| @@ -9,6 +9,7 @@ namespace Tensorflow.Eager | |||
| public int default_execution_mode; | |||
| public string device_name = ""; | |||
| public string scope_name = ""; | |||
| bool _initialized = false; | |||
| public Context(ContextOptions opts, Status status) | |||
| @@ -33,6 +34,11 @@ namespace Tensorflow.Eager | |||
| public bool executing_eagerly() => true; | |||
| public string shared_name(string name = null) | |||
| => !string.IsNullOrEmpty(name) || !executing_eagerly() ? | |||
| name : | |||
| "cd2c89b7-88b7-44c8-ad83-06c2a9158347"; | |||
| public static implicit operator IntPtr(Context ctx) | |||
| => ctx._handle; | |||
| @@ -18,6 +18,6 @@ namespace Tensorflow.Eager | |||
| => tensor._handle; | |||
| public override string ToString() | |||
| => $"TFE_Op {_handle}"; | |||
| => $"TFE_Op 0x{_handle.ToString("x16")}"; | |||
| } | |||
| } | |||
| @@ -18,6 +18,6 @@ namespace Tensorflow.Eager | |||
| => tensor._handle; | |||
| public override string ToString() | |||
| => $"TFE_TensorHandle {_handle}"; | |||
| => $"TFE_TensorHandle 0x{_handle.ToString("x16")}"; | |||
| } | |||
| } | |||
| @@ -89,7 +89,7 @@ namespace Tensorflow | |||
| /// <param name="num_retvals">int*</param> | |||
| /// <param name="status">TF_Status*</param> | |||
| [DllImport(TensorFlowLibName)] | |||
| public static extern void TFE_Execute(TFE_Op op, IntPtr[] retvals, ref int num_retvals, IntPtr status); | |||
| public static extern void TFE_Execute(IntPtr op, IntPtr[] retvals, ref int num_retvals, IntPtr status); | |||
| /// <summary> | |||
| /// | |||
| @@ -147,6 +147,7 @@ namespace Tensorflow.Eager | |||
| c_api.TFE_OpAddInput(op, input_handle, status); | |||
| status.Check(true); | |||
| return true; | |||
| } | |||
| @@ -236,8 +237,13 @@ namespace Tensorflow.Eager | |||
| case TF_AttrType.TF_ATTR_INT: | |||
| c_api.TFE_OpSetAttrInt(op, key, Convert.ToInt64(value)); | |||
| break; | |||
| case TF_AttrType.TF_ATTR_SHAPE: | |||
| var dims = (value as int[]).Select(x => (long)x).ToArray(); | |||
| c_api.TFE_OpSetAttrShape(op, key, dims, dims.Length, status); | |||
| status.Check(true); | |||
| break; | |||
| default: | |||
| throw new NotImplementedException(""); | |||
| throw new NotImplementedException($"SetOpAttrScalar for {type}"); | |||
| } | |||
| return true; | |||
| @@ -14,6 +14,9 @@ | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using Tensorflow.Eager; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| public static class gen_resource_variable_ops | |||
| @@ -29,6 +32,14 @@ namespace Tensorflow | |||
| public static Tensor var_is_initialized_op(Tensor resource, string name = null) | |||
| { | |||
| if (tf.context.executing_eagerly()) | |||
| { | |||
| var _result = wrap_tfe_src.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
| "VarIsInitializedOp", name, null, | |||
| resource); | |||
| return _result; | |||
| } | |||
| var _op = _op_def_lib._apply_op_helper("VarIsInitializedOp", name, new { resource }); | |||
| return _op.output; | |||
| @@ -46,6 +57,14 @@ namespace Tensorflow | |||
| public static Tensor var_handle_op(TF_DataType dtype, TensorShape shape, | |||
| string container ="", string shared_name = "", string name = null) | |||
| { | |||
| if (tf.context.executing_eagerly()) | |||
| { | |||
| var _result = wrap_tfe_src.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
| "VarHandleOp", name, null, | |||
| "container", container, "shared_name", shared_name, "dtype", dtype, "shape", shape.dims); | |||
| return _result; | |||
| } | |||
| var _op = _op_def_lib._apply_op_helper("VarHandleOp", name, new { | |||
| dtype, | |||
| shape, | |||
| @@ -100,10 +100,10 @@ namespace Tensorflow | |||
| /// <param name="shared_name"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="graph_mode"></param> | |||
| /// <param name="extra_handle_data"></param> | |||
| /// <param name="initial_value"></param> | |||
| /// <returns></returns> | |||
| public static Tensor variable_handle_from_shape_and_dtype(TensorShape shape, TF_DataType dtype, | |||
| string shared_name, string name, bool graph_mode, Tensor extra_handle_data = null) | |||
