| @@ -15,14 +15,15 @@ namespace Tensorflow.Hub | |||
| private const string TEST_IMAGES = "t10k-images-idx3-ubyte.gz"; | |||
| private const string TEST_LABELS = "t10k-labels-idx1-ubyte.gz"; | |||
| public static async Task<Datasets<MnistDataSet>> LoadAsync(string trainDir, bool oneHot = false, int? trainSize = null, int? validationSize = null, int? testSize = null) | |||
| public static async Task<Datasets<MnistDataSet>> LoadAsync(string trainDir, bool oneHot = false, int? trainSize = null, int? validationSize = null, int? testSize = null, bool showProgressInConsole = false) | |||
| { | |||
| var loader = new MnistModelLoader(); | |||
| var setting = new ModelLoadSetting | |||
| { | |||
| TrainDir = trainDir, | |||
| OneHot = oneHot | |||
| OneHot = oneHot, | |||
| ShowProgressInConsole = showProgressInConsole | |||
| }; | |||
| if (trainSize.HasValue) | |||
| @@ -48,37 +49,37 @@ namespace Tensorflow.Hub | |||
| sourceUrl = DEFAULT_SOURCE_URL; | |||
| // load train images | |||
| await this.DownloadAsync(sourceUrl + TRAIN_IMAGES, setting.TrainDir, TRAIN_IMAGES) | |||
| await this.DownloadAsync(sourceUrl + TRAIN_IMAGES, setting.TrainDir, TRAIN_IMAGES, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TRAIN_IMAGES), setting.TrainDir) | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TRAIN_IMAGES), setting.TrainDir, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| var trainImages = ExtractImages(Path.Combine(setting.TrainDir, Path.GetFileNameWithoutExtension(TRAIN_IMAGES)), limit: setting.TrainSize); | |||
| // load train labels | |||
| await this.DownloadAsync(sourceUrl + TRAIN_LABELS, setting.TrainDir, TRAIN_LABELS) | |||
| await this.DownloadAsync(sourceUrl + TRAIN_LABELS, setting.TrainDir, TRAIN_LABELS, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TRAIN_LABELS), setting.TrainDir) | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TRAIN_LABELS), setting.TrainDir, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| var trainLabels = ExtractLabels(Path.Combine(setting.TrainDir, Path.GetFileNameWithoutExtension(TRAIN_LABELS)), one_hot: setting.OneHot, limit: setting.TrainSize); | |||
| // load test images | |||
| await this.DownloadAsync(sourceUrl + TEST_IMAGES, setting.TrainDir, TEST_IMAGES) | |||
| await this.DownloadAsync(sourceUrl + TEST_IMAGES, setting.TrainDir, TEST_IMAGES, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TEST_IMAGES), setting.TrainDir) | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TEST_IMAGES), setting.TrainDir, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| var testImages = ExtractImages(Path.Combine(setting.TrainDir, Path.GetFileNameWithoutExtension(TEST_IMAGES)), limit: setting.TestSize); | |||
| // load test labels | |||
| await this.DownloadAsync(sourceUrl + TEST_LABELS, setting.TrainDir, TEST_LABELS) | |||
| await this.DownloadAsync(sourceUrl + TEST_LABELS, setting.TrainDir, TEST_LABELS, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TEST_LABELS), setting.TrainDir) | |||
| await this.UnzipAsync(Path.Combine(setting.TrainDir, TEST_LABELS), setting.TrainDir, showProgressInConsole: setting.ShowProgressInConsole) | |||
| .ShowProgressInConsole(setting.ShowProgressInConsole); | |||
| var testLabels = ExtractLabels(Path.Combine(setting.TrainDir, Path.GetFileNameWithoutExtension(TEST_LABELS)), one_hot: setting.OneHot, limit: setting.TestSize); | |||
| @@ -2,7 +2,7 @@ | |||
| <PropertyGroup> | |||
| <RootNamespace>Tensorflow.Hub</RootNamespace> | |||
| <TargetFramework>netstandard2.0</TargetFramework> | |||
| <Version>0.0.1</Version> | |||
| <Version>0.0.2</Version> | |||
| <Authors>Kerry Jiang</Authors> | |||
| <Company>SciSharp STACK</Company> | |||
| <Copyright>Apache 2.0</Copyright> | |||
