Metrics and loss methods skeletonizedtags/v0.20
| @@ -11,6 +11,8 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "UnitTest", "test\TensorFlow | |||
| EndProject | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Keras", "src\TensorFlowNET.Keras\Tensorflow.Keras.csproj", "{6268B461-486A-460B-9B3C-86493CBBAAF7}" | |||
| EndProject | |||
| Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Tensorflow.Keras.UnitTest", "test\Tensorflow.Keras.UnitTest\Tensorflow.Keras.UnitTest.csproj", "{EB92DD90-6346-41FB-B967-2B33A860AD98}" | |||
| EndProject | |||
| Global | |||
| GlobalSection(SolutionConfigurationPlatforms) = preSolution | |||
| Debug|Any CPU = Debug|Any CPU | |||
| @@ -51,6 +53,14 @@ Global | |||
| {6268B461-486A-460B-9B3C-86493CBBAAF7}.Release|Any CPU.Build.0 = Release|Any CPU | |||
| {6268B461-486A-460B-9B3C-86493CBBAAF7}.Release|x64.ActiveCfg = Release|Any CPU | |||
| {6268B461-486A-460B-9B3C-86493CBBAAF7}.Release|x64.Build.0 = Release|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|Any CPU.ActiveCfg = Debug|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|x64.ActiveCfg = Debug|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|x64.Build.0 = Debug|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|Any CPU.Build.0 = Release|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|x64.ActiveCfg = Release|Any CPU | |||
| {EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|x64.Build.0 = Release|Any CPU | |||
| EndGlobalSection | |||
| GlobalSection(SolutionProperties) = preSolution | |||
| HideSolutionNode = FALSE | |||
| @@ -0,0 +1,29 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Args | |||
| { | |||
| private List<object> args = new List<object>(); | |||
| public object this[int index] | |||
| { | |||
| get | |||
| { | |||
| return args.Count < index ? args[index] : null; | |||
| } | |||
| } | |||
| public T Get<T>(int index) | |||
| { | |||
| return args.Count < index ? (T)args[index] : default(T); | |||
| } | |||
| public void Add<T>(T arg) | |||
| { | |||
| args.Add(arg); | |||
| } | |||
| } | |||
| } | |||
| @@ -20,7 +20,7 @@ namespace Tensorflow.Keras.Engine | |||
| } | |||
| public void enter(Layer layer, Tensor[] inputs, Graph build_graph, bool training, Saving saving = null) => throw new NotImplementedException(); | |||
| public void enter(Layer layer, Tensor[] inputs, Graph build_graph, bool training) => throw new NotImplementedException(); | |||
| public bool training_arg_passed_to_call(string[] argspec, Dictionary<string, object> args, Dictionary<string, object> kwargs) => throw new NotImplementedException(); | |||
| @@ -4,7 +4,7 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| class Node | |||
| public class Node | |||
| { | |||
| } | |||
| } | |||
| @@ -1,10 +0,0 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| public class Saving | |||
| { | |||
| } | |||
| } | |||
| @@ -4,7 +4,8 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| class Sequential | |||
| public class Sequential | |||
| { | |||
| } | |||
| } | |||
| @@ -0,0 +1,43 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class KwArgs | |||
| { | |||
| private Dictionary<string, object> args = new Dictionary<string, object>(); | |||
| public object this[string name] | |||
| { | |||
| get | |||
| { | |||
| return args.ContainsKey(name) ? args[name] : null; | |||
| } | |||
| set | |||
| { | |||
| args[name] = value; | |||
| } | |||
| } | |||
| public T Get<T>(string name) | |||
| { | |||
| if (!args.ContainsKey(name)) | |||
| return default(T); | |||
| return (T)args[name]; | |||
| } | |||
| public static explicit operator KwArgs(ValueTuple<string, object>[] p) | |||
| { | |||
| KwArgs kwArgs = new KwArgs(); | |||
| kwArgs.args = new Dictionary<string, object>(); | |||
| foreach (var item in p) | |||
| { | |||
| kwArgs.args[item.Item1] = item.Item2; | |||
| } | |||
| return kwArgs; | |||
| } | |||
| } | |||
| } | |||
| @@ -6,5 +6,36 @@ namespace Tensorflow.Keras.Losses | |||
| { | |||
| public abstract class Loss | |||
| { | |||
| public static Tensor mean_squared_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor mean_absolute_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor mean_absolute_percentage_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor mean_squared_logarithmic_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor _maybe_convert_labels(Tensor y_true) => throw new NotImplementedException(); | |||
