|
|
|
@@ -39,28 +39,30 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
public bool Run() |
|
|
|
{ |
|
|
|
PrepareData(); |
|
|
|
return with(tf.Session(), sess => |
|
|
|
var graph = tf.Graph().as_default(); |
|
|
|
return with(tf.Session(graph), sess => |
|
|
|
{ |
|
|
|
if (ImportGraph) |
|
|
|
return RunWithImportedGraph(sess); |
|
|
|
return RunWithImportedGraph(sess, graph); |
|
|
|
else |
|
|
|
return RunWithBuiltGraph(sess); |
|
|
|
return RunWithBuiltGraph(sess, graph); |
|
|
|
}); |
|
|
|
} |
|
|
|
|
|
|
|
protected virtual bool RunWithImportedGraph(Session sess) |
|
|
|
protected virtual bool RunWithImportedGraph(Session sess, Graph graph) |
|
|
|
{ |
|
|
|
var graph = tf.Graph().as_default(); |
|
|
|
Console.WriteLine("Building dataset..."); |
|
|
|
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); |
|
|
|
Console.WriteLine("\tDONE"); |
|
|
|
|
|
|
|
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); |
|
|
|
|
|
|
|
var meta_file = model_name + "_untrained.meta"; |
|
|
|
Console.WriteLine("Import graph..."); |
|
|
|
var meta_file = model_name + ".meta"; |
|
|
|
tf.train.import_meta_graph(Path.Join("graph", meta_file)); |
|
|
|
|
|
|
|
//sess.run(tf.global_variables_initializer()); // not necessary here, has already been done before meta graph export |
|
|
|
|
|
|
|
Console.WriteLine("\tDONE"); |
|
|
|
//sess.run(tf.global_variables_initializer()); // not necessary here, has already been done before meta graph export
|
|
|
|
|
|
|
|
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS); |
|
|
|
var num_batches_per_epoch = (len(train_x) - 1); // BATCH_SIZE + 1 |
|
|
|
double max_accuracy = 0; |
|
|
|
@@ -68,25 +70,64 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
Tensor is_training = graph.get_operation_by_name("is_training"); |
|
|
|
Tensor model_x = graph.get_operation_by_name("x"); |
|
|
|
Tensor model_y = graph.get_operation_by_name("y"); |
|
|
|
Tensor loss = graph.get_operation_by_name("Variable"); |
|
|
|
Tensor loss = graph.get_operation_by_name("loss/loss"); |
|
|
|
//var optimizer_nodes = graph._nodes_by_name.Keys.Where(key => key.Contains("optimizer")).ToArray(); |
|
|
|
Tensor optimizer = graph.get_operation_by_name("loss/optimizer"); |
|
|
|
Tensor global_step = graph.get_operation_by_name("global_step"); |
|
|
|
Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy"); |
|
|
|
|
|
|
|
int i = 0; |
|
|
|
foreach (var (x_batch, y_batch) in train_batches) |
|
|
|
{ |
|
|
|
i++; |
|
|
|
Console.WriteLine("Training on batch " + i); |
|
|
|
var train_feed_dict = new Hashtable |
|
|
|
{ |
|
|
|
[model_x] = x_batch, |
|
|
|
[model_y] = y_batch, |
|
|
|
[is_training] = true, |
|
|
|
}; |
|
|
|
|
|
|
|
};
|
|
|
|
// original python:
|
|
|
|
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict) |
|
|
|
var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict); |
|
|
|
loss_value = result[2]; |
|
|
|
var step = result[1];
|
|
|
|
if (step % 100 == 0) |
|
|
|
Console.WriteLine($"Step {step} loss: {loss_value}"); |
|
|
|
if (step % 2000 == 0) |
|
|
|
{ |
|
|
|
continue;
|
|
|
|
// # Test accuracy with validation data for each epoch.
