diff --git a/test/TensorFlowNET.Keras.UnitTest/Gradient.cs b/test/TensorFlowNET.Keras.UnitTest/GradientTest.cs similarity index 100% rename from test/TensorFlowNET.Keras.UnitTest/Gradient.cs rename to test/TensorFlowNET.Keras.UnitTest/GradientTest.cs diff --git a/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelLoad.cs b/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelLoad.cs index 385ec0f7..73f99bbc 100644 --- a/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelLoad.cs +++ b/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelLoad.cs @@ -44,7 +44,7 @@ public class SequentialModelLoad { TrainDir = "mnist", OneHot = false, - ValidationSize = 50000, + ValidationSize = 58000, }).Result; model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); diff --git a/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelSave.cs b/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelSave.cs index 1cf68d3b..e68fa9b4 100644 --- a/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelSave.cs +++ b/test/TensorFlowNET.Keras.UnitTest/SaveModel/SequentialModelSave.cs @@ -18,15 +18,15 @@ public class SequentialModelSave [TestMethod] public void SimpleModelFromAutoCompile() { - var inputs = tf.keras.layers.Input((28, 28, 1)); - var x = tf.keras.layers.Flatten().Apply(inputs); - x = tf.keras.layers.Dense(100, activation: tf.nn.relu).Apply(x); - x = tf.keras.layers.Dense(units: 10).Apply(x); - var outputs = tf.keras.layers.Softmax(axis: 1).Apply(x); - var model = tf.keras.Model(inputs, outputs); + var inputs = keras.layers.Input((28, 28, 1)); + var x = keras.layers.Flatten().Apply(inputs); + x = keras.layers.Dense(100, activation: tf.nn.relu).Apply(x); + x = keras.layers.Dense(units: 10).Apply(x); + var outputs = keras.layers.Softmax(axis: 1).Apply(x); + var model = keras.Model(inputs, outputs); model.compile(new Adam(0.001f), - tf.keras.losses.SparseCategoricalCrossentropy(), + keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" }); var data_loader = new MnistModelLoader(); @@ -37,7 +37,7 @@ public class SequentialModelSave { TrainDir = "mnist", OneHot = false, - ValidationSize = 10000, + ValidationSize = 58000, }).Result; model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); @@ -69,7 +69,7 @@ public class SequentialModelSave { TrainDir = "mnist", OneHot = false, - ValidationSize = 50000, + ValidationSize = 58000, }).Result; model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);