| public static Tensor squared_hinge(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor hinge(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor categorical_hinge(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor huber_loss(Tensor y_true, Tensor y_pred, float delta = 1) => throw new NotImplementedException(); | |||
| public static Tensor logcosh(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float label_smoothing = 0) => throw new NotImplementedException(); | |||
| public static Tensor sparse_categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float axis = -1) => throw new NotImplementedException(); | |||
| public static Tensor binary_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float label_smoothing = 0) => throw new NotImplementedException(); | |||
| public static Tensor kullback_leibler_divergence(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor poisson(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor cosine_similarity(Tensor y_true, Tensor y_pred, int axis = -1) => throw new NotImplementedException(); | |||
| } | |||
| } | |||
| @@ -1,10 +1,41 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class AUC | |||
| public class AUC : Metric | |||
| { | |||
| public AUC(int num_thresholds= 200, string curve= "ROC", string summation_method= "interpolation", | |||
| string name= null, string dtype= null, float thresholds= 0.5f, | |||
| bool multi_label= false, Tensor label_weights= null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| private void _build(TensorShape shape) => throw new NotImplementedException(); | |||
| public Tensor interpolate_pr_auc() => throw new NotImplementedException(); | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Accuracy | |||
| public class Accuracy : MeanMetricWrapper | |||
| { | |||
| public Accuracy(string name = "accuracy", string dtype = null) | |||
| : base(Metric.accuracy, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,16 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class BinaryAccuracy | |||
| public class BinaryAccuracy : MeanMetricWrapper | |||
| { | |||
| public BinaryAccuracy(string name = "binary_accuracy", string dtype = null, float threshold = 0.5f) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Metric.binary_accuracy(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,16 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class BinaryCrossentropy | |||
| public class BinaryCrossentropy : MeanMetricWrapper | |||
| { | |||
| public BinaryCrossentropy(string name = "binary_crossentropy", string dtype = null, bool from_logits = false, float label_smoothing = 0) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Losses.Loss.binary_crossentropy(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class CategoricalAccuracy | |||
| public class CategoricalAccuracy : MeanMetricWrapper | |||
| { | |||
| public CategoricalAccuracy(string name = "categorical_accuracy", string dtype = null) | |||
| : base(Metric.categorical_accuracy, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,16 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class CategoricalCrossentropy | |||
| public class CategoricalCrossentropy : MeanMetricWrapper | |||
| { | |||
| public CategoricalCrossentropy(string name = "categorical_crossentropy", string dtype = null, bool from_logits = false, float label_smoothing = 0) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Losses.Loss.categorical_crossentropy(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class CategoricalHinge | |||
| public class CategoricalHinge : MeanMetricWrapper | |||
| { | |||
| public CategoricalHinge(string name = "categorical_hinge", string dtype = null) | |||
| : base(Losses.Loss.categorical_hinge, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,16 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class CosineSimilarity | |||
| public class CosineSimilarity : MeanMetricWrapper | |||
| { | |||
| public CosineSimilarity(string name = "cosine_similarity", string dtype = null, int axis = -1) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Metric.cosine_proximity(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class FalseNegatives | |||
| public class FalseNegatives : _ConfusionMatrixConditionCount | |||
| { | |||
| public FalseNegatives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
| : base(Utils.MetricsUtils.ConfusionMatrix.FALSE_NEGATIVES, thresholds, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class FalsePositives | |||
| public class FalsePositives : _ConfusionMatrixConditionCount | |||
| { | |||
| public FalsePositives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
