| @@ -112,16 +112,18 @@ namespace Tensorflow | |||
| var strides = new[] { 1, 1, 1, 1 }; | |||
| var dilations = new[] { 1, 1, 1, 1 }; | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2D", null, | |||
| null, | |||
| input, filter, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", true, | |||
| "padding", "VALID", | |||
| "explicit_paddings", new int[0], | |||
| "data_format", "NHWC", | |||
| "dilations", dilations); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Conv2D", null, input, filter) | |||
| { | |||
| attrs = ConvertToDict(new | |||
| { | |||
| strides, | |||
| use_cudnn_on_gpu = true, | |||
| padding = "VALID", | |||
| explicit_paddings = new int[0], | |||
| data_format = "NHWC", | |||
| dilations | |||
| }) | |||
| }); | |||
| }; | |||
| public Action<int, int> Conv2DWithVariable | |||
| @@ -132,16 +134,18 @@ namespace Tensorflow | |||
| var strides = new[] { 1, 1, 1, 1 }; | |||
| var dilations = new[] { 1, 1, 1, 1 }; | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2D", null, | |||
| null, | |||
| input, filter, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", true, | |||
| "padding", "VALID", | |||
| "explicit_paddings", new int[0], | |||
| "data_format", "NHWC", | |||
| "dilations", dilations); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Conv2D", null, input, filter) | |||
| { | |||
| attrs = ConvertToDict(new | |||
| { | |||
| strides, | |||
| use_cudnn_on_gpu = true, | |||
| padding = "VALID", | |||
| explicit_paddings = new int[0], | |||
| data_format = "NHWC", | |||
| dilations | |||
| }) | |||
| }); | |||
| }; | |||
| public Action<int, int> Dataset | |||
| @@ -13,6 +13,7 @@ | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -37,8 +38,8 @@ namespace Tensorflow | |||
| public Tensor matmul(Tensor a, Tensor b) | |||
| => math_ops.matmul(a, b); | |||
| public Tensor batch_matmul(Tensor x, Tensor y) | |||
| => gen_math_ops.batch_mat_mul(x, y); | |||
| public Tensor batch_matmul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string name = null) | |||
| => tf.Context.ExecuteOp("BatchMatMul", name, new ExecuteOpArgs(x, y).SetAttributes(new { adj_x, adj_y })); | |||
| } | |||
| public Tensor diag(Tensor diagonal, string name = null) | |||
| @@ -47,7 +48,32 @@ namespace Tensorflow | |||
| public Tensor matmul(Tensor a, Tensor b) | |||
| => math_ops.matmul(a, b); | |||
| public Tensor batch_matmul(Tensor x, Tensor y) | |||
| => gen_math_ops.batch_mat_mul(x, y); | |||
| /// <summary> | |||
| /// Multiply slices of the two matrices "x" and "y". | |||
| /// </summary> | |||
| /// <remarks> | |||
| /// The `BatchMatMul` operation is embedded into the | |||
| /// `MatMul` operation on the DLL side. However the expected | |||
| /// attributes are not the same, hence we need to expose this | |||
| /// method to have the right args list on the `_apply_op_helper` | |||
| /// function. | |||
| /// | |||
| /// For each rank > 2 the first rank - 2 dimensions are considered | |||
| /// as fixed, and have to be consistent across the two matrices. A | |||
| /// common matrix multiplication is then applied over the residual | |||
| /// 2 dimensions. | |||
| /// | |||
| /// e.g. | |||
| /// x is (3, 6, 12); y is (3, 12, 6) | |||
| /// batch_matmul(x, y) ==> (3, 6, 6) | |||
| /// </remarks> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="adj_x"></param> | |||
| /// <param name="adj_y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor batch_matmul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string name = null) | |||
| => tf.Context.ExecuteOp("BatchMatMul", name, new ExecuteOpArgs(x, y).SetAttributes(new { adj_x, adj_y })); | |||
| } | |||
| } | |||
| @@ -1,13 +0,0 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow | |||
| { | |||
| public class AutoModeArgs | |||
| { | |||
| public Func<Operation, object> GetGradientAttrs { get; set; } | |||
| public object OpInputArgs { get; set; } | |||
| public object OpAttrs { get; set; } | |||
| } | |||
| } | |||
| @@ -30,37 +30,35 @@ namespace Tensorflow.Contexts | |||
| public sealed partial class Context | |||
| { | |||
| // [DebuggerStepThrough] | |||
| public Tensors ExecuteOp(string OpType, string Name, AutoModeArgs args) | |||
| public Tensors ExecuteOp(string OpType, string Name, ExecuteOpArgs args) | |||
| { | |||
| var inputArgs = ConvertToDict(args.OpInputArgs); | |||
| var attrDict = ConvertToDict(args.OpAttrs); | |||
| Func<Tensors> graphAction = () => | |||
| { | |||
| foreach (var attr in attrDict) | |||
| inputArgs[attr.Key] = attr.Value; | |||
| return tf.OpDefLib._apply_op_helper(OpType, Name, inputArgs).outputs; | |||
| var keywords = new Dictionary<string, object>(); | |||
| if(args.OpInputArgs != null) | |||
| { | |||
| foreach (var (i, input) in enumerate(args.OpInputArgs)) | |||
| keywords[$"input_{i}"] = input; | |||
| } | |||
| if(args.OpAttrs != null) | |||
| { | |||
| foreach (var attr in args.OpAttrs) | |||
| keywords[attr.Key] = attr.Value; | |||
| } | |||
| return tf.OpDefLib._apply_op_helper(OpType, Name, keywords).outputs; | |||
| }; | |||
| Func<Tensors> eagerAction = () => | |||
| { | |||
| var attrs = new object[attrDict.Count() * 2]; | |||
| int i = 0; | |||
| foreach(var arg in attrDict) | |||
| return tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(OpType, Name, args.OpInputArgs) | |||
| { | |||
| attrs[i]= arg.Key; | |||
| attrs[i + 1] = arg.Value; | |||
| i += 2; | |||
| } | |||
| return tf.Runner.TFE_FastPathExecute2(tf.Context, tf.Context.DeviceName, | |||
| OpType, Name, | |||
| null, | |||
| inputArgs.Values.ToArray(), | |||
| attrs); | |||
| attrs = args.OpAttrs | |||
| }); | |||
| }; | |||
| if (tf.Context.has_graph_arg(inputArgs.Values)) | |||
| if (tf.Context.has_graph_arg(args.OpInputArgs)) | |||
| { | |||
| if (executing_eagerly()) | |||
| { | |||
| @@ -115,7 +115,10 @@ namespace Tensorflow.Contexts | |||
| public bool has_graph_arg(params object[] args) | |||
| { | |||
| var flatten_args = nest.flatten<object>(args); | |||
| bool has_graph_arg = false; | |||
| /*if (flatten_args.Count(x => x.GetType().IsValueType) == flatten_args.Count()) | |||
| return tf.Context.executing_eagerly() == false*/ | |||
| bool has_graph_arg = !tf.Context.executing_eagerly(); | |||
| foreach (var el in flatten_args) | |||
| { | |||
| if (el is Tensor tensor && !tensor.IsEagerTensor) | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| public class ExecuteOpArgs | |||
| { | |||
| public Func<Operation, object> GetGradientAttrs { get; set; } | |||
| public object[] OpInputArgs { get; set; } | |||
| public Dictionary<string, object> OpAttrs { get; set; } | |||
| public ExecuteOpArgs(params object[] inputArgs) | |||
| { | |||
| OpInputArgs = inputArgs; | |||
| } | |||
| public ExecuteOpArgs SetAttributes(object attrs) | |||
| { | |||
| OpAttrs = ConvertToDict(attrs); | |||
| return this; | |||
| } | |||
| } | |||
| } | |||
| @@ -105,18 +105,7 @@ namespace Tensorflow | |||
| } | |||
| public Tensor dataset_cardinality(string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DatasetCardinality", name, | |||
| null, | |||
| variant_tensor); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("DatasetCardinality", name, new ExecuteOpArgs(variant_tensor)); | |||
| public override string ToString() | |||
| => $"{GetType().Name} shapes: {string.Join(", ", structure.Select(x => x.shape))}, types: {string.Join(", ", structure.Select(x => "tf." + x.dtype.as_numpy_name()))}"; | |||
| @@ -15,84 +15,54 @@ namespace Tensorflow.Eager | |||
| /// </summary> | |||
| public partial class EagerRunner | |||
| { | |||
| int kFastPathExecuteInputStartIndex = 0; | |||
| UnorderedMap<Context, SafeOpHandle> thread_local_eager_operation_map = new UnorderedMap<Context, SafeOpHandle>(); | |||
| public Tensor[] TFE_FastPathExecute2(Context ctx, | |||
| string device_name, | |||
| string opName, | |||
| string name, | |||
| Action callbacks, | |||
| object[] inputArgs, | |||
| object[] attrs) | |||
| public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) | |||
| { | |||
| var args = new List<object>(); | |||
| args.AddRange(inputArgs); | |||
| if (attrs != null) | |||
| args.AddRange(attrs); | |||
| return TFE_FastPathExecute(ctx, device_name, opName, name, callbacks, args.ToArray()); | |||
| } | |||
| public Tensor[] TFE_FastPathExecute(Context ctx, | |||
| string device_name, | |||
| string opName, | |||
| string name, | |||
| Action callbacks, | |||
| params object[] args) | |||
| { | |||
| if (ctx == null) | |||
| throw new ValueError("This function does not handle the case of the path where " + | |||
| "all inputs are not already EagerTensors."); | |||
| if (op_exec_info.ctx == null) | |||
| op_exec_info.ctx = tf.Context; | |||
| if (string.IsNullOrEmpty(op_exec_info.device_name)) | |||
| op_exec_info.device_name = tf.Context.DeviceName; | |||
| int args_size = args.Length; | |||
| var attr_list_sizes = new Dictionary<string, long>(); | |||
| FastPathOpExecInfo op_exec_info = new FastPathOpExecInfo() | |||
| { | |||
| ctx = ctx, | |||
| args = args, | |||
| device_name = device_name, | |||
| op_name = opName, | |||
| name = name, | |||
| }; | |||
| op_exec_info.run_gradient_callback = HasAccumulatorOrTape(); | |||
| op_exec_info.run_post_exec_callbacks = callbacks != null; | |||
| op_exec_info.run_post_exec_callbacks = op_exec_info.callbacks != null; | |||
| op_exec_info.run_callbacks = op_exec_info.run_gradient_callback || op_exec_info.run_post_exec_callbacks; | |||
| var status = tf.Status; | |||
| using var op = GetOp(ctx, opName, status); | |||
| using var op = GetOp(op_exec_info.ctx, op_exec_info.op_name, status); | |||
| var op_def = tf.get_default_graph().GetOpDef(opName); | |||
| var op_def = tf.get_default_graph().GetOpDef(op_exec_info.op_name); | |||
| var flattened_attrs = new List<object>(op_def.Attr.Count * 2); | |||
| var flattened_inputs = new List<Tensor>(op_def.InputArg.Count); | |||
| // Set non-inferred attrs, including setting defaults if the attr is passed in | |||
| // as None. | |||
| for (int i = kFastPathExecuteInputStartIndex + op_def.InputArg.Count; i < args_size; i += 2) | |||
| if(op_exec_info.attrs != null) | |||
| { | |||
| var attr_name = args[i].ToString(); | |||
| var attr_value = args[i + 1]; | |||
| var attr = op_def.Attr.FirstOrDefault(x => x.Name == attr_name); | |||
| if (attr != null) | |||
| foreach (var attr1 in op_exec_info.attrs) | |||
| { | |||
| flattened_attrs.Add(attr_name); | |||
| flattened_attrs.Add(attr_value); | |||
| var attr = op_def.Attr.FirstOrDefault(x => x.Name == attr1.Key); | |||
| if (attr != null) | |||
| { | |||
| flattened_attrs.Add(attr.Name); | |||
| flattened_attrs.Add(attr1.Value); | |||
| SetOpAttrWithDefaults(ctx, op, attr, attr_name, attr_value, attr_list_sizes, status); | |||
| status.Check(true); | |||
| SetOpAttrWithDefaults(op_exec_info.ctx, op, attr, attr.Name, attr1.Value, attr_list_sizes, status); | |||
| status.Check(true); | |||
| } | |||
| } | |||
| } | |||
| c_api.TFE_OpSetDevice(op, device_name, status.Handle); | |||
| c_api.TFE_OpSetDevice(op, op_exec_info.device_name, status.Handle); | |||
| status.Check(true); | |||
| // Add inferred attrs and inputs. | |||
| for (int i = 0; i < op_def.InputArg.Count; i++) | |||
| { | |||
| var input = args[kFastPathExecuteInputStartIndex + i]; | |||
| var input = op_exec_info.args[i]; | |||
| var input_arg = op_def.InputArg[i]; | |||
| if (!string.IsNullOrEmpty(input_arg.NumberAttr)) | |||
| { | |||
| @@ -107,7 +77,7 @@ namespace Tensorflow.Eager | |||
| if (len > 0) | |||
| { | |||
| var fast_input_array = (object[])args[i]; | |||
| var fast_input_array = (object[])op_exec_info.args[i]; | |||
| // First item adds the type attr. | |||
| if (!AddInputToOp(fast_input_array[i], true, input_arg, flattened_attrs, flattened_inputs, op, status)) | |||
| return null; | |||
| @@ -151,7 +121,7 @@ namespace Tensorflow.Eager | |||
| else | |||
| { | |||
| // The item is a single item. | |||
| AddInputToOp(args[i], true, input_arg, flattened_attrs, flattened_inputs, op, status); | |||
| AddInputToOp(op_exec_info.args[i], true, input_arg, flattened_attrs, flattened_inputs, op, status); | |||
| } | |||
| } | |||
| @@ -179,7 +149,7 @@ namespace Tensorflow.Eager | |||
| if (op_exec_info.run_callbacks) | |||
| { | |||
| RunCallbacks(op_exec_info, | |||
| kFastPathExecuteInputStartIndex + op_def.InputArg.Count(), | |||
| op_def.InputArg.Count(), | |||
| flattened_inputs.ToArray(), flattened_attrs.ToArray(), flat_result); | |||
| } | |||
| @@ -1,6 +1,8 @@ | |||
| using Tensorflow.Contexts; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Contexts; | |||
| namespace Tensorflow.Eager | |||
| namespace Tensorflow | |||
| { | |||
| public class FastPathOpExecInfo | |||
| { | |||
| @@ -9,8 +11,17 @@ namespace Tensorflow.Eager | |||
| public string op_name { get; set; } | |||
| public string name { get; set; } | |||
| public object[] args { get; set; } | |||
| public Dictionary<string, object> attrs { get; set; } | |||
| public bool run_gradient_callback { get; set; } | |||
| public bool run_post_exec_callbacks { get; set; } | |||
