diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
index c6929a4b..91e5e85a 100644
--- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs
+++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
@@ -85,7 +85,7 @@ namespace Tensorflow.Keras.Layers
/// Initializer for the bias vector (see keras.initializers).
/// A tensor of rank 3 representing activation(conv1d(inputs, kernel) + bias).
public Conv1D Conv1D(int filters,
- Shape? kernel_size = null,
+ Shape kernel_size,
int? strides = null,
string padding = "valid",
string data_format = null,
diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs
index 81fb3ea1..fbe4330c 100644
--- a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs
+++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs
@@ -14,14 +14,12 @@ namespace TensorFlowNET.Keras.UnitTest
{
var filters = 8;
- var conv = keras.layers.Conv1D(filters, activation: "linear");
+ var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
var x = np.arange(256.0f).reshape((8, 8, 4));
var y = conv.Apply(x);
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
+ Assert.AreEqual(y.shape, (8, 6, 8));
Assert.AreEqual(filters, y.shape[2]);
}