| : base(Utils.MetricsUtils.ConfusionMatrix.FALSE_POSITIVES, thresholds, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Hinge | |||
| public class Hinge : MeanMetricWrapper | |||
| { | |||
| public Hinge(string name = "hinge", string dtype = null) | |||
| : base(Losses.Loss.hinge, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class KLDivergence | |||
| public class KLDivergence : MeanMetricWrapper | |||
| { | |||
| public KLDivergence(string name = "kullback_leibler_divergence", string dtype = null) | |||
| : base(Losses.Loss.logcosh, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class LogCoshError | |||
| public class LogCoshError : MeanMetricWrapper | |||
| { | |||
| public LogCoshError(string name = "logcosh", string dtype = null) | |||
| : base(Losses.Loss.logcosh, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,12 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Mean | |||
| public class Mean : Reduce | |||
| { | |||
| public Mean(string name, string dtype = null) | |||
| : base(Reduction.MEAN, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanAbsoluteError | |||
| public class MeanAbsoluteError : MeanMetricWrapper | |||
| { | |||
| public MeanAbsoluteError(string name = "mean_absolute_error", string dtype = null) | |||
| : base(Losses.Loss.mean_absolute_error, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanAbsolutePercentageError | |||
| public class MeanAbsolutePercentageError : MeanMetricWrapper | |||
| { | |||
| public MeanAbsolutePercentageError(string name = "mean_absolute_percentage_error", string dtype = null) | |||
| : base(Losses.Loss.mean_absolute_percentage_error, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,34 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanIoU | |||
| public class MeanIoU : Metric | |||
| { | |||
| public MeanIoU(int num_classes, string name, string dtype) : base(name, dtype) | |||
| { | |||
| } | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanMetricWrapper | |||
| public class MeanMetricWrapper : Mean | |||
| { | |||
| public MeanMetricWrapper(Func<Tensor, Tensor, Tensor> fn, string name, string dtype = null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,30 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanRelativeError | |||
| public class MeanRelativeError : Metric | |||
| { | |||
| public MeanRelativeError(Tensor normalizer, string name, string dtype) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanSquaredError | |||
| public class MeanSquaredError : MeanMetricWrapper | |||
| { | |||
| public MeanSquaredError(string name = "mean_squared_error", string dtype = null) | |||
| : base(Losses.Loss.mean_squared_error, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanSquaredLogarithmicError | |||
| public class MeanSquaredLogarithmicError : MeanMetricWrapper | |||
| { | |||
| public MeanSquaredLogarithmicError(string name = "mean_squared_logarithmic_error", string dtype = null) | |||
| : base(Losses.Loss.mean_squared_logarithmic_error, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,44 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class MeanTensor | |||
| public class MeanTensor : Metric | |||
| { | |||
| public int total | |||
| { | |||
| get | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| public int count | |||
| { | |||
| get | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| public MeanTensor(int num_classes, string name = "mean_tensor", string dtype = null) : base(name, dtype) | |||
| { | |||
| } | |||
| private void _build(TensorShape shape) => throw new NotImplementedException(); | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,63 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| public abstract class Metric | |||
| public abstract class Metric : Layers.Layer | |||
| { | |||
| public string dtype | |||
| { | |||
| get | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| public Metric(string name, string dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public void __new__ (Metric cls, Args args, KwArgs kwargs) => throw new NotImplementedException(); | |||
| public Tensor __call__(Metric cls, Args args, KwArgs kwargs) => throw new NotImplementedException(); | |||
| public virtual Hashtable get_config() => throw new NotImplementedException(); | |||
| public virtual void reset_states() => throw new NotImplementedException(); | |||
| public abstract void update_state(Args args, KwArgs kwargs); | |||
| public abstract Tensor result(); | |||
| public void add_weight(string name, TensorShape shape= null, VariableAggregation aggregation= VariableAggregation.Sum, | |||