| public bool run_callbacks { get; set; } | |||
| public Action callbacks { get; set; } | |||
| public FastPathOpExecInfo(string opName, string name, params object[] inputArgs) | |||
| { | |||
| this.op_name = opName; | |||
| this.name = name; | |||
| this.args = inputArgs; | |||
| } | |||
| } | |||
| } | |||
| @@ -16,20 +16,7 @@ namespace Tensorflow.Eager | |||
| TF_DataType default_dtype = TF_DataType.DtInvalid, | |||
| object[] args = null); | |||
| Tensor[] TFE_FastPathExecute2(Context ctx, | |||
| string device_name, | |||
| string opName, | |||
| string name, | |||
| Action callbacks, | |||
| object[] inputArgs, | |||
| object[] attrs); | |||
| Tensor[] TFE_FastPathExecute(Context ctx, | |||
| string device_name, | |||
| string opName, | |||
| string name, | |||
| Action callbacks, | |||
| params object[] args); | |||
| Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info); | |||
| Tensor[] TFE_Execute(Context ctx, | |||
| string device_name, | |||
| @@ -291,23 +291,23 @@ namespace Tensorflow.Gradients | |||
| var b = math_ops.conj(op.inputs[1]); | |||
| if (!t_a && !t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(grad, b, adj_y: true); | |||
| grad_b = gen_math_ops.batch_mat_mul(a, grad, adj_x: true); | |||
| grad_a = math_ops.batch_matmul(grad, b, adj_y: true); | |||
| grad_b = math_ops.batch_matmul(a, grad, adj_x: true); | |||
| } | |||
| else if (!t_a && t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(grad, b); | |||
| grad_b = gen_math_ops.batch_mat_mul(grad, a, adj_x: true); | |||
| grad_a = math_ops.batch_matmul(grad, b); | |||
| grad_b = math_ops.batch_matmul(grad, a, adj_x: true); | |||
| } | |||
| else if (t_a && !t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(grad, b); | |||
| grad_b = gen_math_ops.batch_mat_mul(grad, a, adj_x: true); | |||
| grad_a = math_ops.batch_matmul(grad, b); | |||
| grad_b = math_ops.batch_matmul(grad, a, adj_x: true); | |||
| } | |||
| else if (t_a && t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(b, grad, adj_x: true, adj_y: true); | |||
| grad_b = gen_math_ops.batch_mat_mul(grad, a, adj_x: true, adj_y: true); | |||
| grad_a = math_ops.batch_matmul(b, grad, adj_x: true, adj_y: true); | |||
| grad_b = math_ops.batch_matmul(grad, a, adj_x: true, adj_y: true); | |||
| } | |||
| return new Tensor[] { grad_a, grad_b }; | |||
| @@ -40,37 +40,16 @@ namespace Tensorflow.Operations | |||
| /// <param name="parameters"></param> | |||
| /// <returns></returns> | |||
| public static Tensor conv2d(Conv2dParams parameters) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2D", parameters.Name, | |||
| null, | |||
| parameters.Input, parameters.Filter, | |||
| "strides", parameters.Strides, | |||
| "use_cudnn_on_gpu", parameters.UseCudnnOnGpu, | |||
| "padding", parameters.Padding, | |||
| "explicit_paddings", parameters.ExplicitPaddings, | |||
| "data_format", parameters.DataFormat, | |||
| "dilations", parameters.Dilations); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Conv2D", name: parameters.Name, args: new | |||
| { | |||
| input = parameters.Input, | |||
| filter = parameters.Filter, | |||
| strides = parameters.Strides, | |||
| padding = parameters.Padding, | |||
| use_cudnn_on_gpu = parameters.UseCudnnOnGpu, | |||
| explicit_paddings = parameters.ExplicitPaddings, | |||
| data_format = parameters.DataFormat, | |||
| dilations = parameters.Dilations | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Conv2D", parameters.Name, new ExecuteOpArgs(parameters.Input, parameters.Filter) | |||
| .SetAttributes(new | |||
| { | |||
| strides = parameters.Strides, | |||
| padding = parameters.Padding, | |||
| use_cudnn_on_gpu = parameters.UseCudnnOnGpu, | |||
| explicit_paddings = parameters.ExplicitPaddings, | |||
| data_format = parameters.DataFormat, | |||
| dilations = parameters.Dilations | |||
| })); | |||
| /// <summary> | |||
| /// Computes the gradients of convolution with respect to the filter. | |||
| @@ -83,43 +62,16 @@ namespace Tensorflow.Operations | |||
| string data_format = "NHWC", | |||
| int[] dilations = null, | |||
| string name = null) | |||
| { | |||
| if (explicit_paddings == null) | |||
| explicit_paddings = new int[0]; | |||
| if (dilations == null) | |||
| dilations = new int[] { 1, 1, 1, 1 }; | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2DBackpropFilter", name, | |||
| null, | |||
| input, filter_sizes, out_backprop, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", use_cudnn_on_gpu, | |||
| "padding", padding, | |||
| "explicit_paddings", explicit_paddings, | |||
| "data_format", data_format, | |||
| "dilations", dilations); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Conv2DBackpropFilter", name: name, args: new | |||
| { | |||
| input, | |||
| filter_sizes, | |||
| out_backprop, | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings, | |||
| data_format, | |||
| dilations | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Conv2DBackpropFilter", name, new ExecuteOpArgs(input, filter_sizes, out_backprop) | |||
| .SetAttributes(new | |||
| { | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings = explicit_paddings ?? new int[0], | |||
| data_format, | |||
| dilations = dilations ?? new int[] { 1, 1, 1, 1 } | |||
| })); | |||
| /// <summary> | |||
| /// Computes the gradients of convolution with respect to the input. | |||
| @@ -132,99 +84,29 @@ namespace Tensorflow.Operations | |||
| string data_format = "NHWC", | |||
| int[] dilations = null, | |||
| string name = null) | |||
| { | |||
| if (explicit_paddings == null) | |||
| explicit_paddings = new int[0]; | |||
| if (dilations == null) | |||
| dilations = new int[] { 1, 1, 1, 1 }; | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2DBackpropInput", name, | |||
| null, | |||
| input_sizes, filter, out_backprop, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", use_cudnn_on_gpu, | |||
| "padding", padding, | |||
| "explicit_paddings", explicit_paddings, | |||
| "data_format", data_format, | |||
| "dilations", dilations); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Conv2DBackpropInput", name: name, args: new | |||
| { | |||
| input_sizes, | |||
| filter, | |||
| out_backprop, | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings, | |||
| data_format, | |||
| dilations | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Conv2DBackpropInput", name, new ExecuteOpArgs(input_sizes, filter, out_backprop) | |||
| .SetAttributes(new | |||
| { | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings = explicit_paddings ?? new int[0], | |||
| data_format, | |||
| dilations = dilations ?? new int[] { 1, 1, 1, 1 } | |||
| })); | |||
| public static Tensor bias_add(Tensor value, | |||
| IVariableV1 bias, | |||
| string data_format = null, | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BiasAdd", name, | |||
| null, | |||
| value, bias, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| if (data_format == null) | |||
| data_format = "NHWC"; | |||
| var _op = tf.OpDefLib._apply_op_helper("BiasAdd", name: name, args: new | |||
| { | |||
| value, | |||
| bias, | |||
| data_format | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("BiasAdd", name, new ExecuteOpArgs(value, bias) | |||
| .SetAttributes(new { data_format = data_format ?? "NHWC" })); | |||
| public static Tensor bias_add_grad(Tensor out_backprop, | |||
| string data_format = "NHWC", | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BiasAddGrad", name, | |||
| null, | |||
| out_backprop, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| if (data_format == null) | |||
| data_format = "NHWC"; | |||
| var _op = tf.OpDefLib._apply_op_helper("BiasAddGrad", name: name, args: new | |||
| { | |||
| out_backprop, | |||
| data_format | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("BiasAddGrad", name, new ExecuteOpArgs(out_backprop) | |||
| .SetAttributes(new { data_format = data_format ?? "NHWC" })); | |||
| /// <summary> | |||
| /// Computes exponential linear: <c>exp(features) - 1</c> if &lt; 0, <c>features</c> otherwise. | |||
| @@ -269,24 +151,19 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor[] fused_batch_norm_grad_v3(FusedBatchNormParams @params) | |||
| => tf.Context.ExecuteOp("FusedBatchNormGradV3", @params.Name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new | |||
| { | |||
| y_backprop = @params.YBackprop, | |||
| x = @params.X, | |||
| scale = @params.Scale, | |||
| reserve_space_1 = @params.ReserveSpace1, | |||
| reserve_space_2 = @params.ReserveSpace2, | |||
| reserve_space_3 = @params.ReserveSpace3 | |||
| }, | |||
| OpAttrs = new | |||
| => tf.Context.ExecuteOp("FusedBatchNormGradV3", @params.Name, | |||
| new ExecuteOpArgs(@params.YBackprop, | |||
| @params.X, | |||
| @params.Scale, | |||
| @params.ReserveSpace1, | |||
| @params.ReserveSpace2, | |||
| @params.ReserveSpace3) | |||
| .SetAttributes(new | |||
| { | |||
| epsilon = @params.Epsilon, | |||
| data_format = @params.DataFormat, | |||
| is_training = @params.IsTraining | |||
| } | |||
| }); | |||
| })); | |||
| public static Tensor[] fused_batch_norm(Tensor x, | |||
| Tensor scale, | |||
| @@ -323,39 +200,8 @@ namespace Tensorflow.Operations | |||
| string data_format = "NHWC", | |||
| bool is_training = true, | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FusedBatchNormV3", name, | |||
| null, | |||
| x, | |||
| scale, | |||
| offset, | |||
| mean, | |||
| variance, | |||
| "epsilon", epsilon, | |||
| "exponential_avg_factor", exponential_avg_factor, | |||
| "data_format", data_format, | |||
| "is_training", is_training); | |||
| return results; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormV3", name: name, args: new | |||
| { | |||
| x, | |||
| scale, | |||
| offset, | |||
| mean, | |||
| variance, | |||
| epsilon, | |||
| data_format, | |||
| is_training | |||
| }); | |||
| return _op.outputs; | |||
| } | |||
| => tf.Context.ExecuteOp("FusedBatchNormV3", name, new ExecuteOpArgs(x, scale, offset, mean, variance) | |||
| .SetAttributes(new { epsilon, data_format, is_training })); | |||
| /// <summary> | |||
| /// Local Response Normalization. | |||
| @@ -383,10 +229,7 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor log_softmax(Tensor logits, string name = null) | |||
| => tf.Context.ExecuteOp("LogSoftmax", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { logits } | |||
| }); | |||
| => tf.Context.ExecuteOp("LogSoftmax", name, new ExecuteOpArgs(logits)); | |||
| /// <summary> | |||
| /// Says whether the targets are in the top `K` predictions. | |||
| @@ -409,11 +252,8 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor leaky_relu(Tensor features, float alpha = 0.2f, string name = null) | |||
| => tf.Context.ExecuteOp("LeakyRelu", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { features }, | |||
| OpAttrs = new { alpha } | |||
| }); | |||
| => tf.Context.ExecuteOp("LeakyRelu", name, | |||
| new ExecuteOpArgs(features).SetAttributes(new { alpha })); | |||
| public static Tensor max_pool(Tensor input, | |||
| int[] ksize, | |||
| @@ -421,63 +261,25 @@ namespace Tensorflow.Operations | |||
| string padding, | |||
| string data_format = "NHWC", | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MaxPool", name, | |||
| null, | |||
| input, | |||
| "ksize", ksize, | |||
| "strides", strides, | |||
| "padding", padding, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("MaxPool", name: name, args: new | |||
| { | |||
| input, | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format, | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("MaxPool", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new | |||
| { | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format | |||
| })); | |||
| public static Tensor max_pool_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, | |||
| string data_format = "NHWC", string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MaxPoolGrad", name, | |||
| null, | |||
| orig_input, orig_output, grad, | |||
| "ksize", ksize, | |||
| "strides", strides, | |||
| "padding", padding, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("MaxPoolGrad", name: name, args: new | |||
| { | |||
| orig_input, | |||
| orig_output, | |||
| grad, | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("MaxPoolGrad", name, new ExecuteOpArgs(orig_input, orig_output, grad) | |||
| .SetAttributes(new | |||
| { | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format | |||
| })); | |||
| public static Tensor[] top_kv2(Tensor input, int k, bool sorted = true, string name = null) | |||
| { | |||
| @@ -492,68 +294,14 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor relu_grad(Tensor gradients, Tensor features, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ReluGrad", name, | |||
| null, | |||
| gradients, features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ReluGrad", name: name, args: new | |||
| { | |||
| gradients, | |||
| features | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ReluGrad", name, new ExecuteOpArgs(gradients, features)); | |||
