| @@ -27,7 +27,7 @@ namespace TensorFlowNET.Examples | |||
| public int? test_size = null; | |||
| public int batch_size = 1024; // The number of samples per batch | |||
| Datasets mnist; | |||
| Datasets<DataSetMnist> mnist; | |||
| NDArray full_data_x; | |||
| int num_steps = 20; // Total steps to train | |||
| int k = 25; // The number of clusters | |||
| @@ -50,8 +50,8 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size:validation_size, test_size:test_size); | |||
| full_data_x = mnist.train.images; | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size:validation_size, test_size:test_size); | |||
| full_data_x = mnist.train.data; | |||
| // download graph meta data | |||
| string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/kmeans.meta"; | |||
| @@ -141,7 +141,7 @@ namespace TensorFlowNET.Examples | |||
| var accuracy_op = tf.reduce_mean(cast); | |||
| // Test Model | |||
| var (test_x, test_y) = (mnist.test.images, mnist.test.labels); | |||
| var (test_x, test_y) = (mnist.test.data, mnist.test.labels); | |||
| result = sess.run(accuracy_op, new FeedItem(X, test_x), new FeedItem(Y, test_y)); | |||
| accuray_test = result; | |||
| print($"Test Accuracy: {accuray_test}"); | |||
| @@ -32,7 +32,7 @@ namespace TensorFlowNET.Examples | |||
| private float learning_rate = 0.01f; | |||
| private int display_step = 1; | |||
| Datasets mnist; | |||
| Datasets<DataSetMnist> mnist; | |||
| public bool Run() | |||
| { | |||
| @@ -102,7 +102,7 @@ namespace TensorFlowNET.Examples | |||
| var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)); | |||
| // Calculate accuracy | |||
| var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)); | |||
| float acc = accuracy.eval(new FeedItem(x, mnist.test.images), new FeedItem(y, mnist.test.labels)); | |||
| float acc = accuracy.eval(new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); | |||
| print($"Accuracy: {acc.ToString("F4")}"); | |||
| return acc > 0.9; | |||
| @@ -111,7 +111,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size: validation_size, test_size: test_size); | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size: validation_size, test_size: test_size); | |||
| } | |||
| public void SaveModel(Session sess) | |||
| @@ -17,7 +17,7 @@ namespace TensorFlowNET.Examples | |||
| { | |||
| public bool Enabled { get; set; } = true; | |||
| public string Name => "Nearest Neighbor"; | |||
| Datasets mnist; | |||
| Datasets<DataSetMnist> mnist; | |||
| NDArray Xtr, Ytr, Xte, Yte; | |||
| public int? TrainSize = null; | |||
| public int ValidationSize = 5000; | |||
| @@ -70,7 +70,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: TrainSize, validation_size:ValidationSize, test_size:TestSize); | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: TrainSize, validation_size:ValidationSize, test_size:TestSize); | |||
| // In this example, we limit mnist data | |||
| (Xtr, Ytr) = mnist.train.next_batch(TrainSize==null ? 5000 : TrainSize.Value / 100); // 5000 for training (nn candidates) | |||
| (Xte, Yte) = mnist.test.next_batch(TestSize==null ? 200 : TestSize.Value / 100); // 200 for testing | |||
| @@ -0,0 +1,169 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.Examples.ImageProcess | |||
| { | |||
| /// <summary> | |||
| /// Convolutional Neural Network classifier for Hand Written Digits | |||
| /// CNN architecture with two convolutional layers, followed by two fully-connected layers at the end. | |||
| /// Use Stochastic Gradient Descent (SGD) optimizer. | |||
| /// http://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns/cnn1 | |||
| /// </summary> | |||
| public class DigitRecognitionCNN : IExample | |||
| { | |||
| public bool Enabled { get; set; } = true; | |||
| public bool IsImportingGraph { get; set; } = false; | |||
| public string Name => "MNIST CNN"; | |||
| const int img_h = 28; | |||
| const int img_w = 28; | |||
| int img_size_flat = img_h * img_w; // 784, the total number of pixels | |||
| int n_classes = 10; // Number of classes, one class per digit | |||
| // Hyper-parameters | |||
| int epochs = 10; | |||
| int batch_size = 100; | |||
| float learning_rate = 0.001f; | |||
