| @@ -19,6 +19,8 @@ namespace Tensorflow | |||
| public TensorSpec[] structure { get; set; } | |||
| public int FirstInputTensorCount { get; set; } = 1; | |||
| public Shape[] output_shapes => structure.Select(x => x.shape).ToArray(); | |||
| public TF_DataType[] output_types => structure.Select(x => x.dtype).ToArray(); | |||
| @@ -131,6 +133,7 @@ namespace Tensorflow | |||
| // (4) Apply stats aggregator options | |||
| dataset.FirstInputTensorCount = this.FirstInputTensorCount; | |||
| return dataset; | |||
| } | |||
| @@ -142,7 +145,7 @@ namespace Tensorflow | |||
| $"types: {string.Join(", ", structure.Select(x => "tf." + x.dtype.as_numpy_name()))}, " + | |||
| $"len: {length}"; | |||
| public IEnumerator<(Tensor, Tensor)> GetEnumerator() | |||
| public IEnumerator<(Tensors, Tensors)> GetEnumerator() | |||
| { | |||
| using var ownedIterator = new OwnedIterator(this); | |||
| @@ -158,7 +161,8 @@ namespace Tensorflow | |||
| break; | |||
| } | |||
| yield return (results[0], results.Length == 1 ? null : results[1]); | |||
| yield return (new Tensors(results.Take(FirstInputTensorCount)), results.Length == FirstInputTensorCount ? | |||
| null : new Tensors(results.Skip(FirstInputTensorCount))); | |||
| } | |||
| } | |||
| @@ -4,7 +4,7 @@ using Tensorflow.Framework.Models; | |||
| namespace Tensorflow | |||
| { | |||
| public interface IDatasetV2 : IEnumerable<(Tensor, Tensor)> | |||
| public interface IDatasetV2 : IEnumerable<(Tensors, Tensors)> | |||
| { | |||
| string[] class_names { get; set; } | |||
| @@ -18,6 +18,8 @@ namespace Tensorflow | |||
| TensorSpec[] structure { get; set; } | |||
| int FirstInputTensorCount { get; set; } | |||
| /// <summary> | |||
| /// Caches the elements in this dataset. | |||
| /// </summary> | |||
| @@ -27,7 +27,8 @@ namespace Tensorflow | |||
| _dataset = dataset; | |||
| _element_spec = dataset.element_spec; | |||
| // _flat_output_types = | |||
| (_iterator_resource, _deleter) = ops.anonymous_iterator_v2(_dataset.output_types, _dataset.output_shapes); | |||
| _iterator_resource = ops.anonymous_iterator_v3(_dataset.output_types, _dataset.output_shapes); | |||
| // TODO(Rinne): deal with graph mode. | |||
| ops.make_iterator(dataset.variant_tensor, _iterator_resource); | |||
| } | |||
| @@ -48,7 +49,7 @@ namespace Tensorflow | |||
| public void Dispose() | |||
| { | |||
| tf.Runner.Execute(tf.Context, "DeleteIterator", 0, new[] { _iterator_resource, _deleter }, null); | |||
| //tf.Runner.Execute(tf.Context, "DeleteIterator", 0, new[] { _iterator_resource, _deleter }, null); | |||
| } | |||
| } | |||
| } | |||
| @@ -5,8 +5,8 @@ namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class DataAdapterArgs: IKerasConfig | |||
| { | |||
| public Tensor X { get; set; } | |||
| public Tensor Y { get; set; } | |||
| public Tensors X { get; set; } | |||
| public Tensors Y { get; set; } | |||
| public IDatasetV2 Dataset { get; set; } | |||
| public int BatchSize { get; set; } = 32; | |||
| public int Steps { get; set; } | |||
| @@ -5,8 +5,8 @@ namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class DataHandlerArgs: IKerasConfig | |||
| { | |||
| public Tensor X { get; set; } | |||
| public Tensor Y { get; set; } | |||
| public Tensors X { get; set; } | |||
| public Tensors Y { get; set; } | |||
| public IDatasetV2 Dataset { get; set; } | |||
| public int BatchSize { get; set; } = 32; | |||
| public int StepsPerEpoch { get; set; } = -1; | |||
| @@ -24,6 +24,17 @@ public interface IModel : ILayer | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| ICallback fit(IEnumerable<NDArray> x, NDArray y, | |||
| int batch_size = -1, | |||
| int epochs = 1, | |||
| int verbose = 1, | |||
| float validation_split = 0f, | |||
| bool shuffle = true, | |||