| string shared_name, string name, bool graph_mode, Tensor initial_value = null) | |||
| { | |||
| var container = "";// ops.get_default_graph().container; | |||
| var handle = gen_resource_variable_ops.var_handle_op(shape: shape, | |||
| @@ -112,17 +112,22 @@ namespace Tensorflow | |||
| name: name, | |||
| container: container); | |||
| if (extra_handle_data == null) | |||
| extra_handle_data = handle; | |||
| if (initial_value == null) | |||
| initial_value = handle; | |||
| if (graph_mode) | |||
| { | |||
| var full_handle_data = _combine_handle_data(handle, extra_handle_data); | |||
| var full_handle_data = _combine_handle_data(handle, initial_value); | |||
| _set_handle_shapes_and_types(handle, full_handle_data, graph_mode); | |||
| return handle; | |||
| } | |||
| else | |||
| { | |||
| // We do not want two distinct ResourceVariable objects for the same | |||
| // underlying resource in the runtime. | |||
| // When in eager mode, explicitly ensure so here. When in graph mode, it's | |||
| // ensured by always generating different variable names. | |||
| var exists = gen_resource_variable_ops.var_is_initialized_op(handle); | |||
| throw new NotImplementedException(""); | |||
| } | |||
| } | |||
| @@ -71,5 +71,8 @@ namespace Tensorflow | |||
| protected override void DisposeUnmanagedResources(IntPtr handle) | |||
| => TF_DeleteStatus(handle); | |||
| public override string ToString() | |||
| => $"{Code} 0x{_handle.ToString("x16")}"; | |||
| } | |||
| } | |||
| @@ -90,13 +90,13 @@ namespace Tensorflow.Summaries | |||
| string scope_base_name = string.IsNullOrEmpty(family) ? name : $"{family}/{name}"; | |||
| return tf_with(ops.name_scope(scope_base_name, default_name: default_name, values), scope => | |||
| { | |||
| var tag = scope._name_scope; | |||
| var tag = scope.scope_name; | |||
| if (string.IsNullOrEmpty(family)) | |||
| tag = tag.Remove(tag.Length - 1); | |||
| else | |||
| tag = $"{family}/{tag.Remove(tag.Length - 1)}"; | |||
| return (tag, scope._name_scope); | |||
| return (tag, scope.scope_name); | |||
| }); | |||
| } | |||
| } | |||
| @@ -181,6 +181,8 @@ namespace Tensorflow | |||
| return (NDArray)StringData()[0]; | |||
| case TF_DataType.TF_INT32: | |||
| return *(int*)buffer; | |||
| case TF_DataType.TF_FLOAT: | |||
| return *(float*)buffer; | |||
| case TF_DataType.TF_DOUBLE: | |||
| return *(double*)buffer; | |||
| default: | |||
| @@ -253,7 +253,7 @@ namespace Tensorflow | |||
| public static implicit operator Shape(TensorShape shape) => new Shape((int[]) shape.dims.Clone()); | |||
| public static implicit operator int[](TensorShape shape) => shape == null ? null : (int[])shape.dims.Clone(); //we clone to avoid any changes | |||
| public static implicit operator TensorShape(int[] dims) => new TensorShape(dims); | |||
| public static implicit operator TensorShape(int[] dims) => dims == null ? new TensorShape(new int[0]) : new TensorShape(dims); | |||
| public static explicit operator int(TensorShape shape) => shape.size; | |||
| public static implicit operator TensorShape(int dim) => new TensorShape(dim); | |||
| @@ -91,6 +91,10 @@ namespace Tensorflow | |||
| return new EagerTensor(str, ctx.device_name); | |||
| case int int32: | |||
| return new EagerTensor(int32, ctx.device_name); | |||
| case float float32: | |||
| return new EagerTensor(float32, ctx.device_name); | |||
| case double double64: | |||
| return new EagerTensor(double64, ctx.device_name); | |||
| case float[] float32s: | |||
| return new EagerTensor(float32s, ctx.device_name); | |||
| case double[] double64s: | |||
| @@ -94,20 +94,28 @@ namespace Tensorflow | |||
| if(collections == null) | |||
| collections = new List<string>() { tf.GraphKeys.GLOBAL_VARIABLES }; | |||
| _trainable = trainable; | |||
| _graph_key = ops.get_default_graph().graph_key; | |||
| if (trainable && !collections.Contains(tf.GraphKeys.TRAINABLE_VARIABLES)) | |||
| collections.Add(tf.GraphKeys.TRAINABLE_VARIABLES); | |||
| ops.init_scope(); | |||
| _in_graph_mode = true; | |||
| _in_graph_mode = !tf.context.executing_eagerly(); | |||