| int h1 = 200; // number of nodes in the 1st hidden layer | |||
| Datasets<DataSetMnist> mnist; | |||
| Tensor x, y; | |||
| Tensor loss, accuracy; | |||
| Operation optimizer; | |||
| int display_freq = 100; | |||
| float accuracy_test = 0f; | |||
| float loss_test = 1f; | |||
| public bool Run() | |||
| { | |||
| PrepareData(); | |||
| BuildGraph(); | |||
| with(tf.Session(), sess => | |||
| { | |||
| Train(sess); | |||
| Test(sess); | |||
| }); | |||
| return loss_test < 0.09 && accuracy_test > 0.95; | |||
| } | |||
| public Graph BuildGraph() | |||
| { | |||
| var graph = new Graph().as_default(); | |||
| // Placeholders for inputs (x) and outputs(y) | |||
| x = tf.placeholder(tf.float32, shape: (-1, img_size_flat), name: "X"); | |||
| y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y"); | |||
| // Create a fully-connected layer with h1 nodes as hidden layer | |||
| var fc1 = fc_layer(x, h1, "FC1", use_relu: true); | |||
| // Create a fully-connected layer with n_classes nodes as output layer | |||
| var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false); | |||
| // Define the loss function, optimizer, and accuracy | |||
| var logits = tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits); | |||
| loss = tf.reduce_mean(logits, name: "loss"); | |||
| optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss); | |||
| var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred"); | |||
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy"); | |||
| // Network predictions | |||
| var cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions"); | |||
| return graph; | |||
| } | |||
| private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true) | |||
| { | |||
| var in_dim = x.shape[1]; | |||
| var initer = tf.truncated_normal_initializer(stddev: 0.01f); | |||
| var W = tf.get_variable("W_" + name, | |||
| dtype: tf.float32, | |||
| shape: (in_dim, num_units), | |||
| initializer: initer); | |||
| var initial = tf.constant(0f, num_units); | |||
| var b = tf.get_variable("b_" + name, | |||
| dtype: tf.float32, | |||
| initializer: initial); | |||
| var layer = tf.matmul(x, W) + b; | |||
| if (use_relu) | |||
| layer = tf.nn.relu(layer); | |||
| return layer; | |||
| } | |||
| public Graph ImportGraph() => throw new NotImplementedException(); | |||
| public void Predict(Session sess) => throw new NotImplementedException(); | |||
| public void PrepareData() | |||
| { | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true); | |||
| } | |||
| public void Train(Session sess) | |||
| { | |||
| // Number of training iterations in each epoch | |||
| var num_tr_iter = mnist.train.labels.len / batch_size; | |||
| var init = tf.global_variables_initializer(); | |||
| sess.run(init); | |||
| float loss_val = 100.0f; | |||
| float accuracy_val = 0f; | |||
| foreach (var epoch in range(epochs)) | |||
| { | |||
| print($"Training epoch: {epoch + 1}"); | |||
| // Randomly shuffle the training data at the beginning of each epoch | |||
| var (x_train, y_train) = mnist.Randomize(mnist.train.data, mnist.train.labels); | |||
| foreach (var iteration in range(num_tr_iter)) | |||
| { | |||
| var start = iteration * batch_size; | |||
| var end = (iteration + 1) * batch_size; | |||
| var (x_batch, y_batch) = mnist.GetNextBatch(x_train, y_train, start, end); | |||
| // Run optimization op (backprop) | |||
| sess.run(optimizer, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); | |||
| if (iteration % display_freq == 0) | |||
| { | |||
| // Calculate and display the batch loss and accuracy | |||
| var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); | |||
| loss_val = result[0]; | |||
| accuracy_val = result[1]; | |||
| print($"iter {iteration.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")}"); | |||
| } | |||
| } | |||
| // Run validation after every epoch | |||
| var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.data), new FeedItem(y, mnist.validation.labels)); | |||
| loss_val = results1[0]; | |||
| accuracy_val = results1[1]; | |||
| print("---------------------------------------------------------"); | |||
| print($"Epoch: {epoch + 1}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}"); | |||