| int initial_epoch = 0, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| void save(string filepath, | |||
| bool overwrite = true, | |||
| bool include_optimizer = true, | |||
| @@ -14,7 +14,76 @@ namespace Tensorflow.NumPy | |||
| red = data[2]; | |||
| } | |||
| public static implicit operator NDArray(Array array) | |||
| public static implicit operator NDArray(int[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(byte[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(float[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(double[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(long[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(bool[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(uint[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(ulong[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(int[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(byte[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(float[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(double[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(long[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(bool[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(uint[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(ulong[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(int[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(byte[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(float[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(double[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(long[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(bool[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(uint[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(ulong[,,] array) | |||
| => new NDArray(array); | |||
| public unsafe static implicit operator bool(NDArray nd) | |||
| @@ -25,7 +25,7 @@ public class NpzDictionary | |||
| return array; | |||
| using var s = entry.Open(); | |||
| return LoadMatrix(s); | |||
| return (NDArray)LoadMatrix(s); | |||
| } | |||
| public Array LoadMatrix(Stream stream) | |||
| @@ -49,5 +49,8 @@ namespace Tensorflow.NumPy | |||
| IEnumerator IEnumerable.GetEnumerator() | |||
| => GetEnumerator(); | |||
| public static explicit operator NDArray(Array array) | |||
| => new NDArray(array); | |||
| } | |||
| } | |||
| @@ -1,6 +1,9 @@ | |||
| using System; | |||
| using Tensorflow.Contexts; | |||
| using Tensorflow.Eager; | |||
| using Tensorflow.Framework.Models; | |||
| using Tensorflow.Functions; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| @@ -220,6 +223,37 @@ namespace Tensorflow | |||
| return (results[0], results[1]); | |||
| } | |||
| public Tensor anonymous_iterator_v3(TF_DataType[] output_types, Shape[] output_shapes, string name = null) | |||
| { | |||
| var ctx = tf.Context; | |||
| Dictionary<string, object> attrs = new(); | |||
| attrs["output_types"] = output_types; | |||
| attrs["output_shapes"] = output_shapes; | |||
| if (ctx.executing_eagerly()) | |||
| { | |||
| try | |||
| { | |||
| var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AnonymousIteratorV3", name) | |||
| { | |||
| attrs = attrs | |||
| }); | |||
| return result[0]; | |||
| } | |||
| catch (Exception) | |||
| { | |||
| return anonymous_iterator_v3_eager_fallback(output_types, output_shapes, name, ctx); | |||
| } | |||
| } | |||
| return tf.OpDefLib._apply_op_helper("AnonymousIteratorV3", name, attrs).outputs[0]; | |||
| } | |||
| public Tensor anonymous_iterator_v3_eager_fallback(TF_DataType[] output_types, Shape[] output_shapes, string name, Context ctx) | |||
| { | |||
| object[] attrs = new object[] { output_types, output_shapes }; | |||
| var result = execute.quick_execute("AnonymousIteratorV3", 1, new Tensor[] { }, attrs, ctx, name); | |||