| VariableSynchronization synchronization = VariableSynchronization.OnRead, Initializers.Initializer initializer= null, | |||
| string dtype= null) => throw new NotImplementedException(); | |||
| public static Tensor accuracy(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor binary_accuracy(Tensor y_true, Tensor y_pred, float threshold = 0.5f) => throw new NotImplementedException(); | |||
| public static Tensor categorical_accuracy(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor sparse_categorical_accuracy(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
| public static Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5) => throw new NotImplementedException(); | |||
| public static Tensor sparse_top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5) => throw new NotImplementedException(); | |||
| public static Tensor cosine_proximity(Tensor y_true, Tensor y_pred, int axis = -1) => throw new NotImplementedException(); | |||
| public static Metric clone_metric(Metric metric) => throw new NotImplementedException(); | |||
| public static Metric[] clone_metrics(Metric[] metric) => throw new NotImplementedException(); | |||
| public static string serialize(Metric metric) => throw new NotImplementedException(); | |||
| public static Metric deserialize(string config, object custom_objects = null) => throw new NotImplementedException(); | |||
| public static Metric get(object identifier) => throw new NotImplementedException(); | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Poisson | |||
| public class Poisson : MeanMetricWrapper | |||
| { | |||
| public Poisson(string name = "logcosh", string dtype = null) | |||
| : base(Losses.Loss.logcosh, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,41 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Precision | |||
| public class Precision : Metric | |||
| { | |||
| public Precision(float? thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public Precision(float[] thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class PrecisionAtRecall | |||
| public class PrecisionAtRecall : SensitivitySpecificityBase | |||
| { | |||
| public PrecisionAtRecall(float recall, int num_thresholds = 200, string name = null, string dtype = null) : base(recall, num_thresholds, name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,41 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Recall | |||
| public class Recall : Metric | |||
| { | |||
| public Recall(float? thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public Recall(float[] thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,22 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Reduce | |||
| public class Reduce : Metric | |||
| { | |||
| public Reduce(string reduction, string name, string dtype= null) | |||
| : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class RootMeanSquaredError | |||
| public class RootMeanSquaredError : Mean | |||
| { | |||
| public RootMeanSquaredError(string name = "root_mean_squared_error", string dtype = null) | |||
| : base(name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SensitivityAtSpecificity | |||
| public class SensitivityAtSpecificity : SensitivitySpecificityBase | |||
| { | |||
| public SensitivityAtSpecificity(float specificity, int num_thresholds = 200, string name = null, string dtype = null) : base(specificity, num_thresholds, name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,26 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SensitivitySpecificityBase | |||
| public class SensitivitySpecificityBase : Metric | |||
| { | |||
| public SensitivitySpecificityBase(float value, int num_thresholds= 200, string name = null, string dtype = null) : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,12 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SparseCategoricalAccuracy | |||
| public class SparseCategoricalAccuracy : MeanMetricWrapper | |||
| { | |||
| public SparseCategoricalAccuracy(string name = "sparse_categorical_accuracy", string dtype = null) | |||
| : base(Metric.sparse_categorical_accuracy, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,16 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SparseCategoricalCrossentropy | |||
| public class SparseCategoricalCrossentropy : MeanMetricWrapper | |||
| { | |||
| public SparseCategoricalCrossentropy(string name = "sparse_categorical_crossentropy", string dtype = null, bool from_logits = false, int axis = -1) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Losses.Loss.sparse_categorical_crossentropy(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,17 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SparseTopKCategoricalAccuracy | |||
