| @@ -56,30 +56,32 @@ PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU | |||
| Import TF.NET and Keras API in your project. | |||
| ```cs | |||
| ```csharp | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow; | |||
| using NumSharp; | |||
| ``` | |||
| Linear Regression in `Eager` mode: | |||
| ```c# | |||
| ```csharp | |||
| // Parameters | |||
| var training_steps = 1000; | |||
| var learning_rate = 0.01f; | |||
| var display_step = 100; | |||
| // Sample data | |||
| var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, | |||
| var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, | |||
| 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); | |||
| var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, | |||
| var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, | |||
| 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); | |||
| var n_samples = train_X.shape[0]; | |||
| var n_samples = X.shape[0]; | |||
| // We can set a fixed init value in order to demo | |||
| var W = tf.Variable(-0.06f, name: "weight"); | |||
| var b = tf.Variable(-0.73f, name: "bias"); | |||
| var optimizer = tf.optimizers.SGD(learning_rate); | |||
| var optimizer = keras.optimizers.SGD(learning_rate); | |||
| // Run training for the given number of steps. | |||
| foreach (var step in range(1, training_steps + 1)) | |||
| @@ -112,46 +114,40 @@ Run this example in [Jupyter Notebook](https://github.com/SciSharp/SciSharpCube) | |||
| Toy version of `ResNet` in `Keras` functional API: | |||
| ```csharp | |||
| var layers = new LayersApi(); | |||
| // input layer | |||
| var inputs = keras.Input(shape: (32, 32, 3), name: "img"); | |||
| // convolutional layer | |||
| var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs); | |||
| x = layers.Conv2D(64, 3, activation: "relu").Apply(x); | |||
| var block_1_output = layers.MaxPooling2D(3).Apply(x); | |||
| x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output); | |||
| x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x); | |||
| var block_2_output = layers.add(x, block_1_output); | |||
| var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output)); | |||
| x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output); | |||
| x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x); | |||
| var block_3_output = layers.add(x, block_2_output); | |||
| var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output)); | |||
| x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output); | |||
| x = layers.GlobalAveragePooling2D().Apply(x); | |||
| x = layers.Dense(256, activation: "relu").Apply(x); | |||
| x = layers.Dropout(0.5f).Apply(x); | |||
| // output layer | |||
| var outputs = layers.Dense(10).Apply(x); | |||
| // build keras model | |||
| model = keras.Model(inputs, outputs, name: "toy_resnet"); | |||
| var model = keras.Model(inputs, outputs, name: "toy_resnet"); | |||
| model.summary(); | |||
| // compile keras model in tensorflow static graph | |||
| model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), | |||
| loss: keras.losses.CategoricalCrossentropy(from_logits: true), | |||
| metrics: new[] { "acc" }); | |||
| loss: keras.losses.CategoricalCrossentropy(from_logits: true), | |||
| metrics: new[] { "acc" }); | |||
| // prepare dataset | |||
| var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); | |||
| x_train = x_train / 255.0f; | |||
| y_train = np_utils.to_categorical(y_train, 10); | |||
| // training | |||
| model.fit(x_train[new Slice(0, 1000)], y_train[new Slice(0, 1000)], | |||
| batch_size: 64, | |||
| epochs: 10, | |||
| model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], | |||
| batch_size: 64, | |||
| epochs: 10, | |||
| validation_split: 0.2f); | |||
| ``` | |||
| @@ -260,4 +256,4 @@ WeChat Sponsor 微信打赏: | |||
| TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/) | |||
| <br> | |||
| <a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a> | |||
| <a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a> | |||
| @@ -506,6 +506,27 @@ namespace Tensorflow | |||
| } | |||
| } | |||
| public static Tensor where_v2(Tensor condition, object x = null, object y = null, string name = null) | |||
| { | |||
| if (x == null && y == null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "Where", new { condition }), scope => | |||
| { | |||
| name = scope; | |||
| condition = ops.convert_to_tensor(condition, preferred_dtype: dtypes.@bool, name: "condition"); | |||