| return result[0]; | |||
| } | |||
| /// <summary> | |||
| /// Makes a new iterator from the given `dataset` and stores it in `iterator`. | |||
| /// </summary> | |||
| @@ -10,7 +10,7 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| protected DataAdapterArgs args; | |||
| protected IDatasetV2 dataset; | |||
| public virtual bool CanHandle(Tensor x, Tensor y = null) | |||
| public virtual bool CanHandle(Tensors x, Tensors y = null) | |||
| => throw new NotImplementedException(); | |||
| public virtual IDatasetV2 GetDataset() | |||
| @@ -19,12 +19,18 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| public virtual int GetSize() | |||
| => throw new NotImplementedException(""); | |||
| public virtual (Tensor, Tensor) Expand1d(Tensor x, Tensor y) | |||
| public virtual (Tensors, Tensors) Expand1d(Tensors x, Tensors y) | |||
| { | |||
| if (x.shape.ndim == 1) | |||
| x = array_ops.expand_dims(x, axis: -1); | |||
| if (y.shape.ndim == 1) | |||
| y = array_ops.expand_dims(y, axis: -1); | |||
| for(int i = 0; i < x.Length; i++) | |||
| { | |||
| if (x[i].shape.ndim == 1) | |||
| x[i] = array_ops.expand_dims(x[i], axis: -1); | |||
| } | |||
| for (int i = 0; i < y.Length; i++) | |||
| { | |||
| if (y[i].shape.ndim == 1) | |||
| y[i] = array_ops.expand_dims(y[i], axis: -1); | |||
| } | |||
| return (x, y); | |||
| } | |||
| @@ -93,11 +93,15 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| public IEnumerable<(int, OwnedIterator)> enumerate_epochs() | |||
| { | |||
| var data_iterator = new OwnedIterator(_dataset); | |||
| foreach (var epoch in range(_initial_epoch, _epochs)) | |||
| { | |||
| if (_insufficient_data) | |||
| break; | |||
| using var data_iterator = new OwnedIterator(_dataset); | |||
| if (_adapter.ShouldRecreateIterator()) | |||
| { | |||
| data_iterator = new OwnedIterator(_dataset); | |||
| } | |||
| yield return (epoch, data_iterator); | |||
| } | |||
| // _adapter.on_epoch_end() | |||
| @@ -13,10 +13,10 @@ | |||
| /// <param name="x">input features</param> | |||
| /// <param name="y">target labels</param> | |||
| /// <returns></returns> | |||
| bool CanHandle(Tensor x, Tensor y = null); | |||
| bool CanHandle(Tensors x, Tensors y = null); | |||
| IDatasetV2 GetDataset(); | |||
| int GetSize(); | |||
| (Tensor, Tensor) Expand1d(Tensor x, Tensor y); | |||
| (Tensors, Tensors) Expand1d(Tensors x, Tensors y); | |||
| bool ShouldRecreateIterator(); | |||
| } | |||
| } | |||
| @@ -1,4 +1,5 @@ | |||
| using System; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using static Tensorflow.Binding; | |||
| @@ -20,7 +21,7 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| { | |||
| this.args = args; | |||
| _process_tensorlike(); | |||
| num_samples = (int)args.X.shape[0]; | |||
| num_samples = (int)args.X[0].shape[0]; | |||
| var batch_size = args.BatchSize == -1 ? 32 : args.BatchSize; | |||
| _batch_size = batch_size; | |||
| _size = Convert.ToInt32(Math.Ceiling(num_samples / (batch_size + 0.0f))); | |||
| @@ -33,10 +34,11 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| indices_dataset = indices_dataset.flat_map(slice_batch_indices); | |||
| var inputs = new Tensors(); | |||
| if (args.X != null) | |||
| inputs.Add(args.X); | |||
| inputs.AddRange(args.X); | |||
| if (args.Y != null) | |||
| inputs.Add(args.Y); | |||
| inputs.AddRange(args.Y); | |||
| dataset = slice_inputs(indices_dataset, inputs); | |||
| dataset.FirstInputTensorCount = args.X.Length; | |||
| } | |||
| Tensors permutation(Tensors tensor) | |||
| @@ -87,8 +89,9 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| return dataset.with_options(new DatasetOptions { }); | |||
| } | |||
| public override int GetSize() | |||
| => _size; | |||
| public override int GetSize() => _size; | |||