| public static Tensor leaky_relu_grad(Tensor gradients, Tensor features, float alpha = 0.2f, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "LeakyReluGrad", name, | |||
| null, | |||
| gradients, features, | |||
| "alpha", alpha); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("LeakyReluGrad", name: name, args: new | |||
| { | |||
| gradients, | |||
| features, | |||
| alpha | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("LeakyReluGrad", name, new ExecuteOpArgs(gradients, features) | |||
| .SetAttributes(new { alpha })); | |||
| public static Tensor softmax(Tensor logits, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Softmax", name, | |||
| null, | |||
| logits); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Softmax", name: name, args: new | |||
| { | |||
| logits | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Softmax", name, new ExecuteOpArgs(logits)); | |||
| /// <summary> | |||
| /// Computes softmax cross entropy cost and gradients to backpropagate. | |||
| @@ -564,23 +312,9 @@ namespace Tensorflow.Operations | |||
| /// <returns></returns> | |||
| public static (Tensor, Tensor) softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SoftmaxCrossEntropyWithLogits", name, | |||
| null, | |||
| features, labels); | |||
| return (results[0], results[1]); | |||
| } | |||
| var results = tf.Context.ExecuteOp("SoftmaxCrossEntropyWithLogits", name, new ExecuteOpArgs(features, labels)); | |||
| var _op = tf.OpDefLib._apply_op_helper("SoftmaxCrossEntropyWithLogits", name: name, args: new | |||
| { | |||
| features, | |||
| labels | |||
| }); | |||
| return (_op.outputs[0], _op.outputs[1]); | |||
| return (results[0], results[1]); | |||
| } | |||
| /// <summary> | |||
| @@ -612,21 +346,9 @@ namespace Tensorflow.Operations | |||
| /// </remarks> | |||
| public static (Tensor loss, Tensor backprop) sparse_softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string name = "SparseSoftmaxCrossEntropyWithLogits") | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SparseSoftmaxCrossEntropyWithLogits", name, | |||
| null, | |||
| features, labels); | |||
| return (results[0], results[1]); | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("SparseSoftmaxCrossEntropyWithLogits", name: name, args: new { features, labels }); | |||
| int _idx = 0; | |||
| var loss = op.outputs[_idx++]; | |||
| var backprop = op.outputs[_idx++]; | |||
| return (loss, backprop); | |||
| var results = tf.Context.ExecuteOp("SparseSoftmaxCrossEntropyWithLogits", name, new ExecuteOpArgs(features, labels)); | |||
| return (results[0], results[1]); | |||
| } | |||
| /// <summary> | |||
| @@ -636,35 +358,9 @@ namespace Tensorflow.Operations | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>A `Tensor`. Has the same type as `features`.</returns> | |||
| public static Tensor relu(Tensor features, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Relu", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Relu", name: name, args: new { features }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)); | |||
| public static Tensor tanh(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tanh", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Tanh", name: name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(x)); | |||
| } | |||
| } | |||
| @@ -68,10 +68,10 @@ namespace Tensorflow | |||
| string _scope_name = scope; | |||
| // Perform input type inference | |||
| foreach (var input_arg in op_def.InputArg) | |||
| foreach (var (i, input_arg) in enumerate(op_def.InputArg)) | |||
| { | |||
| var input_name = input_arg.Name; | |||
| if (keywords.ContainsKey(input_name)) | |||
| values = keywords[input_name]; | |||
| else if (keywords.ContainsKey(input_name + "_")) | |||
| @@ -79,6 +79,10 @@ namespace Tensorflow | |||
| input_name += "_"; | |||
| values = keywords[input_name]; | |||
| } | |||
| else if (keywords.ContainsKey($"input_{i}")) | |||
| { | |||
| values = keywords[$"input_{i}"]; | |||
| } | |||
| else | |||
| throw new TypeError("No argument for input " + input_name); | |||
| @@ -57,20 +57,8 @@ namespace Tensorflow | |||
| /// gradients in some corner cases. | |||
| /// </remarks> | |||
| public static Tensor prevent_gradient(Tensor input, string message = "", string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "PreventGradient", name, | |||
| null, | |||
| input, | |||
| "message", message); | |||
| return results[0]; | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("PreventGradient", name: name, args: new { input, message }); | |||
| return op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("PreventGradient", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { message })); | |||
| internal static Tensor constant(object value, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| @@ -737,35 +725,27 @@ namespace Tensorflow | |||
| public static Tensor strided_slice_grad(Tensor shape, Tensor begin, Tensor end, Tensor strides, Tensor dy, | |||
| long begin_mask = 0, long end_mask = 0, long ellipsis_mask = 0, long new_axis_mask = 0, | |||
| long shrink_axis_mask = 0, string name = null) | |||
| => tf.Context.ExecuteOp("StridedSliceGrad", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new | |||
| => tf.Context.ExecuteOp("StridedSliceGrad", name, | |||
| new ExecuteOpArgs(shape, begin, end, strides, dy) | |||
| { | |||
| shape, | |||
| begin, | |||
| end, | |||
| strides, | |||
| dy | |||
| }, | |||
| OpAttrs = new | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| Index = op.get_attr<TF_DataType>("Index"), | |||
| begin_mask = op.get_attr<long>("begin_mask"), | |||
| end_mask = op.get_attr<long>("end_mask"), | |||
| ellipsis_mask = op.get_attr<long>("ellipsis_mask"), | |||
| new_axis_mask = op.get_attr<long>("new_axis_mask"), | |||
| shrink_axis_mask = op.get_attr<long>("shrink_axis_mask") | |||
| } | |||
| }.SetAttributes(new | |||
| { | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| }, | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| Index = op.get_attr<TF_DataType>("Index"), | |||
| begin_mask = op.get_attr<long>("begin_mask"), | |||
| end_mask = op.get_attr<long>("end_mask"), | |||
| ellipsis_mask = op.get_attr<long>("ellipsis_mask"), | |||
| new_axis_mask = op.get_attr<long>("new_axis_mask"), | |||
| shrink_axis_mask = op.get_attr<long>("shrink_axis_mask") | |||
| } | |||
| }); | |||
| })); | |||
| /// <summary> | |||
| /// Removes dimensions of size 1 from the shape of a tensor. | |||
| @@ -800,38 +780,17 @@ namespace Tensorflow | |||
| int num_cols = -1, | |||
| float padding_value = 0, | |||
| string align = "RIGHT_LEFT") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MatrixDiagV3", name, | |||
| null, | |||
| diagonal, k, num_rows, num_cols, padding_value, | |||
| "align", align); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("MatrixDiagV3", name, | |||
| new ExecuteOpArgs(diagonal, k, num_rows, num_cols, padding_value) | |||
| .SetAttributes(new { align })); | |||
| public static Tensor matrix_set_diag(Tensor input, | |||
| Tensor diagonal, | |||
| string name = "set_diag", | |||
| int k = 0, | |||
| string align = "RIGHT_LEFT") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MatrixSetDiagV3", name, | |||
| null, | |||
| input, diagonal, k, | |||
| "align", align); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("MatrixSetDiagV3", name, new ExecuteOpArgs(input, diagonal, k) | |||
| .SetAttributes(new { align })); | |||
| /// <summary> | |||
| /// Computes the shape of a broadcast given symbolic shapes. | |||
| @@ -960,9 +919,8 @@ namespace Tensorflow | |||
| => gen_array_ops.slice(input, begin, size, name: name); | |||
| public static Tensor slice(Tensor input, Tensor begin, Tensor size, string name = null) | |||
| => tf.Context.ExecuteOp("Slice", name, new AutoModeArgs | |||
| => tf.Context.ExecuteOp("Slice", name, new ExecuteOpArgs(input, begin, size) | |||
| { | |||
| OpInputArgs = new { input, begin, size }, | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| @@ -94,20 +94,7 @@ namespace Tensorflow.Operations | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| Tensor unary_op(Tensor x, string opName, string name) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| opName, name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper(opName, name, args: new { x }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp(opName, name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Helper method to invoke binary operator with specified name. | |||
| @@ -118,21 +105,7 @@ namespace Tensorflow.Operations | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| Tensor binary_op(Tensor x, Tensor y, string opName, string name) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| opName, name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper(opName, name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp(opName, name, new ExecuteOpArgs(x, y)); | |||
| #endregion | |||
| } | |||
| } | |||
| @@ -8,26 +8,10 @@ namespace Tensorflow | |||
| public class dataset_ops | |||
| { | |||
| public Tensor tensor_dataset(Tensor[] components, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("TensorDataset", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TensorDataset", name, | |||
| null, | |||
| new object[] | |||
| { | |||
| components, | |||
| "output_shapes", output_shapes | |||
| }); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TensorDataset", | |||
| name: name, | |||
| args: new { components, output_shapes }); | |||
| return _op.output; | |||
| } | |||
| OpInputArgs = new object[] { components } | |||
| }.SetAttributes(new { output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset that emits each dim-0 slice of `components` once. | |||
| @@ -37,192 +21,62 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor tensor_slice_dataset(Tensor[] components, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("TensorSliceDataset", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TensorSliceDataset", name, | |||
| null, | |||
| new object[] | |||
| { | |||
| components, | |||
| "output_shapes", output_shapes | |||
| }); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TensorSliceDataset", | |||
| name: name, | |||
| args: new { components, output_shapes }); | |||
| return _op.outputs[0]; | |||
| } | |||
| OpInputArgs = new object[] { components } | |||
| }.SetAttributes(new { output_shapes })); | |||
| public Tensor range_dataset(Tensor start, Tensor stop, Tensor step, TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RangeDataset", name, | |||
| null, | |||
| start, stop, step, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("RangeDataset", name, new ExecuteOpArgs(start, stop, step) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor repeat_dataset(Tensor input_dataset, Tensor count, TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RepeatDataset", name, | |||
| null, | |||
| input_dataset, count, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("RepeatDataset", name, new ExecuteOpArgs(input_dataset, count) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor shard_dataset(Tensor input_dataset, Tensor num_shards, Tensor index, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool require_non_empty = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ShardDataset", name, | |||
| null, | |||
| input_dataset, num_shards, index, | |||
| "require_non_empty", require_non_empty, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ShardDataset", name, new ExecuteOpArgs(input_dataset, num_shards, index) | |||
| .SetAttributes(new { require_non_empty, output_types, output_shapes })); | |||
| public Tensor zip_dataset(Tensor[] input_datasets, | |||
| TF_DataType[] output_types, | |||
| TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ZipDataset", name, | |||
| null, | |||
| new object[] | |||
| { | |||
| input_datasets, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes | |||
| }); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ZipDataset", name, new ExecuteOpArgs() | |||
| { | |||
| OpInputArgs = new object[] { input_datasets } | |||
| }.SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor shuffle_dataset_v3(Tensor input_dataset, Tensor buffer_size, | |||
| Tensor seed, Tensor seed2, Tensor seed_generator, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool reshuffle_each_iteration = true, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ShuffleDatasetV3", name, | |||
| null, | |||
| input_dataset, buffer_size, | |||
| seed, seed2, seed_generator, | |||
| "reshuffle_each_iteration", reshuffle_each_iteration, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ShuffleDatasetV3", name, new ExecuteOpArgs(input_dataset, buffer_size, seed, seed2, seed_generator) | |||
| .SetAttributes(new { reshuffle_each_iteration, output_types, output_shapes })); | |||
| public Tensor skip_dataset(Tensor input_dataset, Tensor count, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SkipDataset", name, | |||
| null, | |||
| input_dataset, count, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("SkipDataset", name, new ExecuteOpArgs(input_dataset, count) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor dummy_seed_generator(string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DummySeedGenerator", name, | |||