| @@ -13,7 +13,7 @@ | |||
| <Description>TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models.</Description> | |||
| <PackageId>SciSharp.TensorFlowHub</PackageId> | |||
| <GeneratePackageOnBuild>true</GeneratePackageOnBuild> | |||
| <PackageReleaseNotes>1. Add MNIST loader.</PackageReleaseNotes> | |||
| <PackageReleaseNotes></PackageReleaseNotes> | |||
| <PackageIconUrl>https://avatars3.githubusercontent.com/u/44989469?s=200&v=4</PackageIconUrl> | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| @@ -19,7 +19,7 @@ namespace Tensorflow.Hub | |||
| await modelLoader.DownloadAsync(url, dir, fileName); | |||
| } | |||
| public static async Task DownloadAsync<TDataSet>(this IModelLoader<TDataSet> modelLoader, string url, string dirSaveTo, string fileName) | |||
| public static async Task DownloadAsync<TDataSet>(this IModelLoader<TDataSet> modelLoader, string url, string dirSaveTo, string fileName, bool showProgressInConsole = false) | |||
| where TDataSet : IDataSet | |||
| { | |||
| if (!Path.IsPathRooted(dirSaveTo)) | |||
| @@ -27,18 +27,30 @@ namespace Tensorflow.Hub | |||
| var fileSaveTo = Path.Combine(dirSaveTo, fileName); | |||
| if (showProgressInConsole) | |||
| { | |||
| Console.WriteLine($"Downloading {fileName}"); | |||
| } | |||
| if (File.Exists(fileSaveTo)) | |||
| { | |||
| if (showProgressInConsole) | |||
| { | |||
| Console.WriteLine($"The file {fileName} already exists"); | |||
| } | |||
| return; | |||
| } | |||
| Directory.CreateDirectory(dirSaveTo); | |||
| using (var wc = new WebClient()) | |||
| { | |||
| await wc.DownloadFileTaskAsync(url, fileSaveTo); | |||
| await wc.DownloadFileTaskAsync(url, fileSaveTo).ConfigureAwait(false); | |||
| } | |||
| } | |||
| public static async Task UnzipAsync<TDataSet>(this IModelLoader<TDataSet> modelLoader, string zipFile, string saveTo) | |||
| public static async Task UnzipAsync<TDataSet>(this IModelLoader<TDataSet> modelLoader, string zipFile, string saveTo, bool showProgressInConsole = false) | |||
| where TDataSet : IDataSet | |||
| { | |||
| if (!Path.IsPathRooted(saveTo)) | |||
| @@ -49,67 +61,76 @@ namespace Tensorflow.Hub | |||
| if (!Path.IsPathRooted(zipFile)) | |||
| zipFile = Path.Combine(AppContext.BaseDirectory, zipFile); | |||
| var destFilePath = Path.Combine(saveTo, Path.GetFileNameWithoutExtension(zipFile)); | |||
| var destFileName = Path.GetFileNameWithoutExtension(zipFile); | |||
| var destFilePath = Path.Combine(saveTo, destFileName); | |||
| if (showProgressInConsole) | |||
| Console.WriteLine($"Unzippinng {Path.GetFileName(zipFile)}"); | |||
| if (File.Exists(destFilePath)) | |||
| File.Delete(destFilePath); | |||
| { | |||
| if (showProgressInConsole) | |||
| Console.WriteLine($"The file {destFileName} already exists"); | |||
| } | |||
| using (GZipStream unzipStream = new GZipStream(File.OpenRead(zipFile), CompressionMode.Decompress)) | |||
| { | |||
| using (var destStream = File.Create(destFilePath)) | |||
| { | |||
| await unzipStream.CopyToAsync(destStream); | |||
| await destStream.FlushAsync(); | |||
| await unzipStream.CopyToAsync(destStream).ConfigureAwait(false); | |||
| await destStream.FlushAsync().ConfigureAwait(false); | |||
| destStream.Close(); | |||
| } | |||
| unzipStream.Close(); | |||
| } | |||
| } | |||
| public static async Task ShowProgressInConsole(this Task task) | |||
| { | |||
| await ShowProgressInConsole(task, true); | |||
| } | |||
| } | |||
| public static async Task ShowProgressInConsole(this Task task, bool enable) | |||
| { | |||
| if (!enable) | |||
| { | |||
| await task; | |||
| return; | |||
| } | |||
| var cts = new CancellationTokenSource(); | |||
| var showProgressTask = ShowProgressInConsole(cts); | |||
