|
|
|
@@ -102,11 +102,12 @@ namespace Tensorflow |
|
|
|
{ |
|
|
|
throw new ValueError("\'image\' must be fully defined."); |
|
|
|
} |
|
|
|
for (int x = 1; x < 4; x++) |
|
|
|
var dims = image_shape["-3:"]; |
|
|
|
foreach (var dim in dims.dims) |
|
|
|
{ |
|
|
|
if (image_shape.dims[x] == 0) |
|
|
|
if (dim == 0) |
|
|
|
{ |
|
|
|
throw new ValueError(String.Format("inner 3 dims of \'image.shape\' must be > 0: {0}", image_shape)); |
|
|
|
throw new ValueError("inner 3 dimensions of \'image\' must be > 0: " + image_shape); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
@@ -965,9 +966,9 @@ new_height, new_width"); |
|
|
|
if (Array.Exists(new[] { dtypes.float16, dtypes.float32 }, orig_dtype => orig_dtype == orig_dtype)) |
|
|
|
image = convert_image_dtype(image, dtypes.float32); |
|
|
|
|
|
|
|
var num_pixels_ = array_ops.shape(image).dims; |
|
|
|
num_pixels_ = num_pixels_.Skip(num_pixels_.Length - 3).Take(num_pixels_.Length - (num_pixels_.Length - 3)).ToArray(); |
|
|
|
Tensor num_pixels = math_ops.reduce_prod(new Tensor(num_pixels_)); |
|
|
|
var x = image.shape["-3:"]; |
|
|
|
var num_pixels = math_ops.reduce_prod(x); |
|
|
|
|
|
|
|
Tensor image_mean = math_ops.reduce_mean(image, axis: new(-1, -2, -3), keepdims: true); |
|
|
|
|
|
|
|
var stddev = math_ops.reduce_std(image, axis: new(-1, -2, -3), keepdims: true); |
|
|
|
|