| null); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("DummySeedGenerator", name, new ExecuteOpArgs()); | |||
| public Tensor concatenate_dataset(Tensor input_dataset, Tensor another_dataset, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ConcatenateDataset", name, | |||
| null, | |||
| input_dataset, another_dataset, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ConcatenateDataset", | |||
| name: name, | |||
| args: new { input_dataset, another_dataset, output_types, output_shapes }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ConcatenateDataset", name, new ExecuteOpArgs(input_dataset, another_dataset) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor cache_dataset_v2(Tensor input_dataset, Tensor filename, Tensor cache, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "CacheDatasetV2", name, | |||
| null, | |||
| input_dataset, filename, cache, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("CacheDatasetV2", name, new ExecuteOpArgs(input_dataset, filename, cache) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset that batches `batch_size` elements from `input_dataset`. | |||
| @@ -240,21 +94,9 @@ namespace Tensorflow | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool parallel_copy = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BatchDatasetV2", name, | |||
| null, | |||
| input_dataset, buffer_size, drop_remainder, | |||
| "parallel_copy", parallel_copy, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("BatchDatasetV2", name, | |||
| new ExecuteOpArgs(input_dataset, buffer_size, drop_remainder) | |||
| .SetAttributes(new { parallel_copy, output_types, output_shapes })); | |||
| /// <summary> | |||
| /// | |||
| @@ -262,17 +104,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor dummy_memory_cache(string name = "") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DummyMemoryCache", name, | |||
| null); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("DummyMemoryCache", name, new ExecuteOpArgs()); | |||
| /// <summary> | |||
| /// Creates a dataset that asynchronously prefetches elements from `input_dataset`. | |||
| @@ -290,22 +122,14 @@ namespace Tensorflow | |||
| int? slack_period = 0, | |||
| bool legacy_autotune = true, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "PrefetchDataset", name, | |||
| null, | |||
| input_dataset, buffer_size, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "slack_period", slack_period, | |||
| "legacy_autotune", legacy_autotune); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("PrefetchDataset", name, new ExecuteOpArgs(input_dataset, buffer_size) | |||
| .SetAttributes(new | |||
| { | |||
| output_types, | |||
| output_shapes, | |||
| slack_period, | |||
| legacy_autotune | |||
| })); | |||
| /// <summary> | |||
| /// Creates a dataset that contains `count` elements from the `input_dataset`. | |||
| @@ -319,20 +143,8 @@ namespace Tensorflow | |||
| public Tensor take_dataset(Tensor input_dataset, Tensor count, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TakeDataset", name, | |||
| null, | |||
| input_dataset, count, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("TakeDataset", name, new ExecuteOpArgs(input_dataset, count) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset by applying optimizations to `input_dataset`. | |||
| @@ -348,24 +160,13 @@ namespace Tensorflow | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string[] optimization_configs = null, | |||
| string name = null) | |||
| { | |||
| if (optimization_configs == null) | |||
| optimization_configs = new string[0]; | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "OptimizeDataset", name, | |||
| null, | |||
| input_dataset, optimizations, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "optimization_configs", optimization_configs); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("OptimizeDataset", name, new ExecuteOpArgs(input_dataset, optimizations) | |||
| .SetAttributes(new | |||
| { | |||
| output_types, | |||
| output_shapes, | |||
| optimization_configs = optimization_configs ?? new string[0] | |||
| })); | |||
| /// <summary> | |||
| /// Identity transformation that models performance. | |||
| @@ -381,22 +182,14 @@ namespace Tensorflow | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| AutotuneAlgorithm algorithm, long cpu_budget, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ModelDataset", name, | |||
| null, | |||
| input_dataset, | |||
| "algorithm", algorithm, | |||
| "cpu_budget", cpu_budget, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ModelDataset", name, new ExecuteOpArgs(input_dataset) | |||
| .SetAttributes(new | |||
| { | |||
| algorithm, | |||
| cpu_budget, | |||
| output_types, | |||
| output_shapes | |||
| })); | |||
| /// <summary> | |||
| /// A container for an iterator resource. | |||
| @@ -407,17 +200,9 @@ namespace Tensorflow | |||
| /// <returns>A tuple of `Tensor` objects (handle, deleter).</returns> | |||
| public (Tensor, Tensor) anonymous_iterator_v2(TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AnonymousIteratorV2", name, | |||
| null, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return (results[0], results[1]); | |||
| } | |||
| throw new NotImplementedException(""); | |||
| var results = tf.Context.ExecuteOp("AnonymousIteratorV2", name, | |||
| new ExecuteOpArgs().SetAttributes(new { output_types, output_shapes })); | |||
| return (results[0], results[1]); | |||
| } | |||
| /// <summary> | |||
| @@ -427,19 +212,8 @@ namespace Tensorflow | |||
| /// <param name="iterator"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The created Operation.</returns> | |||
| public ITensorOrOperation make_iterator(Tensor dataset, Tensor iterator, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MakeIterator", name, | |||
| null, | |||
| dataset, iterator); | |||
| return null; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public void make_iterator(Tensor dataset, Tensor iterator, string name = null) | |||
| => tf.Context.ExecuteOp("MakeIterator", name, new ExecuteOpArgs(dataset, iterator)); | |||
| /// <summary> | |||
| /// | |||
| @@ -450,23 +224,15 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor map_dataset(Tensor dataset, ConcreteFunction f, TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool use_inter_op_parallelism = true, bool preserve_cardinality = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MapDataset", name, | |||
| null, | |||
| dataset, new Tensor[0], | |||
| "f", f, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "use_inter_op_parallelism", use_inter_op_parallelism, | |||
| "preserve_cardinality", preserve_cardinality); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("MapDataset", name, new ExecuteOpArgs(dataset, new Tensor[0]) | |||
| .SetAttributes(new | |||
| { | |||
| f, | |||
| output_types, | |||
| output_shapes, | |||
| use_inter_op_parallelism, | |||
| preserve_cardinality | |||
| })); | |||
| /// <summary> | |||
| /// Creates a dataset that applies `f` to the outputs of `input_dataset`. | |||
| @@ -479,21 +245,8 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor flat_map_dataset(Tensor dataset, ConcreteFunction f, TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FlatMapDataset", name, | |||
| null, | |||
| dataset, new Tensor[0], | |||
| "f", f, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("FlatMapDataset", name, new ExecuteOpArgs(dataset, new Tensor[0]) | |||
| .SetAttributes(new { f, output_types, output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset that applies `f` to the outputs of `input_dataset`. | |||
| @@ -512,24 +265,17 @@ namespace Tensorflow | |||
| string deterministic = "default", | |||
| bool preserve_cardinality = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ParallelMapDatasetV2", name, | |||
| null, | |||
| dataset, new Tensor[0], num_parallel_calls, | |||
| "f", f, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "use_inter_op_parallelism", use_inter_op_parallelism, | |||
| "deterministic", deterministic, | |||
| "preserve_cardinality", preserve_cardinality); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ParallelMapDatasetV2", name, | |||
| new ExecuteOpArgs(dataset, new Tensor[0], num_parallel_calls) | |||
| .SetAttributes(new | |||
| { | |||
| f, | |||
| output_types, | |||
| output_shapes, | |||
| use_inter_op_parallelism, | |||
| deterministic, | |||
| preserve_cardinality | |||
| })); | |||
| /// <summary> | |||
| /// A container for an iterator resource. | |||
| @@ -538,19 +284,8 @@ namespace Tensorflow | |||
| /// <param name="deleter"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The created Operation.</returns> | |||
| public ITensorOrOperation delete_iterator(Tensor handle, Tensor deleter, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DeleteIterator", name, | |||
| null, | |||
| handle, deleter); | |||
| return null; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public void delete_iterator(Tensor handle, Tensor deleter, string name = null) | |||
| => tf.Context.ExecuteOp("DeleteIterator", name, new ExecuteOpArgs(handle, deleter)); | |||
| /// <summary> | |||
| /// Gets the next output from the given iterator . | |||
| @@ -561,19 +296,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor[] iterator_get_next(Tensor iterator, TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "IteratorGetNext", name, | |||
| null, | |||
| iterator, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("IteratorGetNext", name, new ExecuteOpArgs(iterator) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| } | |||
| } | |||
| @@ -45,20 +45,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor concat_v2<T, Ta>(T[] values, Ta axis, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ConcatV2", name, | |||
| null, | |||
| values, axis); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ConcatV2", name: name, args: new { values, axis }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); | |||
| public static Tensor concat_v2(Tensor[] values, Tensor axis, string name = null) | |||
| { | |||
| @@ -72,10 +59,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor concat_v2(Tensor[] values, int axis, string name = null) | |||
| => tf.Context.ExecuteOp("ConcatV2", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { values, axis } | |||
| }); | |||
| => tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); | |||
| private static Tensor concat_v2_eager_fallback<T1, T2>(T1[] values, T2 axis, string name, Context ctx) | |||
| { | |||
| @@ -127,38 +111,11 @@ namespace Tensorflow | |||
| /// </code> | |||
| /// </remarks> | |||
| public static Tensor diag(Tensor diagonal, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Diag", name, | |||
| null, | |||
| diagonal); | |||
| return results[0]; | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("Diag", name: name, args: new { diagonal }); | |||
| return op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Diag", name, new ExecuteOpArgs(diagonal)); | |||
| public static Tensor expand_dims(Tensor input, int axis, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ExpandDims", name, | |||
| null, | |||
| input, tf.convert_to_tensor(axis)); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ExpandDims", name: name, args: new { input, dim = axis }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ExpandDims", name, new ExecuteOpArgs(input, axis) | |||
| .SetAttributes(new { dim = axis })); | |||
| public static Tensor gather_v2<T1, T2>(T1 @params, T2 indices, int axis, string name = null) | |||
| { | |||
| @@ -198,11 +155,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor pack(Tensor[] values, int axis = 0, string name = null) | |||
| => tf.Context.ExecuteOp("Pack", name, new AutoModeArgs | |||
| => tf.Context.ExecuteOp("Pack", name, new ExecuteOpArgs() | |||
| { | |||
| OpInputArgs = new { values }, | |||
| OpAttrs = new { axis } | |||
| }); | |||
| OpInputArgs = new object[] { values } | |||
| }.SetAttributes(new { axis })); | |||
| /// <summary> | |||
| /// Return a tensor with the same shape and contents as the input tensor or value. | |||
| @@ -210,29 +166,7 @@ namespace Tensorflow | |||
| /// <param name="input"></param> | |||
| /// <param name="name"></param> | |||
| public static Tensor identity(Tensor input, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Identity", name, | |||
| null, | |||
| input); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Identity", name, new { input }); | |||
| if (tf.Runner.MustRecordGradient()) | |||
| { | |||
| tf.Runner.RecordGradient("Identity", _op.inputs, new object[] | |||
| { | |||
| "T", _op.get_attr<TF_DataType>("T") | |||
| }, _op.outputs); | |||
| } | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Identity", name, new ExecuteOpArgs(input)); | |||
| public static Tensor invert_permutation(Tensor x, string name = null) | |||
| { | |||
