| @@ -4,6 +4,25 @@ | |||
| This release contains contributions from many people at SciSharp as well as the external contributors. | |||
| **Release Date 02/06/2021** | |||
| ### TensorFlow.Binding v0.33.0 | |||
| * Improve memory usage | |||
| * Fix minor bugs | |||
| ### TensorFlow.Keras v0.4.0 | |||
| * Add Subtract layer | |||
| * Add model.load_weights and model.save_weights | |||
| * Fix memory leak issue | |||
| * Support to build YOLOv3 object detection model | |||
| **Release Date 01/09/2021** | |||
| ### TensorFlow.Binding v0.32.0 | |||
| @@ -56,15 +56,31 @@ namespace Tensorflow | |||
| { | |||
| var nd = np.zeros(1 * 256 * 256 * 3).astype(np.float32).reshape(1, 256, 256, 3); | |||
| ResourceVariable variable = tf.Variable(nd); | |||
| var nd2 = np.arange(1 * 256 * 256 * 3).astype(np.float32).reshape(1, 256, 256, 3); | |||
| variable.assign(nd2); | |||
| for (int i = 0; i< 100; i++) | |||
| for (int i = 0; i< 10; i++) | |||
| { | |||
| var v = variable.numpy(); | |||
| } | |||
| }; | |||
| public Action<int, int> VariableAssign | |||
| => (epoch, iterate) => | |||
| { | |||
| ResourceVariable variable = tf.Variable(3112f); | |||
| AssignVariable(variable); | |||
| for (int i = 0; i < 100; i++) | |||
| { | |||
| var v = variable.numpy(); | |||
| if ((float)v != 1984f) | |||
| throw new ValueError(""); | |||
| } | |||
| }; | |||
| void AssignVariable(IVariableV1 v) | |||
| { | |||
| using var tensor = tf.constant(1984f); | |||
| v.assign(tensor); | |||
| } | |||
| public Action<int, int> MathAdd | |||
| => (epoch, iterate) => | |||
| @@ -52,6 +52,10 @@ namespace Tensorflow | |||
| // 100K float variable. | |||
| mm.Execute(10, batchSize, basic.Variable); | |||
| mm.Execute(10, batchSize, basic.VariableRead); | |||
| mm.Execute(10, batchSize, basic.VariableAssign); | |||
| // 1 million math. | |||
| mm.Execute(10, 100 * batchSize, basic.MathAdd); | |||
| @@ -215,6 +215,9 @@ namespace Tensorflow | |||
| public Tensor ones_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => array_ops.ones_like(tensor, dtype: dtype, name: name, optimize: optimize); | |||
| public Tensor ones_like(NDArray nd, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => array_ops.ones_like(nd, dtype: dtype, name: name, optimize: optimize); | |||
| public Tensor one_hot(Tensor indices, int depth, | |||
| Tensor on_value = null, | |||
| Tensor off_value = null, | |||
| @@ -290,6 +293,9 @@ namespace Tensorflow | |||
| public Tensor zeros_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => array_ops.zeros_like(tensor, dtype: dtype, name: name, optimize: optimize); | |||
| public Tensor zeros_like(NDArray nd, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => array_ops.zeros_like(nd, dtype: dtype, name: name, optimize: optimize); | |||
| /// <summary> | |||
| /// Stops gradient computation. | |||
| /// </summary> | |||
| @@ -23,6 +23,15 @@ namespace Tensorflow | |||
| { | |||
| public Tensor log(Tensor x, string name = null) | |||
| => gen_math_ops.log(x, name); | |||
| /// <summary> | |||
| /// Computes the Gauss error function of `x` element-wise. | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor erf(Tensor x, string name = null) | |||
| => math_ops.erf(x, name); | |||
| } | |||
| public Tensor abs(Tensor x, string name = null) | |||
| @@ -118,6 +127,9 @@ namespace Tensorflow | |||
| public Tensor cos(Tensor x, string name = null) | |||
| => gen_math_ops.cos(x, name); | |||
| public Tensor cos(float x, string name = null) | |||
| => gen_math_ops.cos(x, name); | |||
| /// <summary> | |||
| /// Computes hyperbolic cosine of x element-wise. | |||
| /// </summary> | |||
| @@ -137,6 +137,8 @@ namespace Tensorflow | |||
| { | |||
| switch (a) | |||
| { | |||
| case Tensors arr: | |||
| return arr.Length; | |||
| case Array arr: | |||
| return arr.Length; | |||
| case IList arr: | |||
| @@ -28,6 +28,7 @@ namespace Tensorflow.Contexts | |||
| /// </summary> | |||
| public sealed partial class Context | |||
| { | |||
| // [DebuggerStepThrough] | |||
| public T RunInAutoMode<T>(Func<T> graphAction, Func<T> eagerAction, params object[] args) | |||
| { | |||
| if (tf.Context.has_graph_arg(args)) | |||
| @@ -138,6 +138,9 @@ namespace Tensorflow.Gradients | |||
| [RegisterNoGradient("GreaterEqual")] | |||
| public static Tensor[] _GreaterEqualGrad(Operation op, Tensor[] grads) => null; | |||
| [RegisterNoGradient("OnesLike")] | |||
| public static Tensor[] _OnesLike(Operation op, Tensor[] grads) => null; | |||
| [RegisterNoGradient("ZerosLike")] | |||
| public static Tensor[] _ZerosLike(Operation op, Tensor[] grads) => null; | |||
| @@ -1,6 +1,21 @@ | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| using System.Collections.Generic; | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class RNNArgs : LayerArgs | |||
| { | |||
| public interface IRnnArgCell : ILayer | |||
| { | |||
| object state_size { get; } | |||
| } | |||
| public IRnnArgCell Cell { get; set; } = null; | |||
| public bool ReturnSequences { get; set; } = false; | |||
| public bool ReturnState { get; set; } = false; | |||
| public bool GoBackwards { get; set; } = false; | |||
| public bool Stateful { get; set; } = false; | |||
| public bool Unroll { get; set; } = false; | |||
| public bool TimeMajor { get; set; } = false; | |||
| public Dictionary<string, object> Kwargs { get; set; } = null; | |||
| } | |||
| } | |||
| @@ -0,0 +1,30 @@ | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class SimpleRNNArgs : RNNArgs | |||
| { | |||
| public int Units { get; set; } | |||
| public Activation Activation { get; set; } | |||
| // units, | |||
| // activation='tanh', | |||
| // use_bias=True, | |||