| try | |||
| { | |||
| { | |||
| await task; | |||
| } | |||
| finally | |||
| { | |||
| cts.Cancel(); | |||
| cts.Cancel(); | |||
| } | |||
| await showProgressTask; | |||
| Console.WriteLine("Done."); | |||
| } | |||
| private static async Task ShowProgressInConsole(CancellationTokenSource cts) | |||
| { | |||
| var cols = 0; | |||
| await Task.Delay(1000); | |||
| while (!cts.IsCancellationRequested) | |||
| { | |||
| await Task.Delay(1000); | |||
| Console.Write("."); | |||
| cols++; | |||
| if (cols >= 50) | |||
| if (cols % 50 == 0) | |||
| { | |||
| cols = 0; | |||
| Console.WriteLine(); | |||
| } | |||
| } | |||
| Console.WriteLine(); | |||
| if (cols > 0) | |||
| Console.WriteLine(); | |||
| } | |||
| } | |||
| } | |||
| @@ -192,6 +192,12 @@ namespace Tensorflow | |||
| public static Tensor logical_and(Tensor x, Tensor y, string name = null) | |||
| => gen_math_ops.logical_and(x, y, name); | |||
| public static Tensor logical_not(Tensor x, string name = null) | |||
| => gen_math_ops.logical_not(x, name); | |||
| public static Tensor logical_or(Tensor x, Tensor y, string name = null) | |||
| => gen_math_ops.logical_or(x, y, name); | |||
| /// <summary> | |||
| /// Clips tensor values to a specified min and max. | |||
| /// </summary> | |||
| @@ -34,10 +34,17 @@ namespace Tensorflow | |||
| public Graph get_controller() | |||
| { | |||
| if (stack.Count == 0) | |||
| if (stack.Count(x => x.IsDefault) == 0) | |||
| stack.Add(new StackModel { Graph = tf.Graph(), IsDefault = true }); | |||
| return stack.First(x => x.IsDefault).Graph; | |||
| return stack.Last(x => x.IsDefault).Graph; | |||
| } | |||
| public bool remove(Graph g) | |||
| { | |||
| var sm = stack.FirstOrDefault(x => x.Graph == g); | |||
| if (sm == null) return false; | |||
| return stack.Remove(sm); | |||
| } | |||
| public void reset() | |||
| @@ -73,9 +73,8 @@ namespace Tensorflow | |||
| all variables that are created during the construction of a graph. The caller | |||
| may define additional collections by specifying a new name. | |||
| */ | |||
| public partial class Graph : IPython, IDisposable, IEnumerable<Operation> | |||
| public partial class Graph : DisposableObject, IEnumerable<Operation> | |||
| { | |||
| private IntPtr _handle; | |||
| private Dictionary<int, ITensorOrOperation> _nodes_by_id; | |||
| public Dictionary<string, ITensorOrOperation> _nodes_by_name; | |||
| private Dictionary<string, int> _names_in_use; | |||
| @@ -121,10 +120,6 @@ namespace Tensorflow | |||
| _graph_key = $"grap-key-{ops.uid()}/"; | |||
| } | |||
| public void __enter__() | |||
| { | |||
| } | |||
| public ITensorOrOperation as_graph_element(object obj, bool allow_tensor = true, bool allow_operation = true) | |||
| { | |||
| return _as_graph_element_locked(obj, allow_tensor, allow_operation); | |||
| @@ -443,14 +438,15 @@ namespace Tensorflow | |||
| _unfetchable_ops.Add(op); | |||
| } | |||
| public void Dispose() | |||
| { | |||
| /*if (_handle != IntPtr.Zero) | |||
| c_api.TF_DeleteGraph(_handle); | |||
| _handle = IntPtr.Zero; | |||
| GC.SuppressFinalize(this);*/ | |||
| protected override void DisposeManagedState() | |||
| { | |||
| ops.default_graph_stack.remove(this); | |||
| } | |||
| protected override void DisposeUnManagedState(IntPtr handle) | |||
| { | |||
| Console.WriteLine($"Destroy graph {handle}"); | |||
| c_api.TF_DeleteGraph(handle); | |||
| } | |||
| /// <summary> | |||
| @@ -481,17 +477,19 @@ namespace Tensorflow | |||
| return new TensorShape(dims.Select(x => (int)x).ToArray()); | |||
| } | |||
| string debugString = string.Empty; | |||
| public override string ToString() | |||
| { | |||
| int len = 0; | |||
| return c_api.TF_GraphDebugString(_handle, out len); | |||