| print("---------------------------------------------------------"); | |||
| } | |||
| } | |||
| public void Test(Session sess) | |||
| { | |||
| var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); | |||
| loss_test = result[0]; | |||
| accuracy_test = result[1]; | |||
| print("---------------------------------------------------------"); | |||
| print($"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}"); | |||
| print("---------------------------------------------------------"); | |||
| } | |||
| } | |||
| } | |||
| @@ -30,7 +30,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| int batch_size = 100; | |||
| float learning_rate = 0.001f; | |||
| int h1 = 200; // number of nodes in the 1st hidden layer | |||
| Datasets mnist; | |||
| Datasets<DataSetMnist> mnist; | |||
| Tensor x, y; | |||
| Tensor loss, accuracy; | |||
| @@ -107,7 +107,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| public void PrepareData() | |||
| { | |||
| mnist = MnistDataSet.read_data_sets("mnist", one_hot: true); | |||
| mnist = MNIST.read_data_sets("mnist", one_hot: true); | |||
| } | |||
| public void Train(Session sess) | |||
| @@ -125,7 +125,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| { | |||
| print($"Training epoch: {epoch + 1}"); | |||
| // Randomly shuffle the training data at the beginning of each epoch | |||
| var (x_train, y_train) = randomize(mnist.train.images, mnist.train.labels); | |||
| var (x_train, y_train) = randomize(mnist.train.data, mnist.train.labels); | |||
| foreach (var iteration in range(num_tr_iter)) | |||
| { | |||
| @@ -147,7 +147,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| } | |||
| // Run validation after every epoch | |||
| var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.images), new FeedItem(y, mnist.validation.labels)); | |||
| var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.data), new FeedItem(y, mnist.validation.labels)); | |||
| loss_val = results1[0]; | |||
| accuracy_val = results1[1]; | |||
| print("---------------------------------------------------------"); | |||
| @@ -158,7 +158,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| public void Test(Session sess) | |||
| { | |||
| var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.test.images), new FeedItem(y, mnist.test.labels)); | |||
| var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); | |||
| loss_test = result[0]; | |||
| accuracy_test = result[1]; | |||
| print("---------------------------------------------------------"); | |||
| @@ -171,7 +171,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| var perm = np.random.permutation(y.shape[0]); | |||
| np.random.shuffle(perm); | |||
| return (mnist.train.images[perm], mnist.train.labels[perm]); | |||
| return (mnist.train.data[perm], mnist.train.labels[perm]); | |||
| } | |||
| /// <summary> | |||
| @@ -1,86 +0,0 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class DataSet | |||
| { | |||
| private int _num_examples; | |||
| public int num_examples => _num_examples; | |||
| private int _epochs_completed; | |||
| public int epochs_completed => _epochs_completed; | |||
| private int _index_in_epoch; | |||
| public int index_in_epoch => _index_in_epoch; | |||
| private NDArray _images; | |||
| public NDArray images => _images; | |||
| private NDArray _labels; | |||
| public NDArray labels => _labels; | |||
| public DataSet(NDArray images, NDArray labels, TF_DataType dtype, bool reshape) | |||
| { | |||
| _num_examples = images.shape[0]; | |||
| images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]); | |||
| images.astype(dtype.as_numpy_datatype()); | |||
| images = np.multiply(images, 1.0f / 255.0f); | |||
| labels.astype(dtype.as_numpy_datatype()); | |||
| _images = images; | |||
| _labels = labels; | |||
| _epochs_completed = 0; | |||
| _index_in_epoch = 0; | |||
| } | |||
| public (NDArray, NDArray) next_batch(int batch_size, bool fake_data = false, bool shuffle = true) | |||
| { | |||
| var start = _index_in_epoch; | |||
| // Shuffle for the first epoch | |||
| if(_epochs_completed == 0 && start == 0 && shuffle) | |||
| { | |||
| var perm0 = np.arange(_num_examples); | |||