| // kernel_initializer='glorot_uniform', | |||
| // recurrent_initializer='orthogonal', | |||
| // bias_initializer='zeros', | |||
| // kernel_regularizer=None, | |||
| // recurrent_regularizer=None, | |||
| // bias_regularizer=None, | |||
| // activity_regularizer=None, | |||
| // kernel_constraint=None, | |||
| // recurrent_constraint=None, | |||
| // bias_constraint=None, | |||
| // dropout=0., | |||
| // recurrent_dropout=0., | |||
| // return_sequences=False, | |||
| // return_state=False, | |||
| // go_backwards=False, | |||
| // stateful=False, | |||
| // unroll=False, | |||
| // **kwargs): | |||
| } | |||
| } | |||
| @@ -0,0 +1,9 @@ | |||
| using System.Collections.Generic; | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class StackedRNNCellsArgs : LayerArgs | |||
| { | |||
| public IList<RnnCell> Cells { get; set; } | |||
| } | |||
| } | |||
| @@ -46,7 +46,7 @@ namespace Tensorflow | |||
| /// matching structure of Tensors having shape `[batch_size].concatenate(s)` | |||
| /// for each `s` in `self.batch_size`. | |||
| /// </summary> | |||
| public abstract class RnnCell : ILayer | |||
| public abstract class RnnCell : ILayer, RNNArgs.IRnnArgCell | |||
| { | |||
| /// <summary> | |||
| /// Attribute that indicates whether the cell is a TF RNN cell, due the slight | |||
| @@ -274,7 +274,7 @@ namespace Tensorflow | |||
| { | |||
| if (elem is EagerTensor eager_tensor) | |||
| { | |||
| if(switch_to_graph) | |||
| if (switch_to_graph) | |||
| elems_as_tensors.Add(constant_op.constant(eager_tensor.numpy(), dtype: dtype, name: i.ToString())); | |||
| else | |||
| elems_as_tensors.Add(eager_tensor); | |||
| @@ -366,8 +366,30 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <param name="optimize"></param> | |||
| /// <returns></returns> | |||
| public static Tensor ones_like<T>(T tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| => ones_like_impl(tensor, dtype, name, optimize); | |||
| public static Tensor ones_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| { | |||
| return tf_with(ops.name_scope(name, "ones_like", new Tensor[] { tensor }), scope => | |||
| { | |||
| name = scope; | |||
| tensor = ops.convert_to_tensor(tensor, name: "tensor"); | |||
| // is_fully_defined return unexpected value. | |||
| if (optimize && tensor_util.to_shape(tensor.shape).is_fully_defined() && dtype != TF_DataType.TF_VARIANT) | |||
| { | |||
| } | |||
| if (dtype != TF_DataType.DtInvalid && dtype != tensor.dtype && dtype != TF_DataType.TF_VARIANT) | |||
| { | |||
| throw new NotImplementedException("ones_like"); | |||
| // return ones(shape_internal(tensor, optimize: optimize), dtype: dtype, name: name); | |||
| } | |||
| else | |||
| { | |||
| return gen_array_ops.ones_like(tensor, name: name); | |||
| } | |||
| }); | |||
| } | |||
| public static Tensor reshape(Tensor tensor, Tensor shape, string name = null) | |||
| => gen_array_ops.reshape(tensor, shape, name: name); | |||
| @@ -388,14 +410,12 @@ namespace Tensorflow | |||
| if (dtype == TF_DataType.DtInvalid) | |||
| dtype = tensor1.dtype; | |||
| var ret = ones(ones_shape, dtype: dtype, name: name); | |||
| ret.shape = tensor1.shape; | |||
| return ret; | |||
| }); | |||
| } | |||
| public static Tensor ones(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| { | |||
| dtype = dtype.as_base_dtype(); | |||
| return tf_with(ops.name_scope(name, "ones", new { shape }), scope => | |||
| { | |||
| name = scope; | |||
| @@ -578,11 +598,10 @@ namespace Tensorflow | |||
| if (!tf.Context.executing_eagerly()) | |||
| { | |||
| var input_tensor = ops.convert_to_tensor(input); | |||
| var input_shape = input_tensor.TensorShape; | |||
| if (optimize && input_tensor.NDims > -1 && input_shape.is_fully_defined()) | |||
| var input_shape = input.TensorShape; | |||
| if (optimize && input.NDims > -1 && input_shape.is_fully_defined()) | |||
| { | |||
| var nd = np.array(input_tensor.shape).astype(out_type.as_numpy_dtype()); | |||
| var nd = np.array(input.shape).astype(out_type.as_numpy_dtype()); | |||
| return constant_op.constant(nd, name: name); | |||
| } | |||
| } | |||
| @@ -891,7 +910,7 @@ namespace Tensorflow | |||
| return tf_with(ops.name_scope(name, "transpose", new { a }), scope => | |||
| { | |||
| var a_tensor = ops.convert_to_tensor(a); | |||
| if(perm == null) | |||
| if (perm == null) | |||
| { | |||
| var rank = a_tensor.rank; | |||
| perm = range(0, rank).OrderByDescending(x => x).ToArray(); | |||
| @@ -953,7 +972,9 @@ namespace Tensorflow | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Slice", name, new | |||
| { | |||
| input, begin, size | |||
| input, | |||
| begin, | |||
| size | |||
| }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Slice", name, | |||
| @@ -969,8 +990,8 @@ namespace Tensorflow | |||
| tf.Runner.RecordGradient("Slice", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(input, begin, size)); | |||
| public static Tensor stack(object values, int axis = 0, string name = "stack") | |||
| public static Tensor stack(object values, int axis = 0, string name = "stack") | |||
| { | |||
| if (axis == 0) | |||
| // If the input is a constant list, it can be converted to a constant op | |||
| @@ -591,6 +591,15 @@ namespace Tensorflow | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor ones_like(Tensor x, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("OnesLike", name, new { x }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "OnesLike", name, | |||
| null, | |||
| x).FirstOrDefault(), | |||
| x); | |||
| public static Tensor zeros_like(Tensor x, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("ZerosLike", name, new { x }).output, () | |||
| @@ -124,6 +124,9 @@ namespace Tensorflow | |||