| tf_with(ops.name_scope(name, "Variable"), scope => | |||
| { | |||
| name = scope; | |||
| var handle_name = ops.name_from_scope_name(name); | |||
| var shared_name = handle_name; | |||
| var unique_id = shared_name; | |||
| var unique_id = $"{handle_name}_{ops.uid()}"; | |||
| var shared_name = tf.context.shared_name(); | |||
| if (_in_graph_mode) | |||
| { | |||
| shared_name = handle_name; | |||
| unique_id = shared_name; | |||
| } | |||
| var attr = new AttrValue(); | |||
| attr.List = new AttrValue.Types.ListValue(); | |||
| attr.List.S.Add(ByteString.CopyFromUtf8($"loc:{handle_name}")); | |||
| attr.List.S.Add(ByteString.CopyFromUtf8($"loc:@{handle_name}")); | |||
| tf_with(ops.name_scope("Initializer"), delegate | |||
| { | |||
| initial_value = ops.convert_to_tensor(init_from_fn ? (initial_value as Func<Tensor>)() : initial_value, | |||
| @@ -241,6 +241,9 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static void init_scope() | |||
| { | |||
| if (tf.context.executing_eagerly()) | |||
| return; | |||
| // Retrieve the active name scope: entering an `init_scope` preserves | |||
| // the name scope of the current context. | |||
| var default_graph = get_default_graph(); | |||
| @@ -15,6 +15,8 @@ | |||
| ******************************************************************************/ | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Eager; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -32,8 +34,8 @@ namespace Tensorflow | |||
| public string _name; | |||
| public string _default_name; | |||
| public object _values; | |||
| public string _name_scope; | |||
| public string old_stack = ""; | |||
| public string scope_name; | |||
| public string old_scope_name = ""; | |||
| public NameScope(string name, string default_name = "", object values = null) | |||
| { | |||
| @@ -44,29 +46,54 @@ namespace Tensorflow | |||
| public void __enter__() | |||
| { | |||
| _name = _name ?? _default_name; | |||
| if (_name.EndsWith("basic_r_n_n_cell")) | |||
| if (tf.context.executing_eagerly()) | |||
| { | |||
| (scope_name, old_scope_name) = enter_eager_name_scope(tf.context, _name); | |||
| } | |||
| else | |||
| { | |||
| _name = _name ?? _default_name; | |||
| Graph g = null; | |||
| if (_values is List<Tensor> vList) | |||
| g = _get_graph_from_inputs(vList.ToArray()); | |||
| else if (_values is Tensor[] vArray) | |||
| g = _get_graph_from_inputs(vArray); | |||
| if (g == null) | |||
| g = get_default_graph(); | |||
| old_scope_name = g._name_stack; | |||
| scope_name = g.name_scope(_name); | |||
| } | |||
| Graph g = null; | |||
| } | |||
| if (_values is List<Tensor> vList) | |||
| g = _get_graph_from_inputs(vList.ToArray()); | |||
| else if (_values is Tensor[] vArray) | |||
| g = _get_graph_from_inputs(vArray); | |||
| private (string, string) enter_eager_name_scope(Context ctx, string name) | |||
| { | |||
| if (name == null) | |||
| name = ""; | |||
| if (g == null) | |||
| g = get_default_graph(); | |||
| var scope_name = name; | |||
| var old_name = ctx.scope_name; | |||
| // A trailing slash breaks out of nested name scopes, indicating a | |||
| // fully specified scope name, for compatibility with Graph.name_scope. | |||
| if (!name.EndsWith("/")) | |||
| { | |||
| scope_name = name + "/"; | |||
| if (!string.IsNullOrEmpty(old_name)) | |||
| scope_name = old_name + scope_name; | |||
| } | |||
| old_stack = g._name_stack; | |||
| _name_scope = g.name_scope(_name); | |||
| ctx.scope_name = scope_name; | |||
| return (scope_name, old_name); | |||
| } | |||
| public void Dispose() | |||
| { | |||
| var g = get_default_graph(); | |||
| g._name_stack = old_stack; | |||
| if (tf.context.executing_eagerly()) | |||
| tf.context.scope_name = old_scope_name; | |||
| else | |||
| get_default_graph()._name_stack = old_scope_name; | |||
| } | |||
| public void __exit__() | |||
| @@ -89,7 +116,7 @@ namespace Tensorflow | |||
| /// <param name="ns"></param> | |||
| public static implicit operator string(NameScope ns) | |||
| { | |||
| return ns._name_scope; | |||
| return ns.scope_name; | |||
| } | |||
| } | |||
| } | |||