| return gen_array_ops.where(condition: condition, name: name); | |||
| }); | |||
| } | |||
| else if (x != null && y != null) | |||
| { | |||
| return gen_array_ops.select_v2(condition, x, y, name); | |||
| } | |||
| else | |||
| { | |||
| throw new ValueError("x and y must both be non-None or both be None."); | |||
| } | |||
| } | |||
| /// <summary> | |||
| /// Returns the shape of a tensor. | |||
| /// </summary> | |||
| @@ -423,6 +423,21 @@ namespace Tensorflow | |||
| var _op = tf.OpDefLib._apply_op_helper("Select", name, new { condition, t = x, e = y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor select_v2<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SelectV2", name, | |||
| null, | |||
| condition, x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("SelectV2", name, new { condition, t = x, e = y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null) | |||
| { | |||
| @@ -714,7 +714,23 @@ namespace Tensorflow | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor softplus(Tensor features, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Softplus", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Softplus", name, args: new { features }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate = false, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Cast", name, args: new { x, DstT, Truncate }).output, () | |||
| @@ -1068,6 +1084,15 @@ namespace Tensorflow | |||
| public static Tensor _abs(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Abs", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Abs", name, args: new { x }); | |||
| return _op.output; | |||
| @@ -1202,6 +1227,15 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static Tensor rsqrt(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Rsqrt", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Rsqrt", name, new { x }); | |||
| return _op.outputs[0]; | |||
| @@ -31,7 +31,7 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static Tensor l2_normalize(Tensor x, | |||
| int axis = 0, | |||
| float epsilon = 1e-12f, | |||
| Tensor epsilon =null, | |||
| string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "l2_normalize", new { x }), scope => | |||
| @@ -39,7 +39,7 @@ namespace Tensorflow | |||
| x = ops.convert_to_tensor(x, name: "x"); | |||
| var sq = math_ops.square(x); | |||
| var square_sum = math_ops.reduce_sum(sq, axis, keepdims: true); | |||
| var x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon)); | |||
| var x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon == null ? tf.Variable(1e-12f) : epsilon)); | |||
| return math_ops.multiply(x, x_inv_norm, name: name); | |||
| }); | |||
| } | |||
| @@ -9,18 +9,19 @@ namespace Tensorflow.Keras.Losses | |||
| public class CategoricalCrossentropy : LossFunctionWrapper, ILossFunc | |||
| { | |||
| float label_smoothing; | |||
| public CategoricalCrossentropy(bool from_logits = false, | |||
| public CategoricalCrossentropy( | |||
| bool from_logits = false, | |||
| float label_smoothing = 0, | |||
| string reduction = ReductionV2.AUTO, | |||
| string name = "categorical_crossentropy") : | |||
| base(reduction: reduction, | |||
| name: name, | |||
| from_logits: from_logits) | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, | |||
| name: name == null ? "categorical_crossentropy" : name, | |||
| from_logits: from_logits) | |||
| { | |||
| this.label_smoothing = label_smoothing; | |||
| } | |||
| public override Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1) | |||
| { | |||
| // Try to adjust the shape so that rank of labels = rank of logits - 1. | |||
| @@ -0,0 +1,28 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class CosineSimilarity : LossFunctionWrapper, ILossFunc | |||
| { | |||
| protected int axis=-1; | |||
| public CosineSimilarity( | |||
| string reduction = null, | |||
| int axis=-1, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "cosine_similarity" : name) | |||
| { | |||
| this.axis = axis; | |||
| } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_true_normalize = nn_impl.l2_normalize(y_true, axis : this.axis); | |||
| Tensor y_pred_normalize = nn_impl.l2_normalize(y_pred, axis: this.axis); | |||
| return -math_ops.reduce_sum(y_true_normalize * y_pred_normalize, axis : this.axis); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,36 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class Huber : LossFunctionWrapper, ILossFunc | |||
| { | |||
| protected Tensor delta = tf.Variable(1.0) ; | |||