| @@ -249,21 +183,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor rank(Tensor input, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Rank", name, | |||
| null, | |||
| input); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Rank", name: name, args: new { input }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Rank", name, new ExecuteOpArgs(input)); | |||
| /// <summary> | |||
| /// Creates a tensor filled with a scalar value. | |||
| @@ -273,20 +193,7 @@ namespace Tensorflow | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>A `Tensor`. Has the same type as `value`.</returns> | |||
| public static Tensor fill<T>(Tensor dims, T value, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Fill", name, | |||
| null, | |||
| dims, value); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Fill", name, new { dims, value }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Fill", name, new ExecuteOpArgs(dims, value)); | |||
| /// <summary> | |||
| /// Return the reduction indices for computing gradients of s0 op s1 with broadcast. | |||
| @@ -297,19 +204,8 @@ namespace Tensorflow | |||
| /// <returns>A tuple of `Tensor` objects (r0, r1).</returns> | |||
| public static (Tensor, Tensor) broadcast_gradient_args(Tensor s0, Tensor s1, string name = "") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BroadcastGradientArgs", name, | |||
| null, | |||
| s0, s1); | |||
| return (results[0], results[1]); | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("BroadcastGradientArgs", name, new { s0, s1 }); | |||
| return (_op.outputs[0], _op.outputs[1]); | |||
| var results = tf.Context.ExecuteOp("BroadcastGradientArgs", name, new ExecuteOpArgs(s0, s1)); | |||
| return (results[0], results[1]); | |||
| } | |||
| public static Tensor reverse<T>(Tensor tensor, T axis, string name = null) | |||
| @@ -319,16 +215,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor reshape<T>(Tensor tensor, T shape, string name = null) | |||
| => tf.Context.ExecuteOp("Reshape", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { tensor, shape } | |||
| }); | |||
| => tf.Context.ExecuteOp("Reshape", name, new ExecuteOpArgs(tensor, shape)); | |||
| public static Tensor reshape(Tensor tensor, object[] shape, string name = null) | |||
| => tf.Context.ExecuteOp("Reshape", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { tensor, shape } | |||
| }); | |||
| => tf.Context.ExecuteOp("Reshape", name, new ExecuteOpArgs(tensor, shape)); | |||
| private static Tensor reshape_eager_fallback(Tensor tensor, object[] shape, string name, Context ctx) | |||
| { | |||
| @@ -378,21 +268,8 @@ namespace Tensorflow | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int axis = -1, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "OneHot", name, | |||
| null, | |||
| indices, depth, on_value, off_value, | |||
| "axis", axis); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("OneHot", name, new { indices, depth, on_value, off_value, axis }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("OneHot", name, new ExecuteOpArgs(indices, depth, on_value, off_value) | |||
| .SetAttributes(new { axis })); | |||
| /// <summary> | |||
| /// A placeholder op that passes through `input` when its output is not fed. | |||
| @@ -408,35 +285,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor select<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Select", name, | |||
| null, | |||
| condition, x, y); | |||
| return results[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Select", name, new ExecuteOpArgs(condition, x, y)); | |||
| var _op = tf.OpDefLib._apply_op_helper("Select", name, new { condition, t = x, e = y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor select_v2<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SelectV2", name, | |||
| null, | |||
| condition, x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("SelectV2", name, new { condition, t = x, e = y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("SelectV2", name, new ExecuteOpArgs(condition, x, y)); | |||
| public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null) | |||
| { | |||
| @@ -445,11 +297,8 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
| => tf.Context.ExecuteOp("Shape", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { input }, | |||
| OpAttrs = new { out_type } | |||
| }); | |||
| => tf.Context.ExecuteOp("Shape", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { out_type })); | |||
| /// <summary> | |||
| /// Returns shape of tensors. | |||
| @@ -459,21 +308,10 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor[] shape_n(Tensor[] input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("ShapeN", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ShapeN", name, | |||
| null, | |||
| input, | |||
| "out_type", out_type); | |||
| return results; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ShapeN", name, new { input, out_type }); | |||
| return _op.outputs; | |||
| } | |||
| OpInputArgs = new object[] { input } | |||
| }.SetAttributes(new { out_type })); | |||
| public static Tensor size(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
| { | |||
| @@ -516,60 +354,23 @@ namespace Tensorflow | |||
| public static Tensor[] split_v(Tensor value, Tensor size_splits, | |||
| int axis, int num_split, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SplitV", name, | |||
| null, | |||
| value, size_splits, axis, | |||
| "num_split", num_split); | |||
| return results; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("SplitV", name, new { split_dim = axis, value, num_split }); | |||
| return _op.outputs; | |||
| } | |||
| => tf.Context.ExecuteOp("SplitV", name, new ExecuteOpArgs(value, size_splits, axis) | |||
| .SetAttributes(new { num_split })); | |||
| public static Tensor tile(Tensor input, Tensor multiples, string name = null) | |||
| => tf.Context.ExecuteOp("Tile", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { input, multiples } | |||
| }); | |||
| => tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples)); | |||
| public static Tensor tile(Tensor input, object[] multiples, string name = null) | |||
| => tf.Context.ExecuteOp("Tile", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { input, multiples } | |||
| }); | |||
| => tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples)); | |||
| public static Tensor transpose<T1>(Tensor x, T1 perm, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Transpose", name, | |||
| null, | |||
| x, perm); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Transpose", name, new { x, perm }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Transpose", name, new ExecuteOpArgs(x, perm)); | |||
| public static Tensor ones_like(Tensor x, string name = null) | |||
| => tf.Context.ExecuteOp("OnesLike", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x } | |||
| }); | |||
| => tf.Context.ExecuteOp("OnesLike", name, new ExecuteOpArgs(x)); | |||
| public static Tensor zeros_like(Tensor x, string name = null) | |||
| => tf.Context.ExecuteOp("ZerosLike", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x } | |||
| }); | |||
| => tf.Context.ExecuteOp("ZerosLike", name, new ExecuteOpArgs(x)); | |||
| public static Tensor stop_gradient(Tensor x, string name = null) | |||
| { | |||
| @@ -585,18 +386,15 @@ namespace Tensorflow | |||
| long new_axis_mask = 0, | |||
| long shrink_axis_mask = 0, | |||
| string name = null) | |||
| => tf.Context.ExecuteOp("StridedSlice", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { input, begin, end, strides }, | |||
| OpAttrs = new | |||
| => tf.Context.ExecuteOp("StridedSlice", name, new ExecuteOpArgs(input, begin, end, strides) | |||
| .SetAttributes(new | |||
| { | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| } | |||
| }); | |||
| })); | |||
| public static Tensor resource_strided_slice_assign(Tensor input, Tensor begin, Tensor end, Tensor strides, Tensor value, | |||
| int begin_mask = 0, | |||
| @@ -605,17 +403,15 @@ namespace Tensorflow | |||
| int new_axis_mask = 0, | |||
| int shrink_axis_mask = 0, | |||
| string name = null) | |||
| => tf.Context.ExecuteOp("ResourceStridedSliceAssign", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { input, begin, end, strides, value }, | |||
| OpAttrs = new { | |||
| => tf.Context.ExecuteOp("ResourceStridedSliceAssign", name, new ExecuteOpArgs(input, begin, end, strides, value) | |||
| .SetAttributes(new | |||
| { | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| } | |||
| }); | |||
| })); | |||
| public static Tensor strided_slice<T>(Tensor input, T[] begin, T[] end, T[] strides, | |||
| int begin_mask = 0, | |||
| @@ -653,23 +449,8 @@ namespace Tensorflow | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `input`.</returns> | |||
| public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Squeeze", name, | |||
| null, | |||
| input, | |||
| "squeeze_dims", axis); | |||
| return results[0]; | |||
| } | |||
| if (axis == null) axis = new int[0]; | |||
| var _op = tf.OpDefLib._apply_op_helper("Squeeze", name, args: new { input, squeeze_dims = axis }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Squeeze", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { squeeze_dims = axis })); | |||
| /// <summary> | |||
| /// Return the shape of s0 op s1 with broadcast. | |||
| @@ -695,20 +476,6 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor broadcast_to<T>(Tensor input, T shape, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BroadcastTo", name, | |||
| null, | |||
| input, shape); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("BroadcastTo", name, args: new { input, shape, name }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("BroadcastTo", name, new ExecuteOpArgs(input, shape)); | |||
| } | |||
| } | |||
| @@ -70,38 +70,17 @@ namespace Tensorflow | |||
| float acceptable_fraction = 1, | |||
| string dct_method = "", | |||
| string name = null) | |||
| { | |||
| // Add nodes to the TensorFlow graph. | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DecodeJpeg", name, | |||
| null, | |||
| contents, | |||
| "channels", channels, | |||
| "ratio", ratio, | |||
| "fancy_upscaling", fancy_upscaling, | |||
| "try_recover_truncated", try_recover_truncated, | |||
| "acceptable_fraction", acceptable_fraction, | |||
| "dct_method", dct_method); | |||
| return results[0]; | |||
| } | |||
| else | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("DecodeJpeg", name: name, args: new | |||
| { | |||
| contents, | |||
| channels, | |||
| ratio, | |||
| fancy_upscaling, | |||
| try_recover_truncated, | |||
| acceptable_fraction, | |||
| dct_method | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| } | |||
| => tf.Context.ExecuteOp("DecodeJpeg", name, | |||
| new ExecuteOpArgs(contents).SetAttributes( | |||
| new | |||
| { | |||
| channels, | |||
| ratio, | |||
| fancy_upscaling, | |||
| try_recover_truncated, | |||
| acceptable_fraction, | |||
| dct_method | |||
| })); | |||
| public static Tensor decode_gif(Tensor contents, | |||
| string name = null) | |||
| @@ -171,75 +150,36 @@ namespace Tensorflow | |||
| bool align_corners = false, | |||
| bool half_pixel_centers = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResizeBilinear", name, | |||
| null, | |||
| images, size, | |||
| "align_corners", align_corners, | |||
| "half_pixel_centers", half_pixel_centers); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ResizeBilinear", name: name, args: new | |||
| { | |||
| images, | |||
| size, | |||
| align_corners | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ResizeBilinear", name, | |||
| new ExecuteOpArgs(images, size).SetAttributes(new | |||
| { | |||
| align_corners, | |||
| half_pixel_centers | |||
| })); | |||
| public static Tensor resize_bicubic(Tensor images, | |||
| Tensor size, | |||
| bool align_corners = false, | |||
| bool half_pixel_centers = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResizeBicubic", name, | |||
| null, | |||
| images, size, | |||
| "align_corners", align_corners, | |||
| "half_pixel_centers", half_pixel_centers); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ResizeBicubic", name: name, args: new | |||
| { | |||
| images, | |||
| size, | |||
| align_corners | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ResizeBicubic", name, | |||
| new ExecuteOpArgs(images, size).SetAttributes(new { align_corners, half_pixel_centers })); | |||
| public static Tensor resize_nearest_neighbor<Tsize>(Tensor images, Tsize size, bool align_corners = false, | |||
| bool half_pixel_centers = false, string name = null) | |||
| => tf.Context.ExecuteOp("ResizeNearestNeighbor", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { images, size }, | |||
| OpAttrs = new { align_corners, half_pixel_centers } | |||
| }); | |||
| => tf.Context.ExecuteOp("ResizeNearestNeighbor", name, | |||
| new ExecuteOpArgs(images, size).SetAttributes(new { align_corners, half_pixel_centers })); | |||
| public static Tensor resize_nearest_neighbor_grad(Tensor grads, Tensor size, bool align_corners = false, | |||
| bool half_pixel_centers = false, string name = null) | |||
