| @@ -348,6 +348,9 @@ namespace Tensorflow | |||
| public static Tensor cast(Tensor x, TF_DataType dtype = TF_DataType.DtInvalid, string name = null) | |||
| => math_ops.cast(x, dtype, name); | |||
| public static Tensor cumsum(Tensor x, int axis = 0, bool exclusive = false, bool reverse = false, string name = null) | |||
| => math_ops.cumsum(x, axis: axis, exclusive: exclusive, reverse: reverse, name: name); | |||
| public static Tensor argmax(Tensor input, int axis = -1, string name = null, int? dimension = null, TF_DataType output_type = TF_DataType.TF_INT64) | |||
| => gen_math_ops.arg_max(input, axis, name: name, output_type: output_type); | |||
| @@ -75,7 +75,7 @@ namespace Tensorflow | |||
| /// <param name="time_major"></param> | |||
| /// <returns>A pair (outputs, state)</returns> | |||
| public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs, | |||
| int? sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid, | |||
| Tensor sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int? parallel_iterations = null, bool swap_memory = false, bool time_major = false) | |||
| => rnn.dynamic_rnn(cell, inputs, sequence_length: sequence_length, dtype: dtype, | |||
| parallel_iterations: parallel_iterations, swap_memory: swap_memory, | |||
| @@ -24,7 +24,8 @@ namespace Tensorflow | |||
| int _num_units; | |||
| Func<Tensor, string, Tensor> _activation; | |||
| protected override int state_size => _num_units; | |||
| public override int state_size => _num_units; | |||
| public override int output_size => _num_units; | |||
| public BasicRNNCell(int num_units, | |||
| Func<Tensor, string, Tensor> activation = null, | |||
| @@ -24,15 +24,15 @@ namespace Tensorflow.Operations | |||
| { | |||
| internal class rnn | |||
| { | |||
| public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs, | |||
| int? sequence_length = null, Tensor initial_state = null, | |||
| public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs_tensor, | |||
| Tensor sequence_length = null, Tensor initial_state = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int? parallel_iterations = null, bool swap_memory = false, bool time_major = false) | |||
| { | |||
| with(tf.variable_scope("rnn"), scope => | |||
| { | |||
| VariableScope varscope = scope; | |||
| var flat_input = nest.flatten(inputs); | |||
| var flat_input = nest.flatten(inputs_tensor); | |||
| if (!time_major) | |||
| { | |||
| @@ -42,24 +42,146 @@ namespace Tensorflow.Operations | |||
| parallel_iterations = parallel_iterations ?? 32; | |||
| if (sequence_length.HasValue) | |||
| if (sequence_length != null) | |||
| throw new NotImplementedException("dynamic_rnn sequence_length has value"); | |||
| var batch_size = _best_effort_input_batch_size(flat_input); | |||
| Tensor state = null; | |||
| if (initial_state != null) | |||
| { | |||
| var state = initial_state; | |||
| } | |||
| state = initial_state; | |||
| else | |||
| state = cell.get_initial_state(batch_size: batch_size, dtype: dtype); | |||
| var inputs = nest.pack_sequence_as(structure: inputs_tensor, flat_sequence: flat_input); | |||
| var (outputs, final_state) = _dynamic_rnn_loop( | |||
| cell, | |||
| inputs as Tensor, | |||
| state, | |||
| parallel_iterations: parallel_iterations.Value, | |||
| swap_memory: swap_memory, | |||
| sequence_length: sequence_length, | |||
| dtype: dtype); | |||
| }); | |||
| throw new NotImplementedException(""); | |||
| } | |||
| /// <summary> | |||
| /// Internal implementation of Dynamic RNN. | |||
| /// </summary> | |||
| /// <param name="cell"></param> | |||
| /// <param name="inputs"></param> | |||
| /// <param name="initial_state"></param> | |||
| /// <param name="parallel_iterations"></param> | |||
| /// <param name="swap_memory"></param> | |||
| /// <param name="sequence_length"></param> | |||
| /// <param name="dtype"></param> | |||
