| @@ -55,7 +55,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||||
| { | { | ||||
| var stopwatch = Stopwatch.StartNew(); | var stopwatch = Stopwatch.StartNew(); | ||||
| Console.WriteLine("Building dataset..."); | Console.WriteLine("Building dataset..."); | ||||
| var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit=null); | |||||
| var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit = null); | |||||
| Console.WriteLine("\tDONE "); | Console.WriteLine("\tDONE "); | ||||
| var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | ||||
| @@ -169,8 +169,8 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||||
| //int classes = y.Data<int>().Distinct().Count(); | //int classes = y.Data<int>().Distinct().Count(); | ||||
| //int samples = len / classes; | //int samples = len / classes; | ||||
| int train_size = (int)Math.Round(len * (1 - test_size)); | int train_size = (int)Math.Round(len * (1 - test_size)); | ||||
| var train_x = x[new Slice(stop:train_size), new Slice()]; | |||||
| var valid_x = x[new Slice(start: train_size+1), new Slice()]; | |||||
| var train_x = x[new Slice(stop: train_size), new Slice()]; | |||||
| var valid_x = x[new Slice(start: train_size + 1), new Slice()]; | |||||
| var train_y = y[new Slice(stop: train_size)]; | var train_y = y[new Slice(stop: train_size)]; | ||||
| var valid_y = y[new Slice(start: train_size + 1)]; | var valid_y = y[new Slice(start: train_size + 1)]; | ||||
| Console.WriteLine("\tDONE"); | Console.WriteLine("\tDONE"); | ||||
| @@ -179,7 +179,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||||
| private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs) | private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs) | ||||
| { | { | ||||
| var num_batches_per_epoch = (len(inputs) - 1) / batch_size +1; | |||||
| var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1; | |||||
| var total_batches = num_batches_per_epoch * num_epochs; | var total_batches = num_batches_per_epoch * num_epochs; | ||||
| foreach (var epoch in range(num_epochs)) | foreach (var epoch in range(num_epochs)) | ||||
| { | { | ||||
| @@ -189,7 +189,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||||
| var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs)); | var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs)); | ||||
| if (end_index <= start_index) | if (end_index <= start_index) | ||||
| break; | break; | ||||
| yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index,end_index)], total_batches); | |||||
| yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches); | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||