| public override bool ShouldRecreateIterator() => false; | |||
| void _process_tensorlike() | |||
| { | |||
| @@ -59,7 +59,62 @@ namespace Tensorflow.Keras.Engine | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| return FitInternal(data_handler, epochs, verbose); | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: null, | |||
| train_step_func: train_step_function); | |||
| } | |||
| public ICallback fit(IEnumerable<NDArray> x, NDArray y, | |||
| int batch_size = -1, | |||
| int epochs = 1, | |||
| int verbose = 1, | |||
| float validation_split = 0f, | |||
| bool shuffle = true, | |||
| int initial_epoch = 0, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| bool use_multiprocessing = false) | |||
| { | |||
| foreach(var tx in x) | |||
| { | |||
| if (tx.dims[0] != y.dims[0]) | |||
| { | |||
| throw new InvalidArgumentError( | |||
| $"The array x and y should have same value at dim 0, but got {tx.dims[0]} and {y.dims[0]}"); | |||
| } | |||
| } | |||
| int train_count = Convert.ToInt32(y.dims[0] * (1 - validation_split)); | |||
| var train_x = x.Select(x => x[new Slice(0, train_count)] as Tensor); | |||
| var train_y = y[new Slice(0, train_count)]; | |||
| var val_x = x.Select(x => x[new Slice(train_count)] as Tensor); | |||
| var val_y = y[new Slice(train_count)]; | |||
| var data_handler = new DataHandler(new DataHandlerArgs | |||
| { | |||
| X = new Tensors(train_x), | |||
| Y = train_y, | |||
| BatchSize = batch_size, | |||
| InitialEpoch = initial_epoch, | |||
| Epochs = epochs, | |||
| Shuffle = shuffle, | |||
| MaxQueueSize = max_queue_size, | |||
| Workers = workers, | |||
| UseMultiprocessing = use_multiprocessing, | |||
| Model = this, | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || | |||
| data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) | |||
| { | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: null, | |||
| train_step_func: train_step_multi_inputs_function); | |||
| } | |||
| else | |||
| { | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: null, | |||
| train_step_func: train_step_function); | |||
| } | |||
| } | |||
| public History fit(IDatasetV2 dataset, | |||
| @@ -88,10 +143,12 @@ namespace Tensorflow.Keras.Engine | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: validation_data); | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: validation_data, | |||
| train_step_func: train_step_function); | |||
| } | |||
| History FitInternal(DataHandler data_handler, int epochs, int verbose, IDatasetV2 validation_data = null) | |||
| History FitInternal(DataHandler data_handler, int epochs, int verbose, IDatasetV2 validation_data, | |||
| Func<DataHandler, OwnedIterator, Dictionary<string, float>> train_step_func) | |||
| { | |||
| stop_training = false; | |||
| _train_counter.assign(0); | |||
| @@ -113,7 +170,7 @@ namespace Tensorflow.Keras.Engine | |||
| foreach (var step in data_handler.steps()) | |||
| { | |||
| callbacks.on_train_batch_begin(step); | |||
| logs = train_step_function(data_handler, iterator); | |||
| logs = train_step_func(data_handler, iterator); | |||
| var end_step = step + data_handler.StepIncrement; | |||
| callbacks.on_train_batch_end(end_step, logs); | |||
| } | |||
| @@ -17,12 +17,21 @@ namespace Tensorflow.Keras.Engine | |||
| return outputs; | |||
| } | |||
| Dictionary<string, float> train_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator) | |||
| { | |||
| var data = iterator.next(); | |||
| var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount; | |||
| var outputs = train_step(data_handler, new Tensors(data.Take(x_size)), new Tensors(data.Skip(x_size))); | |||
| tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1)); | |||
| return outputs; | |||
| } | |||
| /// <summary> | |||