| public Huber ( | |||
| string reduction = null, | |||
| Tensor delta = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "huber" : name) | |||
| { | |||
| this.delta = delta==null? this.delta: delta; | |||
| } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_pred_cast = math_ops.cast(y_pred, dtype: TF_DataType.TF_FLOAT); | |||
| Tensor y_true_cast = math_ops.cast(y_true, dtype: TF_DataType.TF_FLOAT); | |||
| Tensor delta = math_ops.cast(this.delta, dtype: TF_DataType.TF_FLOAT); | |||
| Tensor error = math_ops.subtract(y_pred_cast, y_true_cast); | |||
| Tensor abs_error = math_ops.abs(error); | |||
| Tensor half = ops.convert_to_tensor(0.5, dtype: abs_error.dtype); | |||
| return gen_math_ops.mean(array_ops.where_v2(abs_error <= delta, | |||
| half * math_ops.pow(error, 2), | |||
| half * math_ops.pow(delta, 2) + delta * (abs_error - delta)), | |||
| axis : -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -2,7 +2,8 @@ | |||
| { | |||
| public interface ILossFunc | |||
| { | |||
| string Reduction { get; } | |||
| Tensor Call(Tensor y_true, Tensor y_pred); | |||
| public string Reduction { get; } | |||
| public string Name { get; } | |||
| Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null); | |||
| } | |||
| } | |||
| @@ -0,0 +1,28 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class LogCosh : LossFunctionWrapper, ILossFunc | |||
| { | |||
| public LogCosh( | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "huber" : name){ } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| Tensor x = y_pred_dispatch - y_true_cast; | |||
| return gen_math_ops.mean(x + gen_math_ops.softplus(-2.0 * x) - math_ops.cast(math_ops.log(tf.Variable(2.0)), x.dtype),axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -15,12 +15,12 @@ namespace Tensorflow.Keras.Losses | |||
| string _name_scope; | |||
| public string Reduction => reduction; | |||
| public string Name => name; | |||
| public Loss(string reduction = ReductionV2.AUTO, | |||
| string name = null, | |||
| bool from_logits = false) | |||
| { | |||
| this.reduction = reduction; | |||
| this.reduction = reduction == null ? ReductionV2.SUM_OVER_BATCH_SIZE : reduction; | |||
| this.name = name; | |||
| this.from_logits = from_logits; | |||
| _allow_sum_over_batch_size = false; | |||
| @@ -31,10 +31,10 @@ namespace Tensorflow.Keras.Losses | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public Tensor Call(Tensor y_true, Tensor y_pred) | |||
| public Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) | |||
| { | |||
| var losses = Apply(y_true, y_pred, from_logits: from_logits); | |||
| return losses_utils.compute_weighted_loss(losses, reduction: ReductionV2.SUM_OVER_BATCH_SIZE); | |||
| return losses_utils.compute_weighted_loss(losses, reduction: this.reduction , sample_weight: sample_weight); | |||
| } | |||
| void _set_name_scope() | |||
| @@ -2,10 +2,31 @@ | |||
| { | |||
| public class LossesApi | |||
| { | |||
| public ILossFunc SparseCategoricalCrossentropy(bool from_logits = false) | |||
| => new SparseCategoricalCrossentropy(from_logits: from_logits); | |||
| public ILossFunc SparseCategoricalCrossentropy(string reduction = null, string name = null,bool from_logits = false) | |||
| => new SparseCategoricalCrossentropy(reduction: reduction, name: name,from_logits: from_logits); | |||
| public ILossFunc CategoricalCrossentropy(string reduction = null, string name = null,bool from_logits = false) | |||
| => new CategoricalCrossentropy(reduction: reduction, name: name,from_logits: from_logits); | |||
| public ILossFunc MeanSquaredError(string reduction = null, string name = null) | |||
| => new MeanSquaredError(reduction: reduction, name:name); | |||
| public ILossFunc MeanSquaredLogarithmicError(string reduction = null, string name = null) | |||
| => new MeanSquaredLogarithmicError(reduction: reduction, name: name); | |||
| public ILossFunc MeanAbsolutePercentageError(string reduction = null, string name = null) | |||
| => new MeanAbsolutePercentageError(reduction: reduction, name: name); | |||
| public ILossFunc MeanAbsoluteError(string reduction = null, string name = null) | |||
| => new MeanAbsoluteError(reduction: reduction, name: name); | |||
| public ILossFunc CosineSimilarity(string reduction = null, string name = null,int axis=-1) | |||
| => new CosineSimilarity(reduction: reduction, name: name, axis: axis); | |||
| public ILossFunc Huber(string reduction = null, string name = null, Tensor delta=null) | |||