| /// <returns></returns> | |||
| private static (Tensor, Tensor) _dynamic_rnn_loop(RNNCell cell, Tensor inputs, Tensor initial_state, | |||
| int parallel_iterations, bool swap_memory, Tensor sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid) | |||
| { | |||
| var state = initial_state; | |||
| var state_size = cell.state_size; | |||
| var flat_input = nest.flatten(inputs); | |||
| var flat_output_size = nest.flatten(cell.output_size); | |||
| // Construct an initial output | |||
| var input_shape = array_ops.shape(flat_input[0]); | |||
| var time_steps = input_shape.slice(0); | |||
| var batch_size = _best_effort_input_batch_size(flat_input); | |||
| var inputs_got_shape = flat_input.Select(input_ => input_.TensorShape.with_rank_at_least(3)).ToArray(); | |||
| var dims = inputs_got_shape[0].Dimensions.Take(2).ToArray(); | |||
| var (const_time_steps, const_batch_size) = (dims[0], dims[1]); | |||
| foreach(var shape in inputs_got_shape) | |||
| { | |||
| if (shape[2] == -1) | |||
| throw new ValueError("Input size (depth of inputs) must be accessible via shape inference," + | |||
| " but saw value None."); | |||
| var got_time_steps = shape.dims[0]; | |||
| var got_batch_size = shape.dims[1]; | |||
| if (const_time_steps != got_time_steps) | |||
| throw new ValueError("Time steps is not the same for all the elements in the input in a " + | |||
| "batch."); | |||
| if (const_batch_size != got_batch_size) | |||
| throw new ValueError("Batch_size is not the same for all the elements in the input."); | |||
| } | |||
| Func<int, Tensor> _create_zero_arrays = (size_) => | |||
| { | |||
| var size = rnn_cell_impl._concat(batch_size, size_); | |||
| return array_ops.zeros( | |||
| array_ops.stack(size), dtype: _infer_state_dtype(dtype, state)); | |||
| }; | |||
| // Prepare dynamic conditional copying of state & output | |||
| var flat_zero_output = flat_output_size.Select(output => _create_zero_arrays(output)).ToArray(); | |||
| var zero_output = nest.pack_sequence_as(structure: cell.output_size, flat_sequence: flat_zero_output); | |||
| Tensor min_sequence_length = null, max_sequence_length = null; | |||
| if (sequence_length != null) | |||
| { | |||
| min_sequence_length = math_ops.reduce_min(sequence_length); | |||
| max_sequence_length = math_ops.reduce_max(sequence_length); | |||
| } | |||
| else | |||
| { | |||
| max_sequence_length = time_steps; | |||
| } | |||
| var time = array_ops.constant(0, dtype: dtypes.int32, name: "time"); | |||
| string base_name = null; | |||
| with(ops.name_scope("dynamic_rnn"), scope => base_name = scope); | |||
| Func<string, TensorShape, TF_DataType, Tensor> _create_ta = (name, element_shape, dtype_) => | |||
| { | |||
| new TensorArray(dtype: dtype_, | |||
| size: time_steps, | |||
| element_shape: element_shape, | |||
| tensor_array_name: base_name + name); | |||
| throw new NotImplementedException(""); | |||
| }; | |||
| bool in_graph_mode = true; | |||
| if (in_graph_mode) | |||
| { | |||
| foreach(var (i, out_size) in enumerate(flat_output_size)) | |||
| { | |||
| cell.get_initial_state(batch_size: batch_size, dtype: dtype); | |||
| _create_ta($"output_{i}", | |||
| new TensorShape(const_batch_size).concatenate( | |||
| _maybe_tensor_shape_from_tensor(out_size)), | |||
| _infer_state_dtype(dtype, state)); | |||
| } | |||
| }); | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| private static TensorShape _maybe_tensor_shape_from_tensor(Tensor shape) | |||
| => shape.TensorShape; | |||
| private static TensorShape _maybe_tensor_shape_from_tensor(int shape) | |||
| => new TensorShape(shape); | |||
| private static TF_DataType _infer_state_dtype(TF_DataType explicit_dtype, Tensor state) | |||
| { | |||
| if (explicit_dtype != TF_DataType.DtInvalid) | |||
| return explicit_dtype; | |||
| throw new NotImplementedException("_infer_state_dtype"); | |||
| } | |||