| np.random.shuffle(perm0); | |||
| _images = images[perm0]; | |||
| _labels = labels[perm0]; | |||
| } | |||
| // Go to the next epoch | |||
| if (start + batch_size > _num_examples) | |||
| { | |||
| // Finished epoch | |||
| _epochs_completed += 1; | |||
| // Get the rest examples in this epoch | |||
| var rest_num_examples = _num_examples - start; | |||
| //var images_rest_part = _images[np.arange(start, _num_examples)]; | |||
| //var labels_rest_part = _labels[np.arange(start, _num_examples)]; | |||
| // Shuffle the data | |||
| if (shuffle) | |||
| { | |||
| var perm = np.arange(_num_examples); | |||
| np.random.shuffle(perm); | |||
| _images = images[perm]; | |||
| _labels = labels[perm]; | |||
| } | |||
| start = 0; | |||
| _index_in_epoch = batch_size - rest_num_examples; | |||
| var end = _index_in_epoch; | |||
| var images_new_part = _images[np.arange(start, end)]; | |||
| var labels_new_part = _labels[np.arange(start, end)]; | |||
| /*return (np.concatenate(new float[][] { images_rest_part.Data<float>(), images_new_part.Data<float>() }, axis: 0), | |||
| np.concatenate(new float[][] { labels_rest_part.Data<float>(), labels_new_part.Data<float>() }, axis: 0));*/ | |||
| return (images_new_part, labels_new_part); | |||
| } | |||
| else | |||
| { | |||
| _index_in_epoch += batch_size; | |||
| var end = _index_in_epoch; | |||
| return (_images[np.arange(start, end)], _labels[np.arange(start, end)]); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,82 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class DataSetMnist : IDataSet | |||
| { | |||
| public int num_examples { get; } | |||
| public int epochs_completed { get; private set; } | |||
| public int index_in_epoch { get; private set; } | |||
| public NDArray data { get; private set; } | |||
| public NDArray labels { get; private set; } | |||
| public DataSetMnist(NDArray images, NDArray labels, TF_DataType dtype, bool reshape) | |||
| { | |||
| num_examples = images.shape[0]; | |||
| images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]); | |||
| images.astype(dtype.as_numpy_datatype()); | |||
| images = np.multiply(images, 1.0f / 255.0f); | |||
| labels.astype(dtype.as_numpy_datatype()); | |||
| data = images; | |||
| this.labels = labels; | |||
| epochs_completed = 0; | |||
| index_in_epoch = 0; | |||
| } | |||
| public (NDArray, NDArray) next_batch(int batch_size, bool fake_data = false, bool shuffle = true) | |||
| { | |||
| var start = index_in_epoch; | |||
| // Shuffle for the first epoch | |||
| if(epochs_completed == 0 && start == 0 && shuffle) | |||
| { | |||
| var perm0 = np.arange(num_examples); | |||
| np.random.shuffle(perm0); | |||
| data = data[perm0]; | |||
| labels = labels[perm0]; | |||
| } | |||
| // Go to the next epoch | |||
| if (start + batch_size > num_examples) | |||
| { | |||
| // Finished epoch | |||
| epochs_completed += 1; | |||
| // Get the rest examples in this epoch | |||
| var rest_num_examples = num_examples - start; | |||
| //var images_rest_part = _images[np.arange(start, _num_examples)]; | |||
| //var labels_rest_part = _labels[np.arange(start, _num_examples)]; | |||
| // Shuffle the data | |||
| if (shuffle) | |||
| { | |||
| var perm = np.arange(num_examples); | |||
| np.random.shuffle(perm); | |||
| data = data[perm]; | |||
| labels = labels[perm]; | |||
| } | |||
| start = 0; | |||
| index_in_epoch = batch_size - rest_num_examples; | |||
| var end = index_in_epoch; | |||
| var images_new_part = data[np.arange(start, end)]; | |||
| var labels_new_part = labels[np.arange(start, end)]; | |||
| /*return (np.concatenate(new float[][] { images_rest_part.Data<float>(), images_new_part.Data<float>() }, axis: 0), | |||
| np.concatenate(new float[][] { labels_rest_part.Data<float>(), labels_new_part.Data<float>() }, axis: 0));*/ | |||
| return (images_new_part, labels_new_part); | |||
| } | |||
| else | |||
| { | |||
| index_in_epoch += batch_size; | |||
| var end = index_in_epoch; | |||
| return (data[np.arange(start, end)], labels[np.arange(start, end)]); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -1,25 +1,49 @@ | |||
| using System; | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class Datasets | |||