| return $"{graph_key}, ({_handle})"; | |||
| /*if (string.IsNullOrEmpty(debugString)) | |||
| { | |||
| int len = 0; | |||
| debugString = c_api.TF_GraphDebugString(_handle, out len); | |||
| } | |||
| return debugString;*/ | |||
| } | |||
| public void __exit__() | |||
| { | |||
| } | |||
| private IEnumerable<Operation> GetEnumerable() | |||
| => c_api_util.tf_operations(this); | |||
| @@ -84,7 +84,7 @@ namespace Tensorflow | |||
| // Dict mapping op name to file and line information for op colocation | |||
| // context managers. | |||
| _control_flow_context = graph._get_control_flow_context(); | |||
| _control_flow_context = _graph._get_control_flow_context(); | |||
| // Note: _control_flow_post_processing() must not be called here, the caller is responsible for calling it when using this constructor. | |||
| } | |||
| @@ -357,6 +357,20 @@ namespace Tensorflow | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor logical_not(Tensor x, string name = null) | |||
| { | |||
| var _op = _op_def_lib._apply_op_helper("LogicalNot", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor logical_or(Tensor x, Tensor y, string name = null) | |||
| { | |||
| var _op = _op_def_lib._apply_op_helper("LogicalOr", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor squared_difference(Tensor x, Tensor y, string name = null) | |||
| { | |||
| var _op = _op_def_lib._apply_op_helper("SquaredDifference", name, args: new { x, y, name }); | |||
| @@ -31,7 +31,6 @@ namespace Tensorflow | |||
| protected bool _closed; | |||
| protected int _current_version; | |||
| protected byte[] _target; | |||
| protected IntPtr _session; | |||
| public Graph graph => _graph; | |||
| public BaseSession(string target = "", Graph g = null, SessionOptions opts = null) | |||
| @@ -46,7 +45,7 @@ namespace Tensorflow | |||
| var status = new Status(); | |||
| _session = c_api.TF_NewSession(_graph, opts ?? newOpts, status); | |||
| _handle = c_api.TF_NewSession(_graph, opts ?? newOpts, status); | |||
| status.Check(true); | |||
| } | |||
| @@ -212,7 +211,7 @@ namespace Tensorflow | |||
| var output_values = fetch_list.Select(x => IntPtr.Zero).ToArray(); | |||
| c_api.TF_SessionRun(_session, | |||
| c_api.TF_SessionRun(_handle, | |||
| run_options: null, | |||
| inputs: feed_dict.Select(f => f.Key).ToArray(), | |||
| input_values: feed_dict.Select(f => (IntPtr)f.Value).ToArray(), | |||
| @@ -30,7 +30,7 @@ namespace Tensorflow | |||
| public Session(IntPtr handle, Graph g = null) | |||
| : base("", g, null) | |||
| { | |||
| _session = handle; | |||
| _handle = handle; | |||
| } | |||
| public Session(Graph g, SessionOptions opts = null, Status s = null) | |||
| @@ -73,7 +73,7 @@ namespace Tensorflow | |||
| return new Session(sess, g: new Graph(graph).as_default()); | |||
| } | |||
| public static implicit operator IntPtr(Session session) => session._session; | |||
| public static implicit operator IntPtr(Session session) => session._handle; | |||
| public static implicit operator Session(IntPtr handle) => new Session(handle); | |||
| public void __enter__() | |||
| @@ -506,7 +506,7 @@ namespace Tensorflow | |||
| IsMemoryOwner = true; | |||
| } | |||
| private unsafe IntPtr Allocate(NDArray nd, TF_DataType? tensorDType = null) | |||
| private unsafe IntPtr AllocateWithMemoryCopy(NDArray nd, TF_DataType? tensorDType = null) | |||
| { | |||
| IntPtr dotHandle = IntPtr.Zero; | |||
| int buffersize = 0; | |||
| @@ -520,30 +520,30 @@ namespace Tensorflow | |||
| var dataType = ToTFDataType(nd.dtype); | |||
| // shape | |||
| var dims = nd.shape.Select(x => (long)x).ToArray(); | |||
| var nd1 = nd.ravel(); | |||
| // var nd1 = nd.ravel(); | |||
| switch (nd.dtype.Name) | |||