| => tf.Context.ExecuteOp("ResizeNearestNeighborGrad", name, new AutoModeArgs | |||
| => tf.Context.ExecuteOp("ResizeNearestNeighborGrad", name, new ExecuteOpArgs(grads, size) | |||
| { | |||
| OpInputArgs = new { grads, size }, | |||
| OpAttrs = new { align_corners, half_pixel_centers }, | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| align_corners = op.get_attr<bool>("align_corners"), | |||
| half_pixel_centers = op.get_attr<bool>("half_pixel_centers") | |||
| } | |||
| }); | |||
| }.SetAttributes(new { align_corners, half_pixel_centers })); | |||
| } | |||
| } | |||
| @@ -25,10 +25,9 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( | |||
| "Assert", name, | |||
| null, | |||
| new object[] { condition, data, summarize }); | |||
| new object[] { condition, data, summarize })); | |||
| return results[0]; | |||
| } | |||
| @@ -37,20 +37,10 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor add_n(Tensor[] inputs, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("AddN", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AddN", name, | |||
| null, | |||
| new[] { inputs }); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("AddN", name, args: new { inputs }); | |||
| return _op.outputs[0]; | |||
| } | |||
| OpInputArgs = new object[] { inputs } | |||
| }); | |||
| /// <summary> | |||
| /// Returns the index with the largest value across dimensions of a tensor. | |||
| @@ -61,20 +51,9 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ArgMax", name, | |||
| null, | |||
| input, dimension, | |||
| "output_type", output_type); | |||
| return results[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ArgMax", name, new ExecuteOpArgs(input, dimension) | |||
| .SetAttributes(new { output_type })); | |||
| return tf.OpDefLib._apply_op_helper("ArgMax", name, args: new { input, dimension, output_type }).output; | |||
| } | |||
| /// <summary> | |||
| /// Returns the index with the smallest value across dimensions of a tensor. | |||
| @@ -116,10 +95,7 @@ namespace Tensorflow | |||
| /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) | |||
| /// </remarks> | |||
| public static Tensor div_no_nan(Tensor x, Tensor y, string name = null) | |||
| => tf.Context.ExecuteOp("DivNoNan", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x, y } | |||
| }); | |||
| => tf.Context.ExecuteOp("DivNoNan", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor mean(Tensor input, int axis, bool keep_dims = false, string name = null) | |||
| => mean(input, ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name); | |||
| @@ -138,17 +114,15 @@ namespace Tensorflow | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `input`.</returns> | |||
| public static Tensor mean(Tensor input, Tensor axis, bool keep_dims = false, string name = null) | |||
| => tf.Context.ExecuteOp("Mean", name, new AutoModeArgs | |||
| => tf.Context.ExecuteOp("Mean", name, new ExecuteOpArgs(input, axis) | |||
| { | |||
| OpInputArgs = new { input, axis }, | |||
| OpAttrs = new { keep_dims, reduction_indices = axis }, | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| Tidx = op.get_attr<TF_DataType>("Tidx"), | |||
| keep_dims = op.get_attr<bool>("keep_dims") | |||
| } | |||
| }); | |||
| }.SetAttributes(new { keep_dims, reduction_indices = axis })); | |||
| public static Tensor mean(Tensor[] inputs, Tensor axis, bool keep_dims = false, string name = null) | |||
| { | |||
| @@ -173,28 +147,8 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor prod<T1, T2>(T1 input, T2 axis, bool keep_dims = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| try | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Prod", name, | |||
| null, | |||
| input, axis, | |||
| "keep_dims", keep_dims); | |||
| return results[0]; | |||
| } | |||
| catch (Exception) | |||
| { | |||
| return prod_eager_fallback(input as Tensor, axis as int[], keep_dims, name, tf.Context); | |||
| } | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Prod", name, args: new { input, reduction_indices = axis, keep_dims }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Prod", name, | |||
| new ExecuteOpArgs(input, axis).SetAttributes(new { keep_dims, reduction_indices = axis })); | |||
| private static Tensor prod_eager_fallback(Tensor input_t, int[] axis, bool keep_dims, string name, Context ctx = null) | |||
| { | |||
| @@ -221,84 +175,22 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor add(Tensor x, Tensor y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Add", name, null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Add", name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Add", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor add<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Add", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Add", name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Add", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor add_v2<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| // forward_compatible(2019, 6, 25): | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AddV2", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("AddV2", name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("AddV2", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor atan(Tensor x, string name = null) | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("Atan", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Atan", name, new ExecuteOpArgs(x)); | |||
| public static Tensor ceil(Tensor x, string name = null) | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("Ceil", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Ceil", name, new ExecuteOpArgs(x)); | |||
| public static Tensor sin(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sin", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sin", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Sin", name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Computes sigmoid of <c>x</c> element-wise. | |||
| @@ -315,10 +207,7 @@ namespace Tensorflow | |||
| /// Specifically, <c>y = 1 / (1 + exp(-x))</c>. | |||
| /// </remarks> | |||
| public static Tensor sigmoid(Tensor x, string name = "Sigmoid") | |||
| => tf.Context.ExecuteOp("Sigmoid", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x } | |||
| }); | |||
| => tf.Context.ExecuteOp("Sigmoid", name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Computes the gradient of the sigmoid of <c>x</c> wrt its input. | |||
| @@ -338,27 +227,10 @@ namespace Tensorflow | |||
| /// <c>dy</c> is the corresponding input gradient. | |||
| /// </remarks> | |||
| public static Tensor sigmoid_grad(Tensor y, Tensor dy, string name = "SigmoidGrad") | |||
| => tf.Context.ExecuteOp("SigmoidGrad", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { y, dy } | |||
| }); | |||
| => tf.Context.ExecuteOp("SigmoidGrad", name, new ExecuteOpArgs(y, dy)); | |||
| public static Tensor sign<T>(T x, string name = "Sign") | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sign", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("Sign", name: name, args: new { x }); | |||
| return op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Sign", name, new ExecuteOpArgs(x)); | |||
| public static Tensor sinh(Tensor x, string name = null) | |||
| { | |||
| @@ -368,21 +240,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor cos<T>(T x, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Cos", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Cos", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Cos", name, new ExecuteOpArgs(x)); | |||
| public static Tensor cosh(Tensor x, string name = null) | |||
| { | |||
| @@ -413,38 +271,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor tan(Tensor x, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tan", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Tan", name, args: new { x }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Tan", name, new ExecuteOpArgs(x)); | |||
| public static Tensor tanh(Tensor x, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tanh", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Tanh", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Computes the gradient for the tanh of `x` wrt its input. | |||
| @@ -454,20 +284,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor tanh_grad(Tensor y, Tensor dy, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TanhGrad", name, | |||
| null, | |||
| y, dy); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TanhGrad", name: name, args: new { y, dy }).output; | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("TanhGrad", name, new ExecuteOpArgs(y, dy)); | |||
| public static Tensor floor(Tensor x, string name = null) | |||
| { | |||
| @@ -484,21 +301,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor greater<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Greater", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Greater", name: name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Greater", name, new ExecuteOpArgs(x, y)); | |||
| /// <summary> | |||
| /// Computes the log of the absolute value of `Gamma(x)` element-wise. | |||
| @@ -519,79 +322,22 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor greater_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "GreaterEqual", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("GreaterEqual", name: name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("GreaterEqual", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor less<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Less", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Less", name: name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Less", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor less_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "LessEqual", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("LessEqual", name: name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("LessEqual", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor log1p(Tensor x, string name = null) | |||
| => tf.Context.ExecuteOp("Log1p", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x } | |||
| }); | |||
| => tf.Context.ExecuteOp("Log1p", name, new ExecuteOpArgs(x)); | |||
| public static Tensor logical_and(Tensor x, Tensor y, string name = null) | |||
| => tf.OpDefLib._apply_op_helper("LogicalAnd", name, args: new { x, y }); | |||
| public static Tensor logical_and(bool x, bool y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "LogicalAnd", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| return tf.OpDefLib._apply_op_helper("LogicalAnd", name, args: new { x, y }); | |||
| } | |||
| => tf.Context.ExecuteOp("LogicalAnd", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor logical_not(Tensor x, string name = null) | |||
| { | |||
| @@ -616,21 +362,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor squared_difference(Tensor x, Tensor y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SquaredDifference", name, | |||
| null, | |||
| x,y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("SquaredDifference", name, args: new { x, y, name }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("SquaredDifference", name, new ExecuteOpArgs(x, y)); | |||
| /// <summary> | |||
| /// Computes square of x element-wise. | |||
| @@ -639,21 +371,7 @@ namespace Tensorflow | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
| public static Tensor square(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Square", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Square", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Square", name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Returns which elements of x are finite. | |||
| @@ -682,10 +400,7 @@ namespace Tensorflow | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
| public static Tensor exp(Tensor x, string name = null) | |||
| => tf.Context.ExecuteOp("Exp", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x } | |||
| }); | |||
| => tf.Context.ExecuteOp("Exp", name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Computes natural logarithm of x element-wise. | |||
| @@ -694,101 +409,26 @@ namespace Tensorflow | |||
| /// <param name="name"> name: A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
| public static Tensor log(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Log", name, | |||
| null, | |||
| x); | |||
| => tf.Context.ExecuteOp("Log", name, new ExecuteOpArgs(x)); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Log", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor softplus(Tensor features, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Softplus", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Softplus", name, args: new { features }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Softplus", name, new ExecuteOpArgs(features)); | |||
| public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate = false, string name = null) | |||
| => tf.Context.ExecuteOp("Cast", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x }, | |||
| OpAttrs = new { DstT, Truncate } | |||
| }); | |||