| /// The logic for one training step. | |||
| /// </summary> | |||
| /// <param name="data"></param> | |||
| /// <returns></returns> | |||
| Dictionary<string, float> train_step(DataHandler data_handler, Tensor x, Tensor y) | |||
| Dictionary<string, float> train_step(DataHandler data_handler, Tensors x, Tensors y) | |||
| { | |||
| (x, y) = data_handler.DataAdapter.Expand1d(x, y); | |||
| using var tape = tf.GradientTape(); | |||
| @@ -0,0 +1,30 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using System.Threading.Tasks; | |||
| using Tensorflow.NumPy; | |||
| namespace Tensorflow.Keras.UnitTest.Helpers | |||
| { | |||
| public class RandomDataSet : DataSetBase | |||
| { | |||
| private Shape _shape; | |||
| public RandomDataSet(Shape shape, int count) | |||
| { | |||
| _shape = shape; | |||
| Debug.Assert(_shape.ndim == 3); | |||
| long[] dims = new long[4]; | |||
| dims[0] = count; | |||
| for (int i = 1; i < 4; i++) | |||
| { | |||
| dims[i] = _shape[i - 1]; | |||
| } | |||
| Shape s = new Shape(dims); | |||
| Data = np.random.normal(0, 2, s); | |||
| Labels = np.random.uniform(0, 1, (count, 1)); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,69 @@ | |||
| using Microsoft.VisualStudio.TestPlatform.Utilities; | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using System.Threading.Tasks; | |||
| using System.Xml.Linq; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow.NumPy; | |||
| using Microsoft.VisualBasic; | |||
| using static HDF.PInvoke.H5T; | |||
| using Tensorflow.Keras.UnitTest.Helpers; | |||
| using Tensorflow.Keras.Optimizers; | |||
| namespace Tensorflow.Keras.UnitTest | |||
| { | |||
| [TestClass] | |||
| public class MultiInputModelTest | |||
| { | |||
| [TestMethod] | |||
| public void SimpleModel() | |||
| { | |||
| var inputs = keras.Input((28, 28, 1)); | |||
| var conv1 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs); | |||
| var pool1 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv1); | |||
| var conv2 = keras.layers.Conv2D(32, (3, 3), activation: "relu", padding: "same").Apply(pool1); | |||
| var pool2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2); | |||
| var flat1 = keras.layers.Flatten().Apply(pool2); | |||
| var inputs_2 = keras.Input((28, 28, 1)); | |||
| var conv1_2 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs_2); | |||
| var pool1_2 = keras.layers.MaxPooling2D((4, 4), 4).Apply(conv1_2); | |||
| var conv2_2 = keras.layers.Conv2D(32, (1, 1), activation: "relu", padding: "same").Apply(pool1_2); | |||
| var pool2_2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2_2); | |||
| var flat1_2 = keras.layers.Flatten().Apply(pool2_2); | |||
| var concat = keras.layers.Concatenate().Apply((flat1, flat1_2)); | |||
| var dense1 = keras.layers.Dense(512, activation: "relu").Apply(concat); | |||
| var dense2 = keras.layers.Dense(128, activation: "relu").Apply(dense1); | |||
| var dense3 = keras.layers.Dense(10, activation: "relu").Apply(dense2); | |||
| var output = keras.layers.Softmax(-1).Apply(dense3); | |||
| var model = keras.Model((inputs, inputs_2), output); | |||
| model.summary(); | |||
| var data_loader = new MnistModelLoader(); | |||
| var dataset = data_loader.LoadAsync(new ModelLoadSetting | |||
| { | |||
| TrainDir = "mnist", | |||
| OneHot = false, | |||
| ValidationSize = 59000, | |||
| }).Result; | |||
| var loss = keras.losses.SparseCategoricalCrossentropy(); | |||
| var optimizer = new Adam(0.001f); | |||
| model.compile(optimizer, loss, new string[] { "accuracy" }); | |||
| NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); | |||
| NDArray x2 = x1; | |||
| var x = new NDArray[] { x1, x2 }; | |||
| model.fit(x, dataset.Train.Labels, batch_size: 8, epochs: 3); | |||
| } | |||
| } | |||
| } | |||