| { | |||
| case "Boolean": | |||
| var boolVals = Array.ConvertAll(nd1.Data<bool>(), x => Convert.ToByte(x)); | |||
| var boolVals = Array.ConvertAll(nd.Data<bool>(), x => Convert.ToByte(x)); | |||
| Marshal.Copy(boolVals, 0, dotHandle, nd.size); | |||
| break; | |||
| case "Int16": | |||
| Marshal.Copy(nd1.Data<short>(), 0, dotHandle, nd.size); | |||
| Marshal.Copy(nd.Data<short>(), 0, dotHandle, nd.size); | |||
| break; | |||
| case "Int32": | |||
| Marshal.Copy(nd1.Data<int>(), 0, dotHandle, nd.size); | |||
| Marshal.Copy(nd.Data<int>(), 0, dotHandle, nd.size); | |||
| break; | |||
| case "Int64": | |||
| Marshal.Copy(nd1.Data<long>(), 0, dotHandle, nd.size); | |||
| Marshal.Copy(nd.Data<long>(), 0, dotHandle, nd.size); | |||
| break; | |||
| case "Single": | |||
| Marshal.Copy(nd1.Data<float>(), 0, dotHandle, nd.size); | |||
| Marshal.Copy(nd.Data<float>(), 0, dotHandle, nd.size); | |||
| break; | |||
| case "Double": | |||
| Marshal.Copy(nd1.Data<double>(), 0, dotHandle, nd.size); | |||
| Marshal.Copy(nd.Data<double>(), 0, dotHandle, nd.size); | |||
| break; | |||
| case "Byte": | |||
| Marshal.Copy(nd1.Data<byte>(), 0, dotHandle, nd.size); | |||
| Marshal.Copy(nd.Data<byte>(), 0, dotHandle, nd.size); | |||
| break; | |||
| case "String": | |||
| return new Tensor(UTF8Encoding.UTF8.GetBytes(nd.Data<string>(0)), TF_DataType.TF_STRING); | |||
| @@ -559,6 +559,132 @@ namespace Tensorflow | |||
| ref _deallocatorArgs); | |||
| return tfHandle; | |||
| } | |||
| private unsafe IntPtr Allocate(NDArray nd, TF_DataType? tensorDType = null) | |||
| { | |||
| IntPtr dotHandle = IntPtr.Zero; | |||
| IntPtr tfHandle = IntPtr.Zero; | |||
| int buffersize = nd.size * nd.dtypesize; | |||
| var dataType = ToTFDataType(nd.dtype); | |||
| // shape | |||
| var dims = nd.shape.Select(x => (long)x).ToArray(); | |||
| switch (nd.dtype.Name) | |||
| { | |||
| case "Boolean": | |||
| { | |||
| var boolVals = Array.ConvertAll(nd.Data<bool>(), x => Convert.ToByte(x)); | |||
| var array = nd.Data<byte>(); | |||
| fixed (byte* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "Int16": | |||
| { | |||
| var array = nd.Data<short>(); | |||
| fixed (short* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "Int32": | |||
| { | |||
| var array = nd.Data<int>(); | |||
| fixed (int* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "Int64": | |||
| { | |||
| var array = nd.Data<long>(); | |||
| fixed (long* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "Single": | |||
| { | |||
| var array = nd.Data<float>(); | |||
| fixed (float* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "Double": | |||
| { | |||
| var array = nd.Data<double>(); | |||
| fixed (double* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "Byte": | |||
| { | |||
| var array = nd.Data<byte>(); | |||
| fixed (byte* h = &array[0]) | |||
| { | |||
| tfHandle = c_api.TF_NewTensor(dataType, | |||
| dims, | |||
| dims.Length, | |||
| new IntPtr(h), | |||
| (UIntPtr)buffersize, | |||
| _nothingDeallocator, | |||
| ref _deallocatorArgs); | |||
| } | |||
| } | |||
| break; | |||
| case "String": | |||
| return new Tensor(UTF8Encoding.UTF8.GetBytes(nd.Data<string>(0)), TF_DataType.TF_STRING); | |||
| default: | |||
| throw new NotImplementedException($"Marshal.Copy failed for {nd.dtype.Name}."); | |||
| } | |||
| return tfHandle; | |||
| } | |||
| public unsafe Tensor(byte[][] buffer, long[] shape) | |||
| @@ -70,7 +70,8 @@ namespace TensorFlowNET.Examples | |||
| OneHot = true, | |||
| TrainSize = train_size, | |||
| ValidationSize = validation_size, | |||
| TestSize = test_size | |||
| TestSize = test_size, | |||
| ShowProgressInConsole = true | |||
| }; | |||
| mnist = loader.LoadAsync(setting).Result; | |||