| x, y).FirstOrDefault(), | |||
| x, y); | |||
| public static Tensor mean(Tensor input, int axis, bool keep_dims = false, string name = null) | |||
| => mean(input, ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name); | |||
| /// <summary> | |||
| /// Computes the mean of elements across dimensions of a tensor. | |||
| /// Reduces `input` along the dimensions given in `axis`. Unless | |||
| @@ -137,23 +140,30 @@ namespace Tensorflow | |||
| /// <param name="keep_dims"> An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1.</param> | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `input`.</returns> | |||
| public static Tensor mean<T1, T2>(T1 input, T2 axis, bool keep_dims = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| public static Tensor mean(Tensor input, Tensor axis, bool keep_dims = false, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Mean", name, new | |||
| { | |||
| input, | |||
| reduction_indices = axis, | |||
| keep_dims = keep_dims | |||
| }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Mean", name, | |||
| null, | |||
| input, axis, | |||
| "keep_dims", keep_dims); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Mean", name, args: new { input, reduction_indices = axis, keep_dims = keep_dims }); | |||
| return _op.output; | |||
| } | |||
| "keep_dims", keep_dims).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T"), | |||
| "Tidx", op.get_attr<TF_DataType>("Tidx"), | |||
| "keep_dims", op.get_attr<bool>("keep_dims") | |||
| }; | |||
| tf.Runner.RecordGradient("Mean", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(input, axis)); | |||
| public static Tensor mean(Tensor[] inputs, Tensor axis, bool keep_dims = false, string name = null) | |||
| { | |||
| @@ -376,8 +386,18 @@ namespace Tensorflow | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor cos(Tensor x, string name = null) | |||
| public static Tensor cos<T>(T x, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Cos", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Cos", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| @@ -776,20 +796,21 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor sub(Tensor x, Tensor y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Sub", name, new { x, y }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sub", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sub", name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| x, y).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T") | |||
| }; | |||
| tf.Runner.RecordGradient("Sub", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(x, y)); | |||
| public static Tensor sub<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| @@ -265,6 +265,29 @@ namespace Tensorflow | |||
| public static Tensor equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.equal(x, y, name: name); | |||
| /// <summary> | |||
| /// Computes the Gauss error function of `x` element-wise. | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor erf(Tensor x, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Erf", name, new { x }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Erf", name, | |||
| null, | |||
| x).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T") | |||
| }; | |||
| tf.Runner.RecordGradient("Erf", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(x)); | |||
| public static Tensor sqrt(Tensor x, string name = null) | |||
| => gen_math_ops.sqrt(x, name: name); | |||
| @@ -327,31 +350,17 @@ namespace Tensorflow | |||
| public static Tensor reduce_mean(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| { | |||
| var r = _ReductionDims(input_tensor, axis); | |||
| if (axis == null) | |||
| { | |||
| var m = gen_math_ops.mean(input_tensor, r, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis, m); | |||
| } | |||
| else | |||
| { | |||
| var m = gen_math_ops.mean(input_tensor, axis, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis, m); | |||
| } | |||
| var axis_tensor = axis == null ? r : ops.convert_to_tensor(axis); | |||
| var m = gen_math_ops.mean(input_tensor, axis_tensor, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis_tensor, m); | |||
| } | |||
| public static Tensor reduce_mean(Tensor[] input_tensors, int? axis = null, bool keepdims = false, string name = null) | |||
| { | |||
| if (axis == null) | |||
| { | |||
| var r = _ReductionDims(input_tensors, axis); | |||
| var m = gen_math_ops.mean(input_tensors, r, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis, m); | |||
| } | |||
| else | |||
| { | |||
| var m = gen_math_ops.mean(input_tensors, axis, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis, m); | |||
| } | |||
| var r = _ReductionDims(input_tensors, axis); | |||
| var axis_tensor = axis == null ? r : ops.convert_to_tensor(axis.Value); | |||
| var m = gen_math_ops.mean(input_tensors, axis_tensor, keepdims, name); | |||
| return _may_reduce_to_scalar(keepdims, axis, m); | |||
| } | |||
| /// <summary> | |||
| @@ -91,14 +91,16 @@ namespace Tensorflow | |||
| var buffer = new byte[size][]; | |||
| var data_start = c_api.TF_TensorData(_handle); | |||
| var string_start = data_start + (int)(size * sizeof(ulong)); | |||
| data_start += (int)(size * sizeof(ulong)); | |||
| for (int i = 0; i < buffer.Length; i++) | |||
| { | |||
| var len = *(byte*)string_start; | |||
| buffer[i] = new byte[len]; | |||
| string_start += 1; | |||
| Marshal.Copy(string_start, buffer[i], 0, len); | |||
| string_start += len; | |||
| IntPtr dst = IntPtr.Zero; | |||
| ulong dstLen = 0; | |||
| var read = c_api.TF_StringDecode((byte*)data_start, bytesize, (byte**)&dst, ref dstLen, tf.Status.Handle); | |||
| tf.Status.Check(true); | |||