| public class SparseTopKCategoricalAccuracy : MeanMetricWrapper | |||
| { | |||
| public SparseTopKCategoricalAccuracy(int k = 5, string name = "sparse_top_k_categorical_accuracy", string dtype = null) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Metric.sparse_top_k_categorical_accuracy(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SquaredHinge | |||
| public class SquaredHinge : MeanMetricWrapper | |||
| { | |||
| public SquaredHinge(string name = "squared_hinge", string dtype = null) | |||
| : base(Losses.Loss.squared_hinge, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class Sum | |||
| public class Sum : Reduce | |||
| { | |||
| public Sum(string name, string dtype = null) | |||
| : base(Reduction.SUM, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,10 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SumOverBatchSize | |||
| public class SumOverBatchSize : Reduce | |||
| { | |||
| public SumOverBatchSize(string name = "sum_over_batch_size", string dtype = null) : base(Reduction.SUM_OVER_BATCH_SIZE, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class SumOverBatchSizeMetricWrapper | |||
| public class SumOverBatchSizeMetricWrapper : SumOverBatchSize | |||
| { | |||
| public SumOverBatchSizeMetricWrapper(Func<Tensor, Tensor, Tensor> fn, string name, string dtype = null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,16 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class TopKCategoricalAccuracy | |||
| public class TopKCategoricalAccuracy : MeanMetricWrapper | |||
| { | |||
| public TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", string dtype = null) | |||
| : base(Fn, name, dtype) | |||
| { | |||
| } | |||
| internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
| { | |||
| return Metric.top_k_categorical_accuracy(y_true, y_pred); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class TrueNegatives | |||
| public class TrueNegatives : _ConfusionMatrixConditionCount | |||
| { | |||
| public TrueNegatives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
| : base(Utils.MetricsUtils.ConfusionMatrix.TRUE_NEGATIVES, thresholds, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,11 @@ using System.Text; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class TruePositives | |||
| public class TruePositives : _ConfusionMatrixConditionCount | |||
| { | |||
| public TruePositives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
| : base(Utils.MetricsUtils.ConfusionMatrix.TRUE_POSITIVES, thresholds, name, dtype) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,37 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Keras.Utils.MetricsUtils; | |||
| namespace Tensorflow.Keras.Metrics | |||
| { | |||
| class _ConfusionMatrixConditionCount | |||
| public class _ConfusionMatrixConditionCount : Metric | |||
| { | |||
| public _ConfusionMatrixConditionCount(string confusion_matrix_cond, float thresholds= 0.5f, string name= null, string dtype= null) | |||
| : base(name, dtype) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor result() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void update_state(Args args, KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override void reset_states() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,14 +1,42 @@ | |||
| using System; | |||
| using Keras.Layers; | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| class Models | |||
| { | |||
| public class Model : Keras.Engine.Training.Model | |||
| { | |||
| public class Model : Keras.Engine.Training.Model{} | |||
| } | |||
| public static Layer share_weights(Layer layer) => throw new NotImplementedException(); | |||
| private static Layer _clone_layer(Layer layer) => throw new NotImplementedException(); | |||
| private static Layer _insert_ancillary_layers(Model model, Layer ancillary_layers, string[] metrics_names, Node[] new_nodes) => throw new NotImplementedException(); | |||
| private static Node[] _make_new_nodes(Node[] nodes_by_depth, Func<Layer, Layer> layer_fn, Hashtable layer_map, Hashtable tensor_map) => throw new NotImplementedException(); | |||
| private static Model _clone_functional_model(Model model, Tensor[] input_tensors = null, Func<Layer, Layer> layer_fn = null) => throw new NotImplementedException(); | |||
| private static (Hashtable, Layer[]) _clone_layers_and_model_config(Model model, Layer[] input_layers, Func<Layer, Layer> layer_fn) => throw new NotImplementedException(); | |||