| public class Datasets<T> where T : IDataSet | |||
| { | |||
| private DataSet _train; | |||
| public DataSet train => _train; | |||
| private T _train; | |||
| public T train => _train; | |||
| private DataSet _validation; | |||
| public DataSet validation => _validation; | |||
| private T _validation; | |||
| public T validation => _validation; | |||
| private DataSet _test; | |||
| public DataSet test => _test; | |||
| private T _test; | |||
| public T test => _test; | |||
| public Datasets(DataSet train, DataSet validation, DataSet test) | |||
| public Datasets(T train, T validation, T test) | |||
| { | |||
| _train = train; | |||
| _validation = validation; | |||
| _test = test; | |||
| } | |||
| public (NDArray, NDArray) Randomize(NDArray x, NDArray y) | |||
| { | |||
| var perm = np.random.permutation(y.shape[0]); | |||
| np.random.shuffle(perm); | |||
| return (train.data[perm], train.labels[perm]); | |||
| } | |||
| /// <summary> | |||
| /// selects a few number of images determined by the batch_size variable (if you don't know why, read about Stochastic Gradient Method) | |||
| /// </summary> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="start"></param> | |||
| /// <param name="end"></param> | |||
| /// <returns></returns> | |||
| public (NDArray, NDArray) GetNextBatch(NDArray x, NDArray y, int start, int end) | |||
| { | |||
| var x_batch = x[$"{start}:{end}"]; | |||
| var y_batch = y[$"{start}:{end}"]; | |||
| return (x_batch, y_batch); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,13 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public interface IDataSet | |||
| { | |||
| NDArray data { get; } | |||
| NDArray labels { get; } | |||
| } | |||
| } | |||
| @@ -8,14 +8,14 @@ using Tensorflow; | |||
| namespace TensorFlowNET.Examples.Utility | |||
| { | |||
| public class MnistDataSet | |||
| public class MNIST | |||
| { | |||
| private const string DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"; | |||
| private const string TRAIN_IMAGES = "train-images-idx3-ubyte.gz"; | |||
| private const string TRAIN_LABELS = "train-labels-idx1-ubyte.gz"; | |||
| private const string TEST_IMAGES = "t10k-images-idx3-ubyte.gz"; | |||
| private const string TEST_LABELS = "t10k-labels-idx1-ubyte.gz"; | |||
| public static Datasets read_data_sets(string train_dir, | |||
| public static Datasets<DataSetMnist> read_data_sets(string train_dir, | |||
| bool one_hot = false, | |||
| TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
| bool reshape = true, | |||
| @@ -24,9 +24,9 @@ namespace TensorFlowNET.Examples.Utility | |||
| int? test_size = null, | |||
| string source_url = DEFAULT_SOURCE_URL) | |||
| { | |||
| if (train_size!=null && validation_size >= train_size) | |||
| throw new ArgumentException("Validation set should be smaller than training set"); | |||
| if (train_size!=null && validation_size >= train_size) | |||
| throw new ArgumentException("Validation set should be smaller than training set"); | |||
| Web.Download(source_url + TRAIN_IMAGES, train_dir, TRAIN_IMAGES); | |||
| Compress.ExtractGZip(Path.Join(train_dir, TRAIN_IMAGES), train_dir); | |||
| var train_images = extract_images(Path.Join(train_dir, TRAIN_IMAGES.Split('.')[0]), limit: train_size); | |||
| @@ -49,11 +49,11 @@ namespace TensorFlowNET.Examples.Utility | |||
| train_images = train_images[np.arange(validation_size, end)]; | |||
| train_labels = train_labels[np.arange(validation_size, end)]; | |||
| var train = new DataSet(train_images, train_labels, dtype, reshape); | |||
| var validation = new DataSet(validation_images, validation_labels, dtype, reshape); | |||
| var test = new DataSet(test_images, test_labels, dtype, reshape); | |||
| var train = new DataSetMnist(train_images, train_labels, dtype, reshape); | |||
| var validation = new DataSetMnist(validation_images, validation_labels, dtype, reshape); | |||
| var test = new DataSetMnist(test_images, test_labels, dtype, reshape); | |||
| return new Datasets(train, validation, test); | |||
| return new Datasets<DataSetMnist>(train, validation, test); | |||
| } | |||
| public static NDArray extract_images(string file, int? limit=null) | |||