| => new Huber(reduction: reduction, name: name, delta: delta); | |||
| public ILossFunc LogCosh(string reduction = null, string name = null) | |||
| => new LogCosh(reduction: reduction, name: name); | |||
| public ILossFunc CategoricalCrossentropy(bool from_logits = false) | |||
| => new CategoricalCrossentropy(from_logits: from_logits); | |||
| } | |||
| } | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class MeanAbsoluteError : LossFunctionWrapper, ILossFunc | |||
| { | |||
| public MeanAbsoluteError( | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "mean_absolute_error" : name){ } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| return gen_math_ops.mean(math_ops.abs(y_pred_dispatch - y_true_cast), axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,24 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class MeanAbsolutePercentageError : LossFunctionWrapper, ILossFunc | |||
| { | |||
| public MeanAbsolutePercentageError( | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "mean_absolute_percentage_error" : name){ } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| Tensor diff = math_ops.abs(y_true_cast - y_pred_dispatch) / gen_math_ops.maximum(math_ops.abs(y_true_cast), gen_math_ops.cast(tf.constant(1e-7), y_pred_dispatch.dtype)); | |||
| return gen_math_ops.cast(tf.constant(100), y_pred_dispatch.dtype) *gen_math_ops.mean(diff, axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class MeanSquaredError : LossFunctionWrapper, ILossFunc | |||
| { | |||
| public MeanSquaredError( | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name==null? "mean_squared_error" : name){ } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| return gen_math_ops.mean(gen_math_ops.squared_difference(y_pred_dispatch, y_true_cast), axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,33 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class MeanSquaredLogarithmicError : LossFunctionWrapper, ILossFunc | |||
| { | |||
| public MeanSquaredLogarithmicError( | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "mean_squared_logarithmic_error" : name){ } | |||
| public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) | |||
| { | |||
| Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); | |||
| Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); | |||
| Tensor first_log=null, second_log=null; | |||
| if (y_pred_dispatch.dtype == TF_DataType.TF_DOUBLE) { | |||
| first_log = math_ops.log(gen_math_ops.maximum(y_pred_dispatch, 1e-7) + 1.0); | |||
| second_log = math_ops.log(gen_math_ops.maximum(y_true_cast, 1e-7) + 1.0); | |||
| } | |||
| else { | |||
| first_log = math_ops.log(gen_math_ops.maximum(y_pred_dispatch, 1e-7f) + 1.0f); | |||
| second_log = math_ops.log(gen_math_ops.maximum(y_true_cast, 1e-7f) + 1.0f); | |||
| } | |||
| return gen_math_ops.mean(gen_math_ops.squared_difference(first_log, second_log), axis: -1); | |||
| } | |||
| } | |||
| } | |||
| @@ -4,6 +4,7 @@ | |||
| { | |||
| public const string NONE = "none"; | |||
| public const string AUTO = "auto"; | |||
| public const string SUM = "sum"; | |||
| public const string SUM_OVER_BATCH_SIZE = "sum_over_batch_size"; | |||
| public const string WEIGHTED_MEAN = "weighted_mean"; | |||
| } | |||
| @@ -4,14 +4,11 @@ namespace Tensorflow.Keras.Losses | |||
| { | |||
| public class SparseCategoricalCrossentropy : LossFunctionWrapper, ILossFunc | |||
| { | |||
| public SparseCategoricalCrossentropy(bool from_logits = false, | |||
| string reduction = ReductionV2.AUTO, | |||
| string name = "sparse_categorical_crossentropy") : | |||
| base(reduction: reduction, | |||
| name: name) | |||
| { | |||
| } | |||
| public SparseCategoricalCrossentropy( | |||
| bool from_logits = false, | |||
| string reduction = null, | |||
| string name = null) : | |||
| base(reduction: reduction, name: name == null ? "sparse_categorical_crossentropy" : name){ } | |||
| public override Tensor Apply(Tensor target, Tensor output, bool from_logits = false, int axis = -1) | |||
| { | |||
| @@ -0,0 +1,76 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class CosineSimilarity | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/ | |||
| NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 1.0f, 1.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 1.0f, 0.0f }, { 1.0f, 1.0f } }; | |||
| [TestMethod] | |||
| public void _Default() | |||
| { | |||
| //>>> # Using 'auto'/'sum_over_batch_size' reduction type. | |||
