| @@ -128,6 +128,20 @@ namespace Tensorflow | |||
| public Tensor stack(object values, int axis = 0, string name = "stack") | |||
| => array_ops.stack(values, axis, name: name); | |||
| /// <summary> | |||
| /// Creates a tensor with all elements set to 1. | |||
| /// </summary> | |||
| /// <param name="tensor"></param> | |||
| /// <param name="dtype"></param> | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <param name="optimize"> | |||
| /// if true, attempt to statically determine the shape of 'tensor' and | |||
| /// encode it as a constant. | |||
| /// </param> | |||
| /// <returns>A `Tensor` with all elements set to 1.</returns> | |||
| public Tensor ones_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => array_ops.ones_like(tensor, dtype: dtype, name: name, optimize: optimize); | |||
| public Tensor one_hot(Tensor indices, int depth, | |||
| Tensor on_value = null, | |||
| Tensor off_value = null, | |||
| @@ -191,5 +205,16 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor[] unstack(Tensor value, int? num = null, int axis = 0, string name = "unstack") | |||
| => array_ops.unstack(value, num: num, axis: axis, name: name); | |||
| /// <summary> | |||
| /// Creates a tensor with all elements set to zero. | |||
| /// </summary> | |||
| /// <param name="tensor"></param> | |||
| /// <param name="dtype"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="optimize"></param> | |||
| /// <returns>A `Tensor` with all elements set to zero.</returns> | |||
| public Tensor zeros_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => array_ops.zeros_like(tensor, dtype: dtype, name: name, optimize: optimize); | |||
| } | |||
| } | |||
| @@ -0,0 +1,33 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| namespace Tensorflow | |||
| { | |||
| public partial class tensorflow | |||
| { | |||
| /// <summary> | |||
| /// Interleave the values from the data tensors into a single tensor. | |||
| /// </summary> | |||
| /// <param name="indices"></param> | |||
| /// <param name="data"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor dynamic_stitch(Tensor[] indices, Tensor[] data, string name = null) | |||
| => gen_data_flow_ops.dynamic_stitch(indices, data, name: name); | |||
| } | |||
| } | |||
| @@ -44,6 +44,15 @@ namespace Tensorflow | |||
| public Tensor add<Tx, Ty>(Tx a, Ty b, string name = null) | |||
| => gen_math_ops.add(a, b, name: name); | |||
| /// <summary> | |||
| /// Adds all input tensors element-wise. | |||
| /// </summary> | |||
| /// <param name="inputs"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>A `Tensor` of same shape and type as the elements of `inputs`.</returns> | |||
| public Tensor add_n(Tensor[] inputs, string name = null) | |||
| => math_ops.add_n(inputs, name: name); | |||
| /// <summary> | |||
| /// Computes atan of x element-wise. | |||
| /// </summary> | |||
| @@ -331,6 +340,16 @@ namespace Tensorflow | |||
| public Tensor negative(Tensor x, string name = null) | |||
| => gen_math_ops.neg(x, name); | |||
| /// <summary> | |||
| /// Returns the truth value of (x != y) element-wise. | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>A `Tensor` of type bool with the same size as that of x or y.</returns> | |||
| public Tensor not_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => math_ops.not_equal(x, y, name: name); | |||
| /// <summary> | |||
| /// Divides x / y elementwise (using Python 2 division operator semantics). | |||
| /// </summary> | |||
| @@ -347,9 +366,40 @@ namespace Tensorflow | |||
| public Tensor pow<T1, T2>(T1 x, T2 y) | |||
| => gen_math_ops.pow(x, y); | |||
| /// <summary> | |||
| /// Divides `x / y` elementwise, rounding toward the most negative integer. | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>`x / y` rounded down.</returns> | |||
| public Tensor floordiv(Tensor x, Tensor y, string name = null) | |||
| => math_ops.floordiv(x, y, name: name); | |||
| /// <summary> | |||
| /// Divides x / y elementwise (using Python 3 division operator semantics). | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>`x / y` evaluated in floating point.</returns> | |||
| public static Tensor truediv(Tensor x, Tensor y, string name = null) | |||
| => math_ops.truediv(x, y, name: name); | |||
| public Tensor range(object start, object limit = null, object delta = null, TF_DataType dtype = TF_DataType.DtInvalid, string name = "range") | |||
| => math_ops.range(start, limit: limit, delta: delta, dtype: dtype, name: name); | |||
| /// <summary> | |||
| /// Computes the "logical and" of elements across dimensions of a tensor. | |||
| /// </summary> | |||
| /// <param name="input_tensor"></param> | |||
| /// <param name="axis"></param> | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The reduced tensor.</returns> | |||
| public Tensor reduce_all(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_all(input_tensor, axis: axis, keepdims: keepdims, name: name); | |||
| /// <summary> | |||
| /// Computes the sum of elements across dimensions of a tensor. | |||
| /// </summary> | |||