| buffer[i] = new byte[(int)dstLen]; | |||
| Marshal.Copy(dst, buffer[i], 0, buffer[i].Length); | |||
| data_start += (int)read; | |||
| } | |||
| return buffer; | |||
| @@ -69,13 +69,14 @@ namespace Tensorflow | |||
| => items.Insert(index, tensor); | |||
| IEnumerator IEnumerable.GetEnumerator() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| => GetEnumerator(); | |||
| public static implicit operator Tensors(Tensor tensor) | |||
| => new Tensors(tensor); | |||
| public static implicit operator Tensors((Tensor, Tensor) tuple) | |||
| => new Tensors(tuple.Item1, tuple.Item2); | |||
| public static implicit operator Tensors(NDArray nd) | |||
| => new Tensors(nd); | |||
| @@ -17,7 +17,9 @@ namespace Tensorflow.Keras | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| var _op = tf.OpDefLib._apply_op_helper("Sigmoid", name: name, args: new { x = features }); | |||
| return _op.output; | |||
| }; | |||
| } | |||
| } | |||
| @@ -17,7 +17,9 @@ namespace Tensorflow.Keras | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| var _op = tf.OpDefLib._apply_op_helper("Tanh", name: name, args: new { x = features }); | |||
| return _op.output; | |||
| }; | |||
| } | |||
| } | |||
| @@ -1,12 +0,0 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| public interface ITensorFlowOpLayer | |||
| { | |||
| Layer GetOpLayer(TensorFlowOpLayerArgs args); | |||
| } | |||
| } | |||
| @@ -51,7 +51,7 @@ namespace Tensorflow.Keras.Engine | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| FitInternal(epochs); | |||
| FitInternal(epochs, verbose); | |||
| } | |||
| public void fit(IDatasetV2 dataset, | |||
| @@ -80,10 +80,10 @@ namespace Tensorflow.Keras.Engine | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| FitInternal(epochs); | |||
| FitInternal(epochs, verbose); | |||
| } | |||
| void FitInternal(int epochs) | |||
| void FitInternal(int epochs, int verbose) | |||
| { | |||
| stop_training = false; | |||
| _train_counter.assign(0); | |||
| @@ -96,8 +96,11 @@ namespace Tensorflow.Keras.Engine | |||
| { | |||
| // callbacks.on_train_batch_begin(step) | |||
| var results = train_step_function(iterator); | |||
| var result_pairs = string.Join(", ", results.Select(x => $"{x.Item1}: {(float)x.Item2:F6}")); | |||
| Console.WriteLine($"Epoch: {epoch + 1:D3}/{epochs:D3}, Step: {step + 1:D4}/{data_handler.Inferredsteps:D4}, {result_pairs}"); | |||
| if (verbose == 1) | |||
| { | |||
| var result_pairs = string.Join(", ", results.Select(x => $"{x.Item1}: {(float)x.Item2:F6}")); | |||
| Console.WriteLine($"Epoch: {epoch + 1:D3}/{epochs:D3}, Step: {step + 1:D4}/{data_handler.Inferredsteps:D4}, {result_pairs}"); | |||
| } | |||
| } | |||
| GC.Collect(); | |||
| @@ -1,4 +1,5 @@ | |||
| using NumSharp; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| using static Tensorflow.Binding; | |||
| @@ -142,6 +143,7 @@ namespace Tensorflow.Keras.Layers | |||
| public Dense Dense(int units, | |||
| Activation activation = null, | |||
| IInitializer kernel_initializer = null, | |||
| bool use_bias = true, | |||
| IInitializer bias_initializer = null, | |||
| TensorShape input_shape = null) | |||
| => new Dense(new DenseArgs | |||
| @@ -149,7 +151,7 @@ namespace Tensorflow.Keras.Layers | |||
| Units = units, | |||
| Activation = activation ?? keras.activations.Linear, | |||
| KernelInitializer = kernel_initializer ?? tf.glorot_uniform_initializer, | |||
| BiasInitializer = bias_initializer ?? tf.zeros_initializer, | |||
| BiasInitializer = bias_initializer ?? (use_bias ? tf.zeros_initializer : null), | |||
| InputShape = input_shape | |||
| }); | |||
| @@ -332,6 +334,24 @@ namespace Tensorflow.Keras.Layers | |||
| Alpha = alpha | |||
| }); | |||
| public Layer SimpleRNN(int units) => SimpleRNN(units, "tanh"); | |||
| public Layer SimpleRNN(int units, | |||
| Activation activation = null) | |||
| => new SimpleRNN(new SimpleRNNArgs | |||
| { | |||
| Units = units, | |||
| Activation = activation | |||
| }); | |||
| public Layer SimpleRNN(int units, | |||
| string activation = "tanh") | |||
| => new SimpleRNN(new SimpleRNNArgs | |||
| { | |||
| Units = units, | |||
| Activation = GetActivationByName(activation) | |||
| }); | |||
| public Layer LSTM(int units, | |||
| Activation activation = null, | |||
| Activation recurrent_activation = null, | |||
| @@ -381,6 +401,9 @@ namespace Tensorflow.Keras.Layers | |||
| public Add Add() | |||
| => new Add(new MergeArgs { }); | |||
| public Subtract Subtract() | |||
| => new Subtract(new MergeArgs { }); | |||
| public GlobalAveragePooling2D GlobalAveragePooling2D() | |||
| => new GlobalAveragePooling2D(new Pooling2DArgs { }); | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class Subtract : Merge | |||
| { | |||
| public Subtract(MergeArgs args) : base(args) | |||
| { | |||
| } | |||
| protected override Tensors _merge_function(Tensors inputs) | |||
| { | |||
| if (len(inputs) != 2) | |||
| throw new ValueError($"A `Subtract` layer should be called on exactly 2 inputs"); | |||
| return inputs[0] - inputs[1]; | |||
| } | |||
| } | |||
| } | |||
| @@ -1,4 +1,5 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| @@ -6,12 +7,93 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class RNN : Layer | |||
| { | |||
| public RNN(RNNArgs args) | |||
| : base(args) | |||
| private RNNArgs args; | |||
| public RNN(RNNArgs args) : base(PreConstruct(args)) | |||
| { | |||
| this.args = args; | |||
| SupportsMasking = true; | |||
| // The input shape is unknown yet, it could have nested tensor inputs, and | |||
| // the input spec will be the list of specs for nested inputs, the structure | |||
| // of the input_spec will be the same as the input. | |||