| //>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1) | |||
| //>>> # l2_norm(y_true) = [[0., 1.], [1./1.414], 1./1.414]]] | |||
| //>>> # l2_norm(y_pred) = [[1., 0.], [1./1.414], 1./1.414]]] | |||
| //>>> # l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]] | |||
| //>>> # loss = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1)) | |||
| //>>> # = -((0. + 0.) + (0.5 + 0.5)) / 2 | |||
| //-0.5 | |||
| var loss = keras.losses.CosineSimilarity(axis : 1); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(-0.49999997f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _Sample_Weight() | |||
| { | |||
| //>>> # Calling with 'sample_weight'. | |||
| //>>> cosine_loss(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy() | |||
| //- 0.0999 | |||
| var loss = keras.losses.CosineSimilarity(); | |||
| var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f }); | |||
| Assert.AreEqual((NDArray) (- 0.099999994f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _SUM() | |||
| { | |||
| //>>> # Using 'sum' reduction type. | |||
| //>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1, | |||
| //... reduction = tf.keras.losses.Reduction.SUM) | |||
| //>>> cosine_loss(y_true, y_pred).numpy() | |||
| //- 0.999 | |||
| var loss = keras.losses.CosineSimilarity(axis: 1,reduction : ReductionV2.SUM); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(-0.99999994f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _None() | |||
| { | |||
| //>>> # Using 'none' reduction type. | |||
| //>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1, | |||
| //... reduction = tf.keras.losses.Reduction.NONE) | |||
| //>>> cosine_loss(y_true, y_pred).numpy() | |||
| //array([-0., -0.999], dtype = float32) | |||
| var loss = keras.losses.CosineSimilarity(axis :1, reduction: ReductionV2.NONE); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)new float[] { -0f, -0.99999994f }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,72 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class Huber | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/#meansquarederror-class | |||
| NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 0.6f, 0.4f }, { 0.4f, 0.6f } }; | |||
| [TestMethod] | |||
| public void _Default() | |||
| { | |||
| //>>> # Using 'auto'/'sum_over_batch_size' reduction type. | |||
| //>>> h = tf.keras.losses.Huber() | |||
| //>>> h(y_true, y_pred).numpy() | |||
| //0.155 | |||
| var loss = keras.losses.Huber(); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)0.155f, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _Sample_Weight() | |||
| { | |||
| //>>> # Calling with 'sample_weight'. | |||
| //>>> h(y_true, y_pred, sample_weight =[1, 0]).numpy() | |||
| //0.09 | |||
| var loss = keras.losses.Huber(); | |||
| var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.1f, 0.0f }); | |||
| Assert.AreEqual((NDArray)0.009000001f, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _SUM() | |||
| { | |||
| //>>> # Using 'sum' reduction type. | |||
| //>>> h = tf.keras.losses.Huber( | |||
| //... reduction = tf.keras.losses.Reduction.SUM) | |||
| //>>> h(y_true, y_pred).numpy() | |||
| //0.31 | |||
| var loss = keras.losses.Huber(reduction : ReductionV2.SUM); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)0.31f, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _None() | |||
| { | |||
| //>>> # Using 'none' reduction type. | |||
| //>>> h = tf.keras.losses.Huber( | |||
| //... reduction = tf.keras.losses.Reduction.NONE) | |||
| //>>> h(y_true, y_pred).numpy() | |||
| //array([0.18, 0.13], dtype = float32) | |||
| var loss = keras.losses.Huber(reduction: ReductionV2.NONE); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)new float[] { 0.18f, 0.13000001f }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,72 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class LogCosh | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/#meansquarederror-class | |||
| NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 0.0f, 0.0f } }; | |||
| [TestMethod] | |||
| public void _Default() | |||
| { | |||
| //>>> # Using 'auto'/'sum_over_batch_size' reduction type. | |||
| //>>> l = tf.keras.losses.LogCosh() | |||
| //>>> l(y_true, y_pred).numpy() | |||
| //0.108 | |||
| var loss = keras.losses.LogCosh(); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)0.1084452f, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _Sample_Weight() | |||
| { | |||
| //>>> # Calling with 'sample_weight'. | |||