| => tf.Context.ExecuteOp("Cast", name, new ExecuteOpArgs(x) | |||
| .SetAttributes(new { DstT, Truncate })); | |||
| public static Tensor neg(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Neg", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Neg", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Neg", name, new ExecuteOpArgs(x)); | |||
| public static Tensor sqrt(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sqrt", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sqrt", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Sqrt", name, new ExecuteOpArgs(x)); | |||
| public static Tensor sub(Tensor x, Tensor y, string name = null) | |||
| => tf.Context.ExecuteOp("Sub", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x, y } | |||
| }); | |||
| => tf.Context.ExecuteOp("Sub", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor sub<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sub", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sub", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Sub", name, new ExecuteOpArgs(x, y)); | |||
| /// <summary> | |||
| /// Returns the truth value of (x == y) element-wise. | |||
| @@ -798,20 +438,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Equal", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Equal", name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Equal", name, new ExecuteOpArgs(x, y)); | |||
| /// <summary> | |||
| /// Returns the truth value of (x != y) element-wise. | |||
| @@ -823,54 +450,13 @@ namespace Tensorflow | |||
| /// <param name="name">The name.</param> | |||
| /// <returns></returns> | |||
| public static Tensor not_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "NotEqual", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("NotEqual", name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("NotEqual", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor atan2(Tensor y, Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Atan2", name, | |||
| null, | |||
| y, x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Atan2", name, args: new { y, x }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Atan2", name, new ExecuteOpArgs(y, x)); | |||
| public static Tensor mul<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Mul", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Mul", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor mul_no_nan<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| @@ -880,71 +466,16 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor real_div(Tensor x, Tensor y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RealDiv", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("RealDiv", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("RealDiv", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor reciprocal(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Reciprocal", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Reciprocal", name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Reciprocal", name, new ExecuteOpArgs(x)); | |||
| public static Tensor floor_mod(Tensor x, Tensor y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FloorMod", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("FloorMod", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("FloorMod", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor floor_div(Tensor x, Tensor y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FloorDiv", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("FloorDiv", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("FloorDiv", name, new ExecuteOpArgs(x, y)); | |||
| /// <summary> | |||
| /// Multiply the matrix "a" by the matrix "b". | |||
| @@ -956,56 +487,12 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor mat_mul(Tensor a, Tensor b, bool transpose_a = false, bool transpose_b = false, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MatMul", name, | |||
| null, | |||
| a, b, | |||
| "transpose_a", transpose_a, "transpose_b", transpose_b); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("MatMul", name, args: new { a, b, transpose_a, transpose_b }); | |||
| return _op.output; | |||
| } | |||
| /// <summary> | |||
| /// Multiply slices of the two matrices "x" and "y". | |||
| /// </summary> | |||
| /// <remarks> | |||
| /// The `BatchMatMul` operation is embedded into the | |||
| /// `MatMul` operation on the DLL side. However the expected | |||
| /// attributes are not the same, hence we need to expose this | |||
| /// method to have the right args list on the `_apply_op_helper` | |||
| /// function. | |||
| /// | |||
| /// For each rank > 2 the first rank - 2 dimensions are considered | |||
| /// as fixed, and have to be consistent across the two matrices. A | |||
| /// common matrix multiplication is then applied over the residual | |||
| /// 2 dimensions. | |||
| /// | |||
| /// e.g. | |||
| /// x is (3, 6, 12); y is (3, 12, 6) | |||
| /// batch_matmul(x, y) ==> (3, 6, 6) | |||
| /// </remarks> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="adj_x"></param> | |||
| /// <param name="adj_y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor batch_mat_mul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string name = null) | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper( | |||
| "BatchMatMul", | |||
| name, | |||
| args: new { x, y, adj_x, adj_y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("MatMul", name, new ExecuteOpArgs(a, b) | |||
| .SetAttributes(new | |||
| { | |||
| transpose_a, | |||
| transpose_b | |||
| })); | |||
| /// <summary> | |||
| /// Returns the max of x and y (i.e. x > y ? x : y) element-wise. | |||
| @@ -1015,54 +502,13 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor maximum<T1, T2>(T1 x, T2 y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Maximum", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Maximum", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Maximum", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor minimum<T1, T2>(T1 x, T2 y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Minimum", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Minimum", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Minimum", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor _abs(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Abs", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Abs", name, args: new { x }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Abs", name, new ExecuteOpArgs(x)); | |||
| public static Tensor _any<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| { | |||
| @@ -1072,17 +518,15 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor _max<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| => tf.Context.ExecuteOp("Max", name, new AutoModeArgs | |||
| => tf.Context.ExecuteOp("Max", name, new ExecuteOpArgs(input, axis) | |||
| { | |||
| OpInputArgs = new { input, axis }, | |||
| OpAttrs = new { keep_dims, reduction_indices = axis }, | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| align_corners = op.get_attr<bool>("align_corners"), | |||
| half_pixel_centers = op.get_attr<bool>("half_pixel_centers") | |||
| } | |||
| }); | |||
| }.SetAttributes(new { keep_dims, reduction_indices = axis })); | |||
| public static Tensor _min<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| { | |||
| @@ -1092,39 +536,11 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor pow<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Pow", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Pow", name, args: new { x, y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Pow", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor _sum<Tx, Ty>(Tx input, Ty axis = default, bool keep_dims = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sum", name, | |||
| null, | |||
| input, axis, | |||
| "keep_dims", keep_dims); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sum", name, args: new { input, reduction_indices = axis, keep_dims }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Sum", name, | |||
| new ExecuteOpArgs(input, axis).SetAttributes(new { keep_dims, reduction_indices = axis })); | |||
| public static Tensor _sum(Tensor[] inputs, Tensor axis = default, bool keep_dims = false, string name = null) | |||
| { | |||
| @@ -1158,10 +574,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor range(Tensor start, Tensor limit, Tensor delta, string name = null) | |||
| => tf.Context.ExecuteOp("Range", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { start, limit, delta } | |||
| }); | |||
| => tf.Context.ExecuteOp("Range", name, new ExecuteOpArgs(start, limit, delta)); | |||
| /// <summary> | |||
| /// Rounds the values of a tensor to the nearest integer, element-wise. | |||
| @@ -1192,20 +605,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor rsqrt(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Rsqrt", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Rsqrt", name, new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Rsqrt", name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Returns the fraction of zeros in value. | |||
| @@ -1214,10 +614,6 @@ namespace Tensorflow | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>The fraction of zeros in value, with type float32.</returns> | |||
| public static Tensor zero_fraction(Tensor value, string name = null) | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("zero_fraction", name, new { value, name }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("zero_fraction", name, new ExecuteOpArgs(value)); | |||
| } | |||
| } | |||
| @@ -6,13 +6,6 @@ namespace Tensorflow | |||
| public static partial class gen_math_ops | |||
| { | |||
| public static Tensor mul(IntPtr x, IntPtr y, string name = null) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Mul", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); | |||
| } | |||
| } | |||
| @@ -29,31 +29,8 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor random_standard_normal(Tensor shape, TF_DataType dtype = TF_DataType.DtInvalid, int? seed = null, int? seed2 = null, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RandomStandardNormal", name, | |||
| null, | |||
| shape, | |||
| "seed", seed, | |||
| "seed2", seed2, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| if (!seed.HasValue) | |||
| seed = 0; | |||
| if (!seed2.HasValue) | |||
| seed2 = 0; | |||
| var _op = tf.OpDefLib._apply_op_helper("RandomStandardNormal", | |||
| name: name, | |||
| args: new { shape, dtype, seed, seed2 }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("RandomStandardNormal", name, new ExecuteOpArgs(shape) | |||
| .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
| /// <summary> | |||
| /// Outputs random integers from a uniform distribution. | |||
| @@ -89,31 +66,8 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor random_uniform(Tensor shape, TF_DataType dtype, int? seed = 0, int? seed2 = 0, string name = null) | |||
| { | |||
| if (!seed.HasValue) | |||
| seed = 0; | |||
| if (!seed2.HasValue) | |||
| seed2 = 0; | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RandomUniform", name, | |||
| null, | |||
| shape, | |||
| "seed", seed, | |||
| "seed2", seed2, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("RandomUniform", | |||
| name: name, | |||
| args: new { shape, dtype, seed, seed2 }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("RandomUniform", name, new ExecuteOpArgs(shape) | |||
| .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
| /// <summary> | |||
| /// | |||
| @@ -125,23 +79,7 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static Tensor random_shuffle(Tensor value, int seed = 0, int seed2 = 0, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RandomShuffle", name, | |||
| null, | |||
| value, seed, seed2); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("RandomShuffle", | |||
| name: name, | |||
| args: new { value, seed, seed2 }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("RandomShuffle", name, new ExecuteOpArgs(value, seed, seed2)); | |||
| /// <summary> | |||
| /// Outputs random values from a truncated normal distribution. | |||
| @@ -154,31 +92,8 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static Tensor truncated_normal(Tensor shape, TF_DataType dtype, int? seed = 0, | |||
| int? seed2 = 0, string name = null) | |||
| { | |||
| if (!seed.HasValue) | |||
| seed = 0; | |||
| if (!seed2.HasValue) | |||
| seed2 = 0; | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TruncatedNormal", name, | |||
| null, | |||
| shape, | |||
| "seed", seed, | |||
| "seed2", seed2, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TruncatedNormal", | |||
| name: name, | |||
| args: new { shape, dtype, seed, seed2 }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("TruncatedNormal", name, new ExecuteOpArgs(shape) | |||
| .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
| public static Tensor multinomial(Tensor logits, int num_samples, int? seed = 0, | |||
| int? seed2 = 0, TF_DataType output_dtype = TF_DataType.TF_INT64, string name = null) | |||
