespace>Tensorflow.Keras</RootNamespace> | |||
| <Platforms>AnyCPU;x64</Platforms> | |||
| <Version>0.6.0</Version> | |||
| @@ -3,6 +3,7 @@ using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using Tensorflow; | |||
| using Tensorflow.NumPy; | |||
| namespace TensorFlowNET.UnitTest.Numpy | |||
| @@ -21,6 +22,10 @@ namespace TensorFlowNET.UnitTest.Numpy | |||
| p = np.prod(new[,] { { 1.0, 2.0 }, { 3.0, 4.0 } }); | |||
| Assert.AreEqual(p, 24.0); | |||
| p = np.prod(new[,] { { 1.0, 2.0 }, { 3.0, 4.0 } }, axis: 1); | |||
| Assert.AreEqual(p.shape, 2); | |||
| Assert.IsTrue(Equal(p.Data<double>(), new[] { 2.0, 12.0 })); | |||
| } | |||
| } | |||
| } | |||
| @@ -11,7 +11,7 @@ | |||
| <AssemblyOriginatorKeyFile>Open.snk</AssemblyOriginatorKeyFile> | |||
| <LangVersion>8.0</LangVersion> | |||
| <LangVersion>9.0</LangVersion> | |||
| <Platforms>AnyCPU;x64</Platforms> | |||
| </PropertyGroup> | |||
| @@ -6,6 +6,7 @@ using System; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using System.Runtime.CompilerServices; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -108,43 +109,18 @@ namespace TensorFlowNET.UnitTest | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> BeSliced() | |||
| { | |||
| Subject.IsSliced.Should().BeTrue(); | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> BeScalar() | |||
| { | |||
| Subject.IsScalar.Should().BeTrue(); | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> BeBroadcasted() | |||
| { | |||
| Subject.IsBroadcasted.Should().BeTrue(); | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> NotBeSliced() | |||
| { | |||
| Subject.IsSliced.Should().BeFalse(); | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> NotBeScalar() | |||
| { | |||
| Subject.IsScalar.Should().BeFalse(); | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> NotBeBroadcasted() | |||
| { | |||
| Subject.IsBroadcasted.Should().BeFalse(); | |||
| return new AndConstraint<ShapeAssertions>(this); | |||
| } | |||
| public AndConstraint<ShapeAssertions> BeNDim(int ndim) | |||
| { | |||
| Subject.dims.Length.Should().Be(ndim); | |||
| @@ -215,24 +191,6 @@ namespace TensorFlowNET.UnitTest | |||
| return new AndConstraint<NDArrayAssertions>(this); | |||
| } | |||
| public AndConstraint<NDArrayAssertions> BeBroadcasted() | |||
| { | |||
| Subject.shape.IsBroadcasted.Should().BeTrue(); | |||
| return new AndConstraint<NDArrayAssertions>(this); | |||
| } | |||
| public AndConstraint<NDArrayAssertions> NotBeBroadcasted() | |||
| { | |||
| Subject.shape.IsBroadcasted.Should().BeFalse(); | |||
| return new AndConstraint<NDArrayAssertions>(this); | |||
| } | |||
| public AndConstraint<NDArrayAssertions> BeSliced() | |||
| { | |||
| Subject.shape.IsSliced.Should().BeTrue(); | |||
| return new AndConstraint<NDArrayAssertions>(this); | |||
| } | |||
| public AndConstraint<NDArrayAssertions> BeScalar() | |||
| { | |||
| Subject.shape.IsScalar.Should().BeTrue(); | |||
| @@ -264,12 +222,6 @@ namespace TensorFlowNET.UnitTest | |||
| return new AndConstraint<NDArrayAssertions>(this); | |||
| } | |||
| public AndConstraint<NDArrayAssertions> NotBeSliced() | |||
| { | |||
| Subject.shape.IsSliced.Should().BeFalse(); | |||
| return new AndConstraint<NDArrayAssertions>(this); | |||
| } | |||
| public AndConstraint<NDArrayAssertions> NotBeScalar() | |||
| { | |||
| Subject.shape.IsScalar.Should().BeFalse(); | |||