| //self.input_spec = None | |||
| //self.state_spec = None | |||
| //self._states = None | |||
| //self.constants_spec = None | |||
| //self._num_constants = 0 | |||
| //if stateful: | |||
| // if ds_context.has_strategy(): | |||
| // raise ValueError('RNNs with stateful=True not yet supported with ' | |||
| // 'tf.distribute.Strategy.') | |||
| } | |||
| private static RNNArgs PreConstruct(RNNArgs args) | |||
| { | |||
| if (args.Kwargs == null) | |||
| { | |||
| args.Kwargs = new Dictionary<string, object>(); | |||
| } | |||
| // If true, the output for masked timestep will be zeros, whereas in the | |||
| // false case, output from previous timestep is returned for masked timestep. | |||
| var zeroOutputForMask = (bool)args.Kwargs.Get("zero_output_for_mask", false); | |||
| object input_shape; | |||
| var propIS = args.Kwargs.Get("input_shape", null); | |||
| var propID = args.Kwargs.Get("input_dim", null); | |||
| var propIL = args.Kwargs.Get("input_length", null); | |||
| if (propIS == null && (propID != null || propIL != null)) | |||
| { | |||
| input_shape = ( | |||
| propIL ?? new NoneValue(), // maybe null is needed here | |||
| propID ?? new NoneValue()); // and here | |||
| args.Kwargs["input_shape"] = input_shape; | |||
| } | |||
| return args; | |||
| } | |||
| public RNN New(LayerRnnCell cell, | |||
| bool return_sequences = false, | |||
| bool return_state = false, | |||
| bool go_backwards = false, | |||
| bool stateful = false, | |||
| bool unroll = false, | |||
| bool time_major = false) | |||
| => new RNN(new RNNArgs | |||
| { | |||
| Cell = cell, | |||
| ReturnSequences = return_sequences, | |||
| ReturnState = return_state, | |||
| GoBackwards = go_backwards, | |||
| Stateful = stateful, | |||
| Unroll = unroll, | |||
| TimeMajor = time_major | |||
| }); | |||
| public RNN New(IList<RnnCell> cell, | |||
| bool return_sequences = false, | |||
| bool return_state = false, | |||
| bool go_backwards = false, | |||
| bool stateful = false, | |||
| bool unroll = false, | |||
| bool time_major = false) | |||
| => new RNN(new RNNArgs | |||
| { | |||
| Cell = new StackedRNNCells(new StackedRNNCellsArgs { Cells = cell }), | |||
| ReturnSequences = return_sequences, | |||
| ReturnState = return_state, | |||
| GoBackwards = go_backwards, | |||
| Stateful = stateful, | |||
| Unroll = unroll, | |||
| TimeMajor = time_major | |||
| }); | |||
| protected Tensor get_initial_state(Tensor inputs) | |||
| { | |||
| return _generate_zero_filled_state_for_cell(null, null); | |||
| @@ -0,0 +1,14 @@ | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class SimpleRNN : RNN | |||
| { | |||
| public SimpleRNN(RNNArgs args) : base(args) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,125 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class StackedRNNCells : Layer, RNNArgs.IRnnArgCell | |||
| { | |||
| public IList<RnnCell> Cells { get; set; } | |||
| public StackedRNNCells(StackedRNNCellsArgs args) : base(args) | |||
| { | |||
| Cells = args.Cells; | |||
| //Cells.reverse_state_order = kwargs.pop('reverse_state_order', False); | |||
| // self.reverse_state_order = kwargs.pop('reverse_state_order', False) | |||
| // if self.reverse_state_order: | |||
| // logging.warning('reverse_state_order=True in StackedRNNCells will soon ' | |||
| // 'be deprecated. Please update the code to work with the ' | |||
| // 'natural order of states if you rely on the RNN states, ' | |||
| // 'eg RNN(return_state=True).') | |||
| // super(StackedRNNCells, self).__init__(**kwargs) | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public object state_size | |||
| { | |||
| get => throw new NotImplementedException(); | |||
| } | |||
| //@property | |||
| //def state_size(self) : | |||
| // return tuple(c.state_size for c in | |||
| // (self.cells[::- 1] if self.reverse_state_order else self.cells)) | |||
| // @property | |||
| // def output_size(self) : | |||
| // if getattr(self.cells[-1], 'output_size', None) is not None: | |||
| // return self.cells[-1].output_size | |||
| // elif _is_multiple_state(self.cells[-1].state_size) : | |||
| // return self.cells[-1].state_size[0] | |||
| // else: | |||
| // return self.cells[-1].state_size | |||
| // def get_initial_state(self, inputs= None, batch_size= None, dtype= None) : | |||
| // initial_states = [] | |||
| // for cell in self.cells[::- 1] if self.reverse_state_order else self.cells: | |||
| // get_initial_state_fn = getattr(cell, 'get_initial_state', None) | |||
| // if get_initial_state_fn: | |||
| // initial_states.append(get_initial_state_fn( | |||
| // inputs=inputs, batch_size=batch_size, dtype=dtype)) | |||
| // else: | |||
| // initial_states.append(_generate_zero_filled_state_for_cell( | |||
| // cell, inputs, batch_size, dtype)) | |||
| // return tuple(initial_states) | |||
| // def call(self, inputs, states, constants= None, training= None, ** kwargs): | |||
| // # Recover per-cell states. | |||
| // state_size = (self.state_size[::- 1] | |||
| // if self.reverse_state_order else self.state_size) | |||
| // nested_states = nest.pack_sequence_as(state_size, nest.flatten(states)) | |||
| // # Call the cells in order and store the returned states. | |||
| // new_nested_states = [] | |||
| // for cell, states in zip(self.cells, nested_states) : | |||
| // states = states if nest.is_nested(states) else [states] | |||
| //# TF cell does not wrap the state into list when there is only one state. | |||
| // is_tf_rnn_cell = getattr(cell, '_is_tf_rnn_cell', None) is not None | |||
| // states = states[0] if len(states) == 1 and is_tf_rnn_cell else states | |||
| // if generic_utils.has_arg(cell.call, 'training'): | |||