| private static (Layer[], Layer[]) _remove_ancillary_layers(Model model, Hashtable layer_map, Layer[] layers) => throw new NotImplementedException(); | |||
| private static Sequential _clone_sequential_model(Model model, Tensor[] input_tensors = null, Func<Layer, Layer> layer_fn = null) => throw new NotImplementedException(); | |||
| public static Model clone_model(Model model, Tensor[] input_tensors = null, Func<Layer, Layer> layer_fn = null) => throw new NotImplementedException(); | |||
| private static void _in_place_subclassed_model_reset(Model model) => throw new NotImplementedException(); | |||
| private static void _reset_build_compile_trackers(Model model) => throw new NotImplementedException(); | |||
| public static void in_place_subclassed_model_state_restoration(Model model) => throw new NotImplementedException(); | |||
| public static void clone_and_build_model(Model model, Tensor[] input_tensors= null, Tensor[] target_tensors= null, object custom_objects= null, | |||
| bool compile_clone= true, bool in_place_reset= false, VariableV1 optimizer_iterations= null, Hashtable optimizer_config= null) | |||
| => throw new NotImplementedException(); | |||
| } | |||
| } | |||
| @@ -1,10 +0,0 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| class Ops | |||
| { | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Adadelta : Optimizer | |||
| { | |||
| public Adadelta(float lr= 0.01f, float rho = 0.95f, float? epsilon = null, float decay = 0) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Adagrad : Optimizer | |||
| { | |||
| public Adagrad(float lr= 0.01f, float? epsilon = null, float decay = 0) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Adam : Optimizer | |||
| { | |||
| public Adam(float lr= 0.001f, float beta_1 = 0.9f, float beta_2 = 0.99f, float? epsilon = null, float decay = 0) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Adamax : Optimizer | |||
| { | |||
| public Adamax(float lr = 0.002f, float beta_1 = 0.9f, float beta_2 = 0.999f, float? epsilon = null, float decay = 0) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Nadam : Optimizer | |||
| { | |||
| public Nadam(float lr = 0.002f, float beta_1 = 0.9f, float beta_2 = 0.999f, float? epsilon = null, float schedule_decay = 0.004f) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,36 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class Optimizer | |||
| { | |||
| public Optimizer(KwArgs kwargs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public virtual Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| return null; | |||
| } | |||
| public virtual Tensor[] get_gradients(Tensor loss, variables @params) => throw new NotImplementedException(); | |||
| public virtual void set_weights(NDArray[] weights) => throw new NotImplementedException(); | |||
| public virtual NDArray[] get_weights() => throw new NotImplementedException(); | |||
| public virtual Hashtable get_config() => throw new NotImplementedException(); | |||
| public static string serialize(Optimizer optimizer) => throw new NotImplementedException(); | |||
| public static Optimizer deserialize(string config, object custom_objects = null) => throw new NotImplementedException(); | |||
| public static Optimizer get(object identifier) => throw new NotImplementedException(); | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class RMSprop : Optimizer | |||
| { | |||
| public RMSprop(float lr= 0.01f, float rho = 0f, float? epsilon = null, float decay = 0) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class SGD : Optimizer | |||
| { | |||
| public SGD(float lr= 0.01f, float momentum= 0, float decay= 0, bool nesterov= false) : base(null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Tensor[] get_updates(Tensor loss, variables @params) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,7 +4,7 @@ using System.Text; | |||
| namespace Tensorflow.Keras.OptimizersV2 | |||
| { | |||
| class BaseOptimizerV2 | |||
| class OptimizerV2 | |||
| { | |||
| } | |||
| } | |||
| @@ -1,10 +1,25 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Regularizers | |||
| { | |||
| class L1L2 | |||
| public class L1L2 : Regularizer | |||
| { | |||
| public L1L2(float l1 = 0f, float l2 = 0f) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override float call(Tensor x) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public override Hashtable get_config() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,10 +1,40 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Regularizers | |||