| //>>> l(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy() | |||
| //0.087 | |||
| var loss = keras.losses.LogCosh(); | |||
| var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f }); | |||
| Assert.AreEqual((NDArray)0.08675616f, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _SUM() | |||
| { | |||
| //>>> # Using 'sum' reduction type. | |||
| //>>> l = tf.keras.losses.LogCosh( | |||
| //... reduction = tf.keras.losses.Reduction.SUM) | |||
| //>>> l(y_true, y_pred).numpy() | |||
| //0.217 | |||
| var loss = keras.losses.LogCosh(reduction : ReductionV2.SUM); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)0.2168904f, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _None() | |||
| { | |||
| //>>> # Using 'none' reduction type. | |||
| //>>> l = tf.keras.losses.LogCosh( | |||
| //... reduction = tf.keras.losses.Reduction.NONE) | |||
| //>>> l(y_true, y_pred).numpy() | |||
| //array([0.217, 0.], dtype = float32) | |||
| var loss = keras.losses.LogCosh(reduction: ReductionV2.NONE); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)new float[] { 0.2168904f, 0.0f }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,73 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class MeanAbsoluteError | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/ | |||
| NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } }; | |||
| [TestMethod] | |||
| public void _Default() | |||
| { | |||
| //>>> # Using 'auto'/'sum_over_batch_size' reduction type. | |||
| //>>> mae = tf.keras.losses.MeanAbsoluteError() | |||
| //>>> mae(y_true, y_pred).numpy() | |||
| //0.5 | |||
| var loss = keras.losses.MeanAbsoluteError(); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(0.5f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _Sample_Weight() | |||
| { | |||
| //>>> # Calling with 'sample_weight'. | |||
| //>>> mae(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy() | |||
| //0.25 | |||
| var loss = keras.losses.MeanAbsoluteError(); | |||
| var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f }); | |||
| Assert.AreEqual((NDArray)(0.25f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _SUM() | |||
| { | |||
| //>>> # Using 'sum' reduction type. | |||
| //>>> mae = tf.keras.losses.MeanAbsoluteError( | |||
| //... reduction = tf.keras.losses.Reduction.SUM) | |||
| //>>> mae(y_true, y_pred).numpy() | |||
| //1.0 | |||
| var loss = keras.losses.MeanAbsoluteError( reduction: ReductionV2.SUM); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(1.0f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _None() | |||
| { | |||
| //>>> # Using 'none' reduction type. | |||
| //>>> mae = tf.keras.losses.MeanAbsoluteError( | |||
| //... reduction = tf.keras.losses.Reduction.NONE) | |||
| //>>> mae(y_true, y_pred).numpy() | |||
| //array([0.5, 0.5], dtype = float32) | |||
| var loss = keras.losses.MeanAbsoluteError(reduction: ReductionV2.NONE); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)new float[] { 0.5f, 0.5f }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,72 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class MeanAbsolutePercentageError | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/ | |||
| NDArray y_true_float = new float[,] { { 2.0f, 1.0f }, { 2.0f, 3.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } }; | |||
| [TestMethod] | |||
| public void _Default() | |||
| { | |||
| //>>> # Using 'auto'/'sum_over_batch_size' reduction type. | |||
| //>>> mape = tf.keras.losses.MeanAbsolutePercentageError() | |||
| //>>> mape(y_true, y_pred).numpy() | |||
| //50. | |||
| var loss = keras.losses.MeanAbsolutePercentageError(); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(50f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _Sample_Weight() | |||
| { | |||
| //>>> # Calling with 'sample_weight'. | |||
| //>>> mape(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy() | |||
| //20. | |||
| var loss = keras.losses.MeanAbsolutePercentageError(); | |||
| var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f }); | |||
| Assert.AreEqual((NDArray)(20f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _SUM() | |||
| { | |||
| //>>> # Using 'sum' reduction type. | |||
| //>>> mape = tf.keras.losses.MeanAbsolutePercentageError( | |||
| //... reduction = tf.keras.losses.Reduction.SUM) | |||
| //>>> mape(y_true, y_pred).numpy() | |||
| //100. | |||
| var loss = keras.losses.MeanAbsolutePercentageError( reduction: ReductionV2.SUM); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(100f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _None() | |||