| // kwargs['training'] = training | |||
| // else: | |||
| // kwargs.pop('training', None) | |||
| // # Use the __call__ function for callable objects, eg layers, so that it | |||
| // # will have the proper name scopes for the ops, etc. | |||
| // cell_call_fn = cell.__call__ if callable(cell) else cell.call | |||
| // if generic_utils.has_arg(cell.call, 'constants'): | |||
| // inputs, states = cell_call_fn(inputs, states, | |||
| // constants= constants, ** kwargs) | |||
| // else: | |||
| // inputs, states = cell_call_fn(inputs, states, ** kwargs) | |||
| // new_nested_states.append(states) | |||
| // return inputs, nest.pack_sequence_as(state_size, | |||
| // nest.flatten(new_nested_states)) | |||
| // @tf_utils.shape_type_conversion | |||
| // def build(self, input_shape) : | |||
| // if isinstance(input_shape, list) : | |||
| // input_shape = input_shape[0] | |||
| // for cell in self.cells: | |||
| // if isinstance(cell, Layer) and not cell.built: | |||
| // with K.name_scope(cell.name): | |||
| // cell.build(input_shape) | |||
| // cell.built = True | |||
| // if getattr(cell, 'output_size', None) is not None: | |||
| // output_dim = cell.output_size | |||
| // elif _is_multiple_state(cell.state_size) : | |||
| // output_dim = cell.state_size[0] | |||
| // else: | |||
| // output_dim = cell.state_size | |||
| // input_shape = tuple([input_shape[0]] + | |||
| // tensor_shape.TensorShape(output_dim).as_list()) | |||
| // self.built = True | |||
| // def get_config(self) : | |||
| // cells = [] | |||
| // for cell in self.cells: | |||
| // cells.append(generic_utils.serialize_keras_object(cell)) | |||
| // config = {'cells': cells | |||
| //} | |||
| //base_config = super(StackedRNNCells, self).get_config() | |||
| // return dict(list(base_config.items()) + list(config.items())) | |||
| // @classmethod | |||
| // def from_config(cls, config, custom_objects = None): | |||
| // from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top | |||
| // cells = [] | |||
| // for cell_config in config.pop('cells'): | |||
| // cells.append( | |||
| // deserialize_layer(cell_config, custom_objects = custom_objects)) | |||
| // return cls(cells, **config) | |||
| } | |||
| } | |||
| @@ -0,0 +1,73 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using Tensorflow; | |||
| using Tensorflow.Graphs; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class TensorFlowOpLayer : Layer | |||
| { | |||
| TensorFlowOpLayerArgs args; | |||
| Dictionary<int, NDArray> constants => args.Constants; | |||
| NodeDef node_def => args.NodeDef; | |||
| static string TF_OP_LAYER_NAME_PREFIX = "tf_op_layer_"; | |||
| public string OpType => node_def.Op; | |||
| public TensorFlowOpLayer(TensorFlowOpLayerArgs args) | |||
| : base(new LayerArgs | |||
| { | |||
| Name = TF_OP_LAYER_NAME_PREFIX + args.Name, | |||
| Trainable = args.Trainable, | |||
| DType = args.DType, | |||
| Autocast = false | |||
| }) | |||
| { | |||
| this.args = args; | |||
| built = true; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool is_training = false) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| return _defun_call(inputs); | |||
| return MakOp(inputs); | |||
| } | |||
| [AutoGraph] | |||
| Tensors _defun_call(Tensors inputs) | |||
| => MakOp(inputs); | |||
| Tensors MakOp(Tensors inputs) | |||
| { | |||
| var graph = inputs.graph; | |||
| graph.as_default(); | |||
| foreach (var (index, constant) in enumerate(constants)) | |||
| { | |||
| var value = constant_op.constant(constant, name: node_def.Input[index]); | |||
| inputs.Insert(index, value); | |||
| } | |||
| var (c_op, _) = ops._create_c_op(graph, node_def, inputs.ToArray(), new Operation[0]); | |||
| var op = graph._create_op_from_tf_operation(c_op); | |||
| op._control_flow_post_processing(); | |||
| // Record the gradient because custom-made ops don't go through the | |||
| // code-gen'd eager call path | |||
| var op_type = op.node_def.Op; | |||
| tf.Runner.RecordGradient(op_type, op.inputs._inputs, null, op.outputs); | |||
| graph.Exit(); | |||
| return op.outputs; | |||
| } | |||
| public Layer GetOpLayer(TensorFlowOpLayerArgs args) | |||
| => new TensorFlowOpLayer(args); | |||
| } | |||
| } | |||
| @@ -27,10 +27,10 @@ namespace Tensorflow.Keras.Losses | |||
| Tensor error = math_ops.subtract(y_pred_cast, y_true_cast); | |||
| Tensor abs_error = math_ops.abs(error); | |||
| Tensor half = ops.convert_to_tensor(0.5, dtype: abs_error.dtype); | |||
| return gen_math_ops.mean(array_ops.where_v2(abs_error <= delta, | |||
| half * math_ops.pow(error, 2), | |||
| return gen_math_ops.mean(array_ops.where_v2(abs_error <= delta, | |||
| half * math_ops.pow(error, 2), | |||
| half * math_ops.pow(delta, 2) + delta * (abs_error - delta)), | |||
| axis : -1); | |||
| axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -19,10 +19,8 @@ namespace Tensorflow.Keras.Losses | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| Tensor x = y_pred_dispatch - y_true_cast; | |||
| return gen_math_ops.mean(x + gen_math_ops.softplus(-2.0 * x) - math_ops.cast(math_ops.log(tf.Variable(2.0)), x.dtype),axis: -1); | |||
| return gen_math_ops.mean(x + gen_math_ops.softplus(-2.0 * x) - math_ops.cast(math_ops.log(tf.Variable(2.0)), x.dtype), axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -18,7 +18,7 @@ namespace Tensorflow.Keras.Losses | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| Tensor diff = math_ops.abs(y_true_cast - y_pred_dispatch) / gen_math_ops.maximum(math_ops.abs(y_true_cast), gen_math_ops.cast(tf.constant(1e-7), y_pred_dispatch.dtype)); | |||
| return gen_math_ops.cast(tf.constant(100), y_pred_dispatch.dtype) *gen_math_ops.mean(diff, axis: -1); | |||