| { | |||
| public class Regularizer | |||
| public abstract class Regularizer | |||
| { | |||
| public virtual float call(Tensor x) | |||
| { | |||
| return 0f; | |||
| } | |||
| public static Regularizer from_config(Hashtable hashtable) => throw new NotImplementedException(); | |||
| public virtual Hashtable get_config() => throw new NotImplementedException(); | |||
| public static Regularizer l1(float l = 0.01f) | |||
| { | |||
| return new L1L2(l1: l); | |||
| } | |||
| public static Regularizer l2(float l = 0.01f) | |||
| { | |||
| return new L1L2(l2: l); | |||
| } | |||
| public static Regularizer l1_l2(float l1 = 0.01f, float l2 = 0.01f) | |||
| { | |||
| return new L1L2(l1, l2); | |||
| } | |||
| public static string serialize(Regularizer regularizer) => throw new NotImplementedException(); | |||
| public static string deserialize(string config, dynamic custom_objects = null) => throw new NotImplementedException(); | |||
| public static Regularizer get(object identifier) => throw new NotImplementedException(); | |||
| } | |||
| } | |||
| @@ -1,10 +1,60 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Reflection; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Utils | |||
| { | |||
| class MetricsUtils | |||
| public class MetricsUtils | |||
| { | |||
| public static class Reduction | |||
| { | |||
| public const string SUM = "sum"; | |||
| public const string SUM_OVER_BATCH_SIZE = "sum_over_batch_size"; | |||
| public const string WEIGHTED_MEAN = "weighted_mean"; | |||
| } | |||
| public static class ConfusionMatrix | |||
| { | |||
| public const string TRUE_POSITIVES = "tp"; | |||
| public const string FALSE_POSITIVES = "fp"; | |||
| public const string TRUE_NEGATIVES = "tn"; | |||
| public const string FALSE_NEGATIVES = "fn"; | |||
| } | |||
| public static class AUCCurve | |||
| { | |||
| public const string ROC = "ROC"; | |||
| public const string PR = "PR"; | |||
| public static string from_str(string key) => throw new NotImplementedException(); | |||
| } | |||
| public static class AUCSummationMethod | |||
| { | |||
| public const string INTERPOLATION = "interpolation"; | |||
| public const string MAJORING = "majoring"; | |||
| public const string MINORING = "minoring"; | |||
| public static string from_str(string key) => throw new NotImplementedException(); | |||
| } | |||
| public static dynamic update_state_wrapper(Func<Args, KwArgs, Func<bool>> update_state_fn) => throw new NotImplementedException(); | |||
| public static dynamic result_wrapper(Func<Args, Tensor> result_fn) => throw new NotImplementedException(); | |||
| public static WeakReference weakmethod(MethodInfo method) => throw new NotImplementedException(); | |||
| public static void assert_thresholds_range(float[] thresholds) => throw new NotImplementedException(); | |||
| public static void parse_init_thresholds(float[] thresholds, float default_threshold = 0.5f) => throw new NotImplementedException(); | |||
| public static Operation update_confusion_matrix_variables(variables variables_to_update, Tensor y_true, Tensor y_pred, float[] thresholds, | |||
| int? top_k= null,int? class_id= null, Tensor sample_weight= null, bool multi_label= false, | |||
| Tensor label_weights= null) => throw new NotImplementedException(); | |||
| private static Tensor _filter_top_k(Tensor x, int k) => throw new NotImplementedException(); | |||
| private static (Tensor[], Tensor) ragged_assert_compatible_and_get_flat_values(Tensor[] values, Tensor mask = null) => throw new NotImplementedException(); | |||
| } | |||
| } | |||
| @@ -0,0 +1,14 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System.Collections.Generic; | |||
| namespace Tensorflow.Keras.UnitTest | |||
| { | |||
| [TestClass] | |||
| public class OptimizerTest | |||
| { | |||
| [TestMethod] | |||
| public void BaseConstruct() | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,20 @@ | |||
| <Project Sdk="Microsoft.NET.Sdk"> | |||
| <PropertyGroup> | |||
| <TargetFramework>netcoreapp3.1</TargetFramework> | |||
| <IsPackable>false</IsPackable> | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.2.0" /> | |||
| <PackageReference Include="MSTest.TestAdapter" Version="2.0.0" /> | |||
| <PackageReference Include="MSTest.TestFramework" Version="2.0.0" /> | |||
| <PackageReference Include="coverlet.collector" Version="1.0.1" /> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <ProjectReference Include="..\..\src\TensorFlowNET.Keras\Tensorflow.Keras.csproj" /> | |||
| </ItemGroup> | |||
| </Project> | |||