| @@ -13,6 +13,7 @@ using Tensorflow; | |||
| using Tensorflow.Keras.Optimizers; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow.NumPy; | |||
| using Tensorflow.Keras.UnitTest.Helpers; | |||
| using static TensorFlowNET.Keras.UnitTest.SaveModel.SequentialModelSave; | |||
| namespace TensorFlowNET.Keras.UnitTest.SaveModel; | |||
| @@ -6,7 +6,7 @@ using Tensorflow.Keras; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Losses; | |||
| using Tensorflow.Keras.Optimizers; | |||
| using Tensorflow.NumPy; | |||
| using Tensorflow.Keras.UnitTest.Helpers; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| @@ -175,24 +175,4 @@ public class SequentialModelSave | |||
| // ) | |||
| #endregion | |||
| } | |||
| public class RandomDataSet : DataSetBase | |||
| { | |||
| private Shape _shape; | |||
| public RandomDataSet(Shape shape, int count) | |||
| { | |||
| _shape = shape; | |||
| Debug.Assert(_shape.ndim == 3); | |||
| long[] dims = new long[4]; | |||
| dims[0] = count; | |||
| for (int i = 1; i < 4; i++) | |||
| { | |||
| dims[i] = _shape[i - 1]; | |||
| } | |||
| Shape s = new Shape(dims); | |||
| Data = np.random.normal(0, 2, s); | |||
| Labels = np.random.uniform(0, 1, (count, 1)); | |||
| } | |||
| } | |||
| } | |||
| @@ -20,7 +20,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| Assert.AreEqual(iStep, step); | |||
| iStep++; | |||
| Assert.AreEqual(value, (long)item.Item1); | |||
| Assert.AreEqual(value, (long)item.Item1[0]); | |||
| value++; | |||
| } | |||
| } | |||
| @@ -39,7 +39,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| Assert.AreEqual(iStep, step); | |||
| iStep++; | |||
| Assert.AreEqual(value, (long)item.Item1); | |||
| Assert.AreEqual(value, (long)item.Item1[0]); | |||
| value += 2; | |||
| } | |||
| } | |||
| @@ -54,7 +54,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| int n = 0; | |||
| foreach (var (item_x, item_y) in dataset) | |||
| { | |||
| print($"x:{item_x.numpy()},y:{item_y.numpy()}"); | |||
| print($"x:{item_x[0].numpy()},y:{item_y[0].numpy()}"); | |||
| n += 1; | |||
| } | |||
| Assert.AreEqual(5, n); | |||
| @@ -69,7 +69,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| int n = 0; | |||
| foreach (var x in dataset) | |||
| { | |||
| Assert.IsTrue(X.SequenceEqual(x.Item1.ToArray<int>())); | |||
| Assert.IsTrue(X.SequenceEqual(x.Item1[0].ToArray<int>())); | |||
| n += 1; | |||
| } | |||
| Assert.AreEqual(1, n); | |||
| @@ -85,7 +85,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| foreach (var item in dataset2) | |||
| { | |||
| Assert.AreEqual(value, (long)item.Item1); | |||
| Assert.AreEqual(value, (long)item.Item1[0]); | |||
| value += 3; | |||
| } | |||
| @@ -93,7 +93,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| var dataset3 = dataset1.shard(num_shards: 3, index: 1); | |||
| foreach (var item in dataset3) | |||
| { | |||
| Assert.AreEqual(value, (long)item.Item1); | |||
| Assert.AreEqual(value, (long)item.Item1[0]); | |||
| value += 3; | |||
| } | |||
| } | |||
| @@ -108,7 +108,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| foreach (var item in dataset) | |||
| { | |||
| Assert.AreEqual(value, (long)item.Item1); | |||
| Assert.AreEqual(value, (long)item.Item1[0]); | |||
| value++; | |||
| } | |||
| } | |||
| @@ -123,7 +123,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| foreach (var item in dataset) | |||
| { | |||
| Assert.AreEqual(value + 10, (long)item.Item1); | |||
| Assert.AreEqual(value + 10, (long)item.Item1[0]); | |||
| value++; | |||
| } | |||
| } | |||
| @@ -138,7 +138,7 @@ namespace TensorFlowNET.UnitTest.Dataset | |||
| foreach (var item in dataset) | |||
| { | |||
| Assert.AreEqual(value, (long)item.Item1); | |||
| Assert.AreEqual(value, (long)item.Item1[0]); | |||
| value++; | |||
| } | |||
| } | |||