| @@ -24,10 +24,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AssignSubVariableOp", name, | |||
| null, | |||
| resource, value); | |||
| tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( | |||
| "AssignSubVariableOp", name, resource, value)); | |||
| return null; | |||
| } | |||
| @@ -46,10 +44,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AssignAddVariableOp", name, | |||
| null, | |||
| resource, value); | |||
| tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AssignAddVariableOp", name, | |||
| resource, value)); | |||
| return null; | |||
| } | |||
| @@ -63,10 +59,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AssignVariableOp", name, | |||
| null, | |||
| resource, value); | |||
| tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AssignVariableOp", name, | |||
| resource, value)); | |||
| return null; | |||
| } | |||
| @@ -80,10 +74,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "VarIsInitializedOp", name, | |||
| null, | |||
| resource); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("VarIsInitializedOp", name, | |||
| resource)); | |||
| return results[0]; | |||
| } | |||
| @@ -107,14 +99,17 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "VarHandleOp", name, | |||
| null, | |||
| "container", container, | |||
| "shared_name", shared_name, | |||
| "dtype", dtype, | |||
| "shape", shape.dims, | |||
| "allowed_devices", new string[0]); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("VarHandleOp", name) | |||
| { | |||
| attrs = ConvertToDict(new | |||
| { | |||
| dtype, | |||
| shape = shape.dims, | |||
| container, | |||
| shared_name, | |||
| allowed_devices = new string[0] | |||
| }) | |||
| }); | |||
| return results[0]; | |||
| } | |||
| @@ -131,26 +126,8 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor destroy_resource_op(Tensor resource, bool ignore_lookup_error = true, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DestroyResourceOp", name, | |||
| null, | |||
| resource, | |||
| "ignore_lookup_error", ignore_lookup_error); | |||
| return results.Length == 0 ? null : results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("DestroyResourceOp", name, new | |||
| { | |||
| resource, | |||
| ignore_lookup_error | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("DestroyResourceOp", name, | |||
| new ExecuteOpArgs(resource).SetAttributes(new { ignore_lookup_error })); | |||
| /// <summary> | |||
| /// Reads the value of a variable. | |||
| @@ -160,26 +137,8 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor read_variable_op(Tensor resource, TF_DataType dtype, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ReadVariableOp", name, | |||
| null, | |||
| resource, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ReadVariableOp", name, new | |||
| { | |||
| resource, | |||
| dtype | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("ReadVariableOp", name, new ExecuteOpArgs(resource) | |||
| .SetAttributes(new { dtype })); | |||
| public static Tensor resource_gather(Tensor resource, Tensor indices, TF_DataType dtype, | |||
| int batch_dims = 0, bool validate_indices = true, string name = null) | |||
| @@ -45,10 +45,7 @@ namespace Tensorflow | |||
| => gen_math_ops.add(x, y, name); | |||
| public static Tensor add_v2(Tensor x, Tensor y, string name = null) | |||
| => tf.Context.ExecuteOp("AddV2", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x, y } | |||
| }); | |||
| => tf.Context.ExecuteOp("AddV2", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor add_v2<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.add_v2(x, y, name); | |||
| @@ -261,19 +258,13 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor erf(Tensor x, string name = null) | |||
| => tf.Context.ExecuteOp("Erf", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x } | |||
| }); | |||
| => tf.Context.ExecuteOp("Erf", name, new ExecuteOpArgs(x)); | |||
| public static Tensor sqrt(Tensor x, string name = null) | |||
| => gen_math_ops.sqrt(x, name: name); | |||
| public static Tensor multiply(Tensor x, Tensor y, string name = null) | |||
| => tf.Context.ExecuteOp("Mul", name, new AutoModeArgs | |||
| { | |||
| OpInputArgs = new { x, y } | |||
| }); | |||
| => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor multiply<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.mul(x, y, name: name); | |||
| @@ -720,23 +711,10 @@ namespace Tensorflow | |||
| => tf_with(ops.name_scope(name, "Pow", new { x, y }), scope => | |||
| { | |||
| name = scope; | |||
| var x_tensor = ops.convert_to_tensor(x, name: "x"); | |||
| var y_tensor = ops.convert_to_tensor(y, name: "y", dtype: x_tensor.dtype.as_base_dtype()); | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var x_tensor = ops.convert_to_tensor(x, name: "x"); | |||
| var y_tensor = ops.convert_to_tensor(y, name: "y", dtype: x_tensor.dtype.as_base_dtype()); | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Pow", name, | |||
| null, | |||
| x_tensor, y_tensor); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Pow", name, args: new { x, y }); | |||
| return _op.output; | |||
| return tf.Context.ExecuteOp("Pow", name, new ExecuteOpArgs(x_tensor, y_tensor)); | |||
| }); | |||
| public static Tensor range(object start, object limit = null, object delta = null, TF_DataType dtype = TF_DataType.DtInvalid, string name = "range") | |||
| @@ -828,7 +806,7 @@ namespace Tensorflow | |||
| x = ops.convert_to_tensor(x, name: "a"); | |||
| y = ops.convert_to_tensor(y, name: "b"); | |||
| result = gen_math_ops.batch_mat_mul(x, y, adj_x, adj_y, name); | |||
| result = math_ops.batch_matmul(x, y, adj_x, adj_y, name); | |||
| }); | |||
| return result; | |||
| @@ -21,53 +21,13 @@ namespace Tensorflow | |||
| public class string_ops | |||
| { | |||
| public Tensor lower(Tensor input, string encoding = "", string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "StringLower", name, | |||
| null, | |||
| input, encoding); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("StringLower", name: name, args: new | |||
| { | |||
| input, | |||
| encoding | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("StringLower", name, new ExecuteOpArgs(input, encoding)); | |||
| public Tensor regex_replace(Tensor input, string pattern, string rewrite, | |||
| bool replace_global = true, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "StaticRegexReplace", name, | |||
| null, | |||
| input, | |||
| "pattern", pattern, | |||
| "rewrite", rewrite, | |||
| "replace_global", replace_global); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("StaticRegexReplace", name: name, args: new | |||
| { | |||
| input, | |||
| pattern, | |||
| rewrite, | |||
| replace_global | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("StaticRegexReplace", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { pattern, rewrite, replace_global })); | |||
| /// <summary> | |||
| /// Return substrings from `Tensor` of strings. | |||
| /// </summary> | |||
| @@ -79,28 +39,7 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor substr<T>(T input, int pos, int len, | |||
| string @uint = "BYTE", string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var input_tensor = tf.constant(input); | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Substr", name, | |||
| null, | |||
| input, pos, len, | |||
| "unit", @uint); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Substr", name: name, args: new | |||
| { | |||
| input, | |||
| pos, | |||
| len, | |||
| unit = @uint | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Substr", name, new ExecuteOpArgs(input, pos, len) | |||
| .SetAttributes(new { unit = @uint })); | |||
| } | |||
| } | |||
| @@ -21,46 +21,19 @@ namespace Tensorflow | |||
| { | |||
| public class gen_training_ops | |||
| { | |||
| public static Operation resource_apply_adam(Tensor var, Tensor m, Tensor v, Tensor beta1_power, Tensor beta2_power, | |||
| public static Tensor resource_apply_adam(Tensor var, Tensor m, Tensor v, Tensor beta1_power, Tensor beta2_power, | |||
| Tensor lr, Tensor beta1, Tensor beta2, Tensor epsilon, Tensor grad, | |||
| bool use_locking = false, bool use_nesterov = false, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var result = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResourceApplyAdam", name, | |||
| null, | |||
| var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, | |||
| "use_locking", use_locking, | |||
| "use_nesterov", use_nesterov); | |||
| return null; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ResourceApplyAdam", name, | |||
| new ExecuteOpArgs(var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad) | |||
| .SetAttributes(new { use_locking, use_nesterov })); | |||
| public static Tensor apply_adam(Tensor var, Tensor m, Tensor v, Tensor beta1_power, Tensor beta2_power, | |||
| Tensor lr, Tensor beta1, Tensor beta2, Tensor epsilon, Tensor grad, | |||
| bool use_locking = false, bool use_nesterov = false, string name = null) | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("ApplyAdam", name, new | |||
| { | |||
| var, | |||
| m, | |||
| v, | |||
| beta1_power, | |||
| beta2_power, | |||
| lr, | |||
| beta1, | |||
| beta2, | |||
| epsilon, | |||
| grad, | |||
| use_locking, | |||
| use_nesterov | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ApplyAdam", name, | |||
| new ExecuteOpArgs(var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad) | |||
| .SetAttributes(new { use_locking, use_nesterov })); | |||
| public static Tensor apply_gradient_descent(IVariableV1 var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
| { | |||
| @@ -75,27 +48,8 @@ namespace Tensorflow | |||
| return _op.output; | |||
| } | |||
| public static Operation resource_apply_gradient_descent(Tensor var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var result = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResourceApplyGradientDescent", name, | |||
| null, | |||
| var, alpha, delta, | |||
| "use_locking", use_locking); | |||
| return null; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ResourceApplyGradientDescent", name, new | |||
| { | |||
| var, | |||
| alpha, | |||
| delta, | |||
| use_locking | |||
| }); | |||
| return _op; | |||
| } | |||
| public static Tensor resource_apply_gradient_descent(Tensor var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
| => tf.Context.ExecuteOp("ResourceApplyGradientDescent", name, | |||
| new ExecuteOpArgs(var, alpha, delta).SetAttributes(new { use_locking })); | |||
| } | |||
| } | |||
| @@ -59,31 +59,8 @@ namespace Tensorflow | |||
| bool validate_shape = true, | |||
| bool use_locking = true, | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Assign", name, | |||
| null, | |||
| @ref, value, | |||
| "validate_shape", validate_shape, | |||
| "use_locking", use_locking); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Assign", name: name, args: new { @ref, value, validate_shape, use_locking }); | |||
| var _result = _op.outputs; | |||
| var _inputs_flat = _op.inputs; | |||
| var _attrs = new Dictionary<string, object>(); | |||
| _attrs["T"] = _op.get_attr("T"); | |||
| _attrs["validate_shape"] = _op.get_attr("validate_shape"); | |||
| _attrs["use_locking"] = _op.get_attr("use_locking"); | |||
| return _result[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Assign", name, new ExecuteOpArgs(@ref, value) | |||
| .SetAttributes(new { validate_shape, use_locking })); | |||
| public static Tensor assign_add<T>(IVariableV1 @ref, T value, bool use_locking = false, string name = null) | |||
| { | |||
| @@ -4,21 +4,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| public partial class Activations | |||
| { | |||
| public Activation Relu = (features, name) => | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Relu", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Relu", name: name, args: new { features }); | |||
| return _op.output; | |||
| }; | |||
| public Activation Relu = (features, name) | |||
| => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)); | |||
| } | |||
| } | |||
| @@ -5,21 +5,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| public partial class Activations | |||
| { | |||
| public Activation Sigmoid = (features, name) => | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sigmoid", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sigmoid", name: name, args: new { x = features }); | |||
| return _op.output; | |||
| }; | |||
| public Activation Sigmoid = (features, name) | |||
| => tf.Context.ExecuteOp("Sigmoid", name, new ExecuteOpArgs(features)); | |||
| } | |||
| } | |||
| @@ -5,21 +5,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| public partial class Activations | |||
| { | |||
| public Activation Tanh = (features, name) => | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tanh", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Tanh", name: name, args: new { x = features }); | |||
| return _op.output; | |||
| }; | |||
| public Activation Tanh = (features, name) | |||
| => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(features)); | |||
| } | |||
| } | |||