| { | |||
| //>>> # Using 'none' reduction type. | |||
| //>>> mape = tf.keras.losses.MeanAbsolutePercentageError( | |||
| //... reduction = tf.keras.losses.Reduction.NONE) | |||
| //>>> mape(y_true, y_pred).numpy() | |||
| //array([25., 75.], dtype = float32) | |||
| var loss = keras.losses.MeanAbsolutePercentageError(reduction: ReductionV2.NONE); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)new float[] { 25f, 75f }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,65 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class MeanSquaredErrorTest | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/#meansquarederror-class | |||
| private NDArray y_true = new double[,] { { 0.0, 1.0 }, { 0.0, 0.0 } }; | |||
| private NDArray y_pred = new double[,] { { 1.0, 1.0 }, { 1.0, 0.0 } }; | |||
| [TestMethod] | |||
| public void Mse_Double() | |||
| { | |||
| var mse = keras.losses.MeanSquaredError(); | |||
| var call = mse.Call(y_true, y_pred); | |||
| Assert.AreEqual((NDArray)0.5, call.numpy()) ; | |||
| } | |||
| [TestMethod] | |||
| public void Mse_Float() | |||
| { | |||
| NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } }; | |||
| var mse = keras.losses.MeanSquaredError(); | |||
| var call = mse.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)0.5, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Mse_Sample_Weight() | |||
| { | |||
| var mse = keras.losses.MeanSquaredError(); | |||
| var call = mse.Call(y_true, y_pred, sample_weight: (NDArray)new double[] { 0.7, 0.3 }); | |||
| Assert.AreEqual((NDArray)0.25, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Mse_Reduction_SUM() | |||
| { | |||
| var mse = keras.losses.MeanSquaredError(reduction: Reduction.SUM); | |||
| var call = mse.Call(y_true, y_pred); | |||
| Assert.AreEqual((NDArray)1.0, call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Mse_Reduction_NONE() | |||
| { | |||
| var mse = keras.losses.MeanSquaredError(reduction: Reduction.NONE); | |||
| var call = mse.Call(y_true, y_pred); | |||
| Assert.AreEqual((NDArray)new double[] { 0.5, 0.5 }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,72 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Losses; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.UnitTest.Keras | |||
| { | |||
| [TestClass] | |||
| public class MeanSquaredLogarithmicError | |||
| { | |||
| //https://keras.io/api/losses/regression_losses/ | |||
| NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; | |||
| NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } }; | |||
| [TestMethod] | |||
| public void _Default() | |||
| { | |||
| //>>> # Using 'auto'/'sum_over_batch_size' reduction type. | |||
| //>>> msle = tf.keras.losses.MeanSquaredLogarithmicError() | |||
| //>>> msle(y_true, y_pred).numpy() | |||
| //0.240 | |||
| var loss = keras.losses.MeanSquaredLogarithmicError(); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(0.24022643f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _Sample_Weight() | |||
| { | |||
| //>>> # Calling with 'sample_weight'. | |||
| //>>> msle(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy() | |||
| //0.120 | |||
| var loss = keras.losses.MeanSquaredLogarithmicError(); | |||
| var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f }); | |||
| Assert.AreEqual((NDArray)(0.12011322f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _SUM() | |||
| { | |||
| //>>> # Using 'sum' reduction type. | |||
| //>>> msle = tf.keras.losses.MeanSquaredLogarithmicError( | |||
| //... reduction = tf.keras.losses.Reduction.SUM) | |||
| //>>> msle(y_true, y_pred).numpy() | |||
| //0.480 | |||
| var loss = keras.losses.MeanSquaredLogarithmicError( reduction: ReductionV2.SUM); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)(0.48045287f), call.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void _None() | |||
| { | |||
| //>>> # Using 'none' reduction type. | |||
| //>>> msle = tf.keras.losses.MeanSquaredLogarithmicError( | |||
| //... reduction = tf.keras.losses.Reduction.NONE) | |||
| //>>> msle(y_true, y_pred).numpy() | |||
| //array([0.240, 0.240], dtype = float32) | |||
| var loss = keras.losses.MeanSquaredLogarithmicError(reduction: ReductionV2.NONE); | |||
| var call = loss.Call(y_true_float, y_pred_float); | |||
| Assert.AreEqual((NDArray)new float[] { 0.24022643f, 0.24022643f }, call.numpy()); | |||
| } | |||
| } | |||
| } | |||