| return gen_math_ops.cast(tf.constant(100), y_pred_dispatch.dtype) * gen_math_ops.mean(diff, axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -17,7 +17,7 @@ namespace Tensorflow.Keras.Losses | |||
| { | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| return gen_math_ops.mean(gen_math_ops.squared_difference(y_pred_dispatch, y_true_cast), axis: -1); | |||
| return gen_math_ops.mean(gen_math_ops.squared_difference(y_pred_dispatch, y_true_cast), axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -26,6 +26,9 @@ namespace Tensorflow.Keras.Optimizers | |||
| protected float _initial_decay = 0.0f; | |||
| protected bool _use_locking = true; | |||
| public IVariableV1 lr | |||
| => _hyper_variables["learning_rate"]; | |||
| Dictionary<string, Dictionary<string, IVariableV1>> _slots; | |||
| List<string> _slot_names; | |||
| @@ -21,7 +21,9 @@ | |||
| * Support BatchNormalization layer. | |||
| * Building keras model in subclass, functional and sequential api | |||
| * Implemented backward_function. | |||
| * Support model.load_weights.</PackageReleaseNotes> | |||
| * Support model.load_weights. | |||
| * Add Subtract layer | |||
| * Support YOLOv3 model.</PackageReleaseNotes> | |||
| <Description>Keras for .NET | |||
| Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages.</Description> | |||
| @@ -64,4 +66,8 @@ Keras is an API designed for human beings, not machines. Keras follows best prac | |||
| </None> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <Folder Include="Engine\Interfaces\" /> | |||
| </ItemGroup> | |||
| </Project> | |||
| @@ -21,6 +21,7 @@ using System.Linq; | |||
| using System.Reflection; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Layers; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| @@ -150,12 +151,13 @@ namespace Tensorflow.Keras.Utils | |||
| // recursively | |||
| CreateKerasHistoryHelper(layer_inputs, processed_ops, created_layers); | |||
| var op_layer = GetLayer<ITensorFlowOpLayer>(new TensorFlowOpLayerArgs | |||
| var opLayerArgs = new TensorFlowOpLayerArgs | |||
| { | |||
| NodeDef = op.node_def, | |||
| Constants = constants, | |||
| Name = op.name | |||
| }); | |||
| }; | |||
| var op_layer = new TensorFlowOpLayer(opLayerArgs); | |||
| created_layers.Add(op_layer); | |||
| op_layer.SetConnectivityMetadata(layer_inputs, op.outputs); | |||
| processed_ops.Add(op); | |||
| @@ -163,20 +165,6 @@ namespace Tensorflow.Keras.Utils | |||
| } | |||
| } | |||
| static Layer GetLayer<T>(LayerArgs args) | |||
| { | |||
| Layer layer = default; | |||
| var assemble = Assembly.Load("TensorFlow.Keras.Layers"); | |||
| foreach (var type in assemble.GetTypes().Where(x => x.GetInterface(typeof(T).Name) != null)) | |||
| { | |||
| layer = (Layer)Activator.CreateInstance(type, new object[] { args }); | |||
| } | |||
| if (layer == null) | |||
| throw new NotImplementedException($"Can't find implementation for type {args.GetType().Name}"); | |||
| return layer; | |||
| } | |||
| // recusive | |||
| static bool uses_keras_history(Tensor op_input) | |||
| { | |||
| @@ -56,7 +56,7 @@ Set ENV `BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\ | |||
| 1. Build static library | |||
| `bazel build --config=opt //tensorflow:tensorflow` | |||
| `bazel build --output_base=C:/tmp/tfcompilation build --config=opt //tensorflow:tensorflow` | |||
| 2. Build pip package | |||
| @@ -1,6 +1,7 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.Keras.UnitTest | |||
| @@ -35,71 +36,31 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| var model = keras.Model(inputs, outputs, name: "mnist_model"); | |||
| model.summary(); | |||
| } | |||
| /// <summary> | |||
| /// Custom layer test, used in Dueling DQN | |||
| /// </summary> | |||
| [TestMethod, Ignore] | |||
| public void FunctionalTest() | |||
| public void TensorFlowOpLayer() | |||
| { | |||
| var layers = keras.layers; | |||
| var inputs = layers.Input(shape: 24); | |||
| var x = layers.Dense(128, activation:"relu").Apply(inputs); | |||
| var x = layers.Dense(128, activation: "relu").Apply(inputs); | |||
| var value = layers.Dense(24).Apply(x); | |||
| var adv = layers.Dense(1).Apply(x); | |||
| var adv_out = adv - Binding.tf.reduce_mean(adv, axis: 1, keepdims: true); // Here's problem. | |||
| var outputs = layers.Add().Apply(new Tensors(adv_out, value)); | |||
| var mean = adv - tf.reduce_mean(adv, axis: 1, keepdims: true); | |||
| adv = layers.Subtract().Apply((adv, mean)); | |||
| var outputs = layers.Add().Apply((value, adv)); | |||
| var model = keras.Model(inputs, outputs); | |||
| model.summary(); | |||
| model.compile(optimizer: keras.optimizers.RMSprop(0.001f), | |||
| loss: keras.losses.MeanSquaredError(), | |||
| metrics: new[] { "acc" }); | |||
| // Here we consider the adv_out is one layer, which is a little different from py's version | |||
| Assert.AreEqual(model.Layers.Count, 6); | |||
| // py code: | |||
| //from tensorflow.keras.layers import Input, Dense, Add, Subtract, Lambda | |||
| //from tensorflow.keras.models import Model | |||
| //from tensorflow.keras.optimizers import RMSprop | |||
| //import tensorflow.keras.backend as K | |||
| //inputs = Input(24) | |||
| //x = Dense(128, activation = "relu")(inputs) | |||
| //value = Dense(24)(x) | |||
| //adv = Dense(1)(x) | |||
| //meam = Lambda(lambda x: K.mean(x, axis = 1, keepdims = True))(adv) | |||
| //adv = Subtract()([adv, meam]) | |||
| //outputs = Add()([value, adv]) | |||
| //model = Model(inputs, outputs) | |||
| //model.compile(loss = "mse", optimizer = RMSprop(1e-3)) | |||
| //model.summary() | |||
| //py output: | |||
| //Model: "functional_3" | |||