|
|
|
|
var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1); |
|
|
|
var (sum_accuracy, cnt) = (0, 0); |
|
|
|
foreach (var (valid_x_batch, valid_y_batch) in valid_batches) |
|
|
|
{ |
|
|
|
// valid_feed_dict = { |
|
|
|
// model.x: valid_x_batch, |
|
|
|
// model.y: valid_y_batch, |
|
|
|
// model.is_training: False |
|
|
|
// } |
|
|
|
|
|
|
|
// accuracy = sess.run(model.accuracy, feed_dict = valid_feed_dict) |
|
|
|
// sum_accuracy += accuracy |
|
|
|
// cnt += 1 |
|
|
|
} |
|
|
|
// valid_accuracy = sum_accuracy / cnt |
|
|
|
|
|
|
|
// print("\nValidation Accuracy = {1}\n".format(step // num_batches_per_epoch, sum_accuracy / cnt)) |
|
|
|
|
|
|
|
// # Save model |
|
|
|
// if valid_accuracy > max_accuracy: |
|
|
|
// max_accuracy = valid_accuracy |
|
|
|
// saver.save(sess, "{0}/{1}.ckpt".format(args.model, args.model), global_step = step) |
|
|
|
// print("Model is saved.\n") |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
protected virtual bool RunWithBuiltGraph(Session session) |
|
|
|
protected virtual bool RunWithBuiltGraph(Session session, Graph graph) |
|
|
|
{ |
|
|
|
Console.WriteLine("Building dataset..."); |
|
|
|
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); |
|
|
|
@@ -104,51 +145,31 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
throw new NotImplementedException(); |
|
|
|
break; |
|
|
|
case "vd_cnn": |
|
|
|
model=new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS); |
|
|
|
model = new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS); |
|
|
|
break; |
|
|
|
} |
|
|
|
// todo train the model |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f) |
|
|
|
// TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here |
|
|
|
private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f) |
|
|
|
{ |
|
|
|
int len = x.Length; |
|
|
|
int classes = y.Distinct().Count(); |
|
|
|
int samples = len / classes; |
|
|
|
int train_size = int.Parse((samples * (1 - test_size)).ToString()); |
|
|
|
|
|
|
|
var train_x = new List<int[]>(); |
|
|
|
var valid_x = new List<int[]>(); |
|
|
|
var train_y = new List<int>(); |
|
|
|
var valid_y = new List<int>(); |
|
|
|
|
|
|
|
for (int i = 0; i < classes; i++) |
|
|
|
{ |
|
|
|
for (int j = 0; j < samples; j++) |
|
|
|
{ |
|
|
|
int idx = i * samples + j; |
|
|
|
if (idx < train_size + samples * i) |
|
|
|
{ |
|
|
|
train_x.Add(x[idx]); |
|
|
|
train_y.Add(y[idx]); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
valid_x.Add(x[idx]); |
|
|
|
valid_y.Add(y[idx]); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return (train_x.ToArray(), valid_x.ToArray(), train_y.ToArray(), valid_y.ToArray()); |
|
|
|
Console.WriteLine("Splitting in Training and Testing data..."); |
|
|
|
int len = x.shape[0]; |
|
|
|
//int classes = y.Data<int>().Distinct().Count(); |
|
|
|
//int samples = len / classes; |
|
|
|
int train_size = (int)Math.Round(len * (1 - test_size)); |
|
|
|
var train_x = x[new Slice(stop:train_size), new Slice()]; |
|
|
|
var valid_x = x[new Slice(start: train_size+1), new Slice()]; |
|
|
|
var train_y = y[new Slice(stop: train_size)]; |
|
|
|
var valid_y = y[new Slice(start: train_size + 1)]; |
|
|
|
Console.WriteLine("\tDONE"); |
|
|
|
return (train_x, valid_x, train_y, valid_y); |
|
|
|
} |
|
|
|
|
|
|
|
private IEnumerable<(NDArray, NDArray)> batch_iter(int[][] raw_inputs, int[] raw_outputs, int batch_size, int num_epochs) |
|
|
|
private IEnumerable<(NDArray, NDArray)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs) |
|
|
|
{ |
|
|
|
var inputs = np.array(raw_inputs); |
|
|
|
var outputs = np.array(raw_outputs); |
|
|
|
|
|
|
|
var num_batches_per_epoch = (len(inputs) - 1); // batch_size + 1 |
|
|
|
foreach (var epoch in range(num_epochs)) |
|
|
|
{ |
|
|
|
@@ -156,7 +177,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
{ |
|
|
|
var start_index = batch_num * batch_size; |
|
|
|
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs)); |
|
|
|
yield return (inputs[$"{start_index}:{end_index}"], outputs[$"{start_index}:{end_index}"]); |
|
|
|
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index,end_index)]); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
@@ -170,7 +191,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
if (ImportGraph) |
|
|
|
{ |
|
|
|
// download graph meta data |
|
|
|
var meta_file = model_name + "_untrained.meta"; |
|
|
|
var meta_file = model_name + ".meta"; |
|
|
|
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; |
|
|
|
Web.Download(url, "graph", meta_file); |
|
|
|
} |
|
|
|
|