| @@ -124,7 +124,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: train_size, validationSize: validation_size, testSize: test_size).Result; | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: train_size, validationSize: validation_size, testSize: test_size, showProgressInConsole: true).Result; | |||
| } | |||
| public void SaveModel(Session sess) | |||
| @@ -84,7 +84,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: TrainSize, validationSize: ValidationSize, testSize: TestSize).Result; | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: TrainSize, validationSize: ValidationSize, testSize: TestSize, showProgressInConsole: true).Result; | |||
| // In this example, we limit mnist data | |||
| (Xtr, Ytr) = mnist.Train.GetNextBatch(TrainSize == null ? 5000 : TrainSize.Value / 100); // 5000 for training (nn candidates) | |||
| (Xte, Yte) = mnist.Test.GetNextBatch(TestSize == null ? 200 : TestSize.Value / 100); // 200 for testing | |||
| @@ -310,7 +310,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true).Result; | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, showProgressInConsole: true).Result; | |||
| (x_train, y_train) = Reformat(mnist.Train.Data, mnist.Train.Labels); | |||
| (x_valid, y_valid) = Reformat(mnist.Validation.Data, mnist.Validation.Labels); | |||
| (x_test, y_test) = Reformat(mnist.Test.Data, mnist.Test.Labels); | |||
| @@ -121,7 +121,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true).Result; | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, showProgressInConsole: true).Result; | |||
| } | |||
| public void Train(Session sess) | |||
| @@ -143,7 +143,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true).Result; | |||
| mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, showProgressInConsole: true).Result; | |||
| (x_train, y_train) = (mnist.Train.Data, mnist.Train.Labels); | |||
| (x_valid, y_valid) = (mnist.Validation.Data, mnist.Validation.Labels); | |||
| (x_test, y_test) = (mnist.Test.Data, mnist.Test.Labels); | |||
| @@ -52,7 +52,8 @@ namespace TensorFlowNET.Examples | |||
| // The location where variable checkpoints will be stored. | |||
| string CHECKPOINT_NAME = Path.Join(data_dir, "_retrain_checkpoint"); | |||
| string tfhub_module = "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/3"; | |||
| string final_tensor_name = "final_result"; | |||
| string input_tensor_name = "Placeholder"; | |||
| string final_tensor_name = "Score"; | |||
| float testing_percentage = 0.1f; | |||
| float validation_percentage = 0.1f; | |||
| float learning_rate = 0.01f; | |||
| @@ -81,13 +82,13 @@ namespace TensorFlowNET.Examples | |||
| PrepareData(); | |||
| #region For debug purpose | |||
| // predict images | |||
| // Predict(null); | |||
| // load saved pb and test new images. | |||
| // Test(null); | |||
| #endregion | |||
| var graph = IsImportingGraph ? ImportGraph() : BuildGraph(); | |||
| @@ -276,16 +277,13 @@ namespace TensorFlowNET.Examples | |||
| private (Graph, Tensor, Tensor, bool) create_module_graph() | |||
| { | |||
| var (height, width) = (299, 299); | |||
| return tf_with(tf.Graph().as_default(), graph => | |||
| { | |||
| tf.train.import_meta_graph("graph/InceptionV3.meta"); | |||
| Tensor resized_input_tensor = graph.OperationByName("Placeholder"); //tf.placeholder(tf.float32, new TensorShape(-1, height, width, 3)); | |||
| // var m = hub.Module(module_spec); | |||
| Tensor bottleneck_tensor = graph.OperationByName("module_apply_default/hub_output/feature_vector/SpatialSqueeze");// m(resized_input_tensor); | |||
| var wants_quantization = false; | |||
| return (graph, bottleneck_tensor, resized_input_tensor, wants_quantization); | |||
| }); | |||