| //__________________________________________________________________________________________________ | |||
| //Layer(type) Output Shape Param # Connected to | |||
| //================================================================================================== | |||
| //input_2 (InputLayer) [(None, 24)] 0 | |||
| //__________________________________________________________________________________________________ | |||
| //dense_3 (Dense) (None, 128) 3200 input_2[0][0] | |||
| //__________________________________________________________________________________________________ | |||
| //dense_5 (Dense) (None, 1) 129 dense_3[0][0] | |||
| //__________________________________________________________________________________________________ | |||
| //lambda_1 (Lambda) (None, 1) 0 dense_5[0][0] | |||
| //__________________________________________________________________________________________________ | |||
| //dense_4 (Dense) (None, 24) 3096 dense_3[0][0] | |||
| //__________________________________________________________________________________________________ | |||
| //subtract_1 (Subtract) (None, 1) 0 dense_5[0][0] | |||
| // lambda_1[0][0] | |||
| //__________________________________________________________________________________________________ | |||
| //add_1 (Add) (None, 24) 0 dense_4[0][0] | |||
| // subtract_1[0][0] | |||
| //================================================================================================== | |||
| //Total params: 6,425 | |||
| //Trainable params: 6,425 | |||
| //Non-trainable params: 0 | |||
| //__________________________________________________________________________________________________ | |||
| model.summary(); | |||
| Assert.AreEqual(model.Layers.Count, 8); | |||
| var result = model.predict(tf.constant(np.arange(24).astype(np.float32)[np.newaxis, Slice.All])); | |||
| Assert.AreEqual(result.shape, new TensorShape(1, 24)); | |||
| model.fit(np.arange(24).astype(np.float32)[np.newaxis, Slice.All], np.arange(24).astype(np.float32)[np.newaxis, Slice.All], verbose: 0); | |||
| } | |||
| /// <summary> | |||
| @@ -149,9 +110,14 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| } | |||
| [TestMethod] | |||
| [Ignore] | |||
| public void SimpleRNN() | |||
| { | |||
| var inputs = np.random.rand(32, 10, 8).astype(np.float32); | |||
| var simple_rnn = keras.layers.SimpleRNN(4); | |||
| var output = simple_rnn.Apply(inputs); | |||
| Assert.AreEqual((32, 4), output.shape); | |||
| } | |||
| } | |||
| } | |||
| @@ -48,5 +48,14 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
| var x5 = tf.reduce_sum(b, (0, 1)); | |||
| Assert.AreEqual(-4.7f, (float)x5); | |||
| } | |||
| [TestMethod] | |||
| public void Erf() | |||
| { | |||
| var erf = tf.math.erf(a, name: "erf"); | |||
| var expected = new float[] { 0.8427007f, -0.5204999f, 0.99999845f, -0.9970206f, 0f, -1f }; | |||
| var actual = erf.ToArray<float>(); | |||
| Assert.IsTrue(Equal(expected, actual)); | |||
| } | |||
| } | |||
| } | |||
| @@ -132,28 +132,25 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
| } | |||
| #region ones/zeros like | |||
| [Ignore] | |||
| [TestMethod] | |||
| public void TestOnesLike() | |||
| { | |||
| #region 2-dimension | |||
| var testCase2D = tf.constant(new int[,] | |||
| var ones2D = tf.ones_like(new int[,] | |||
| { | |||
| { 1, 2, 3 }, | |||
| { 4, 5, 6 } | |||
| }); | |||
| var ones2D = tf.ones_like(testCase2D); | |||
| Assert.AreEqual(new[] { 1, 1, 1 }, ones2D[0].numpy()); | |||
| Assert.AreEqual(new[] { 1, 1, 1 }, ones2D[1].numpy()); | |||
| #endregion | |||
| #region 1-dimension | |||
| var testCase1D = tf.constant(new int[,] | |||
| var ones1D = tf.ones_like(new int[,] | |||
| { | |||
| { 1, 2, 3 } | |||
| }); | |||
| var ones1D = tf.ones_like(testCase1D); | |||
| Assert.AreEqual(new[] { 1, 1, 1 }, ones1D[0].numpy()); | |||
| #endregion | |||
| @@ -163,23 +160,21 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
| public void TestZerosLike() | |||
| { | |||
| #region 2-dimension | |||
| var testCase2D = tf.constant(new int[,] | |||
| var zeros2D = tf.zeros_like(new int[,] | |||
| { | |||
| { 1, 2, 3 }, | |||
| { 4, 5, 6 } | |||
| }); | |||
| var zeros2D = tf.zeros_like(testCase2D); | |||
| Assert.AreEqual(new[] { 0, 0, 0 }, zeros2D[0].numpy()); | |||
| Assert.AreEqual(new[] { 0, 0, 0 }, zeros2D[1].numpy()); | |||
| #endregion | |||
| #region 1-dimension | |||
| var testCase1D = tf.constant(new int[,] | |||
| var zeros1D = tf.zeros_like(new int[,] | |||
| { | |||
| { 1, 2, 3 } | |||
| }); | |||
| var zeros1D = tf.zeros_like(testCase1D); | |||
| Assert.AreEqual(new[] { 0, 0, 0 }, zeros1D[0].numpy()); | |||
| #endregion | |||
| @@ -1,11 +0,0 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System.Collections.Generic; | |||
| namespace Tensorflow.Keras.UnitTest | |||
| { | |||
| [TestClass] | |||
| public class OptimizerTest | |||
| { | |||
| } | |||
| } | |||
| @@ -1,25 +0,0 @@ | |||
| <Project Sdk="Microsoft.NET.Sdk"> | |||
| <PropertyGroup> | |||
| <TargetFramework>netcoreapp3.1</TargetFramework> | |||
| <IsPackable>false</IsPackable> | |||
| <Platforms>AnyCPU;x64</Platforms> | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.6.1" /> | |||
| <PackageReference Include="MSTest.TestAdapter" Version="2.1.1" /> | |||
| <PackageReference Include="MSTest.TestFramework" Version="2.1.1" /> | |||
| <PackageReference Include="coverlet.collector" Version="1.2.1"> | |||
| <PrivateAssets>all</PrivateAssets> | |||
| <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets> | |||
| </PackageReference> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <ProjectReference Include="..\..\src\TensorFlowNET.Keras\Tensorflow.Keras.csproj" /> | |||
| </ItemGroup> | |||
| </Project> | |||