| var graph = tf.Graph().as_default(); | |||
| tf.train.import_meta_graph("graph/InceptionV3.meta"); | |||
| Tensor resized_input_tensor = graph.OperationByName(input_tensor_name); //tf.placeholder(tf.float32, new TensorShape(-1, height, width, 3)); | |||
| // var m = hub.Module(module_spec); | |||
| Tensor bottleneck_tensor = graph.OperationByName("module_apply_default/hub_output/feature_vector/SpatialSqueeze");// m(resized_input_tensor); | |||
| var wants_quantization = false; | |||
| return (graph, bottleneck_tensor, resized_input_tensor, wants_quantization); | |||
| } | |||
| private (NDArray, long[], string[]) get_random_cached_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists, | |||
| @@ -594,13 +592,10 @@ namespace TensorFlowNET.Examples | |||
| create_module_graph(); | |||
| // Add the new layer that we'll be training. | |||
| tf_with(graph.as_default(), delegate | |||
| { | |||
| (train_step, cross_entropy, bottleneck_input, | |||
| ground_truth_input, final_tensor) = add_final_retrain_ops( | |||
| class_count, final_tensor_name, bottleneck_tensor, | |||
| wants_quantization, is_training: true); | |||
| }); | |||
| (train_step, cross_entropy, bottleneck_input, | |||
| ground_truth_input, final_tensor) = add_final_retrain_ops( | |||
| class_count, final_tensor_name, bottleneck_tensor, | |||
| wants_quantization, is_training: true); | |||
| return graph; | |||
| } | |||
| @@ -734,15 +729,15 @@ namespace TensorFlowNET.Examples | |||
| var labels = File.ReadAllLines(output_labels); | |||
| // predict image | |||
| var img_path = Path.Join(image_dir, "roses", "12240303_80d87f77a3_n.jpg"); | |||
| var img_path = Path.Join(image_dir, "daisy", "5547758_eea9edfd54_n.jpg"); | |||
| var fileBytes = ReadTensorFromImageFile(img_path); | |||
| // import graph and variables | |||
| var graph = new Graph(); | |||
| graph.Import(output_graph, ""); | |||
| Tensor input = graph.OperationByName("Placeholder"); | |||
| Tensor output = graph.OperationByName("final_result"); | |||
| Tensor input = graph.OperationByName(input_tensor_name); | |||
| Tensor output = graph.OperationByName(final_tensor_name); | |||
| using (var sess = tf.Session(graph)) | |||
| { | |||
| @@ -7,12 +7,13 @@ namespace TensorFlowNET.UnitTest | |||
| [TestClass] | |||
| public class NameScopeTest | |||
| { | |||
| Graph g = ops.get_default_graph(); | |||
| string name = ""; | |||
| [TestMethod] | |||
| public void NestedNameScope() | |||
| { | |||
| Graph g = tf.Graph().as_default(); | |||
| tf_with(new ops.NameScope("scope1"), scope1 => | |||
| { | |||
| name = scope1; | |||
| @@ -37,6 +38,8 @@ namespace TensorFlowNET.UnitTest | |||
| Assert.AreEqual("scope1/Const_1:0", const3.name); | |||
| }); | |||
| g.Dispose(); | |||
| Assert.AreEqual("", g._name_stack); | |||
| } | |||
| } | |||
| @@ -131,7 +131,7 @@ namespace TensorFlowNET.UnitTest | |||
| } | |||
| [TestMethod] | |||
| public void logicalAndTest() | |||
| public void logicalOpsTest() | |||
| { | |||
| var a = tf.constant(new[] {1f, 2f, 3f, 4f, -4f, -3f, -2f, -1f}); | |||
| var b = tf.less(a, 0f); | |||
| @@ -144,6 +144,24 @@ namespace TensorFlowNET.UnitTest | |||
| var o = sess.run(d); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| d = tf.cast(tf.logical_not(b), tf.int32); | |||
| check = np.array(new[] { 1, 1, 1, 1, 0, 0, 0, 0 }); | |||
| using (var sess = tf.Session()) | |||
| { | |||
| var o = sess.run(d); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| d = tf.cast(tf.logical_or(b, c), tf.int32); | |||
| check = np.array(new[] { 1, 1, 1, 1, 1, 1, 1, 1 }); | |||
| using (var sess = tf.Session()) | |||
| { | |||
| var o = sess.run(d); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| } | |||
| [TestMethod] | |||