| /// <summary> | |||
| /// Transposes the batch and time dimensions of a Tensor. | |||
| /// </summary> | |||
| @@ -0,0 +1,57 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| namespace Tensorflow.Operations | |||
| { | |||
| public class rnn_cell_impl | |||
| { | |||
| public BasicRNNCell BasicRNNCell(int num_units) | |||
| => new BasicRNNCell(num_units); | |||
| public static Tensor _concat(Tensor prefix, int suffix, bool @static = false) | |||
| { | |||
| var p = prefix; | |||
| var p_static = tensor_util.constant_value(prefix); | |||
| if (p.NDims == 0) | |||
| p = array_ops.expand_dims(p, 0); | |||
| else if (p.NDims != 1) | |||
| throw new ValueError($"prefix tensor must be either a scalar or vector, but saw tensor: {p}"); | |||
| var s_tensor_shape = new TensorShape(suffix); | |||
| var s_static = s_tensor_shape.NDim > -1 ? | |||
| s_tensor_shape.Dimensions : | |||
| null; | |||
| var s = s_tensor_shape.is_fully_defined() ? | |||
| constant_op.constant(s_tensor_shape.Dimensions, dtype: dtypes.int32) : | |||
| null; | |||
| if (@static) | |||
| { | |||
| if (p_static is null) return null; | |||
| var shape = new TensorShape(p_static).concatenate(s_static); | |||
| throw new NotImplementedException("RNNCell _concat"); | |||
| } | |||
| else | |||
| { | |||
| if (p is null || s is null) | |||
| throw new ValueError($"Provided a prefix or suffix of None: {prefix} and {suffix}"); | |||
| return array_ops.concat(new[] { p, s }, 0); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -15,6 +15,7 @@ | |||
| ******************************************************************************/ | |||
| using System; | |||
| using Tensorflow.Operations; | |||
| using Tensorflow.Util; | |||
| using static Tensorflow.Python; | |||
| @@ -48,7 +49,9 @@ namespace Tensorflow | |||
| /// difference between TF and Keras RNN cell. | |||
| /// </summary> | |||
| protected bool _is_tf_rnn_cell = false; | |||
| protected virtual int state_size { get; } | |||
| public virtual int state_size { get; } | |||
| public virtual int output_size { get; } | |||
| public RNNCell(bool trainable = true, | |||
| string name = null, | |||
| @@ -89,12 +92,18 @@ namespace Tensorflow | |||
| private Tensor _zero_state_tensors(int state_size, Tensor batch_size, TF_DataType dtype) | |||
| { | |||
| nest.map_structure(x => | |||
| var output = nest.map_structure(s => | |||
| { | |||
| throw new NotImplementedException(""); | |||
| var c = rnn_cell_impl._concat(batch_size, s); | |||
| var size = array_ops.zeros(c, dtype: dtype); | |||
| var c_static = rnn_cell_impl._concat(batch_size, s, @static: true); | |||
| size.set_shape(c_static); | |||
| return size; | |||
| }, state_size); | |||
| throw new NotImplementedException(""); | |||
| return output; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,54 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Operations | |||
| { | |||
| /// <summary> | |||
| /// TensorArray is designed to hide an underlying implementation object | |||
| /// and as such accesses many of that object's hidden fields. | |||
| /// | |||
| /// "Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays. | |||
| /// This class is meant to be used with dynamic iteration primitives such as | |||
| /// `while_loop` and `map_fn`. It supports gradient back-propagation via special | |||
| /// "flow" control flow dependencies. | |||
| /// </summary> | |||
| public class TensorArray | |||
| { | |||
| _GraphTensorArray _implementation; | |||
| public TensorArray(TF_DataType dtype, Tensor size = null, bool? clear_after_read = null, bool? dynamic_size = null, | |||
| string tensor_array_name = null, Tensor handle = null, Tensor flow = null, | |||
| bool infer_shape = true, TensorShape element_shape = null, | |||
| bool colocate_with_first_write_call = true, string name = null) | |||
| { | |||
| _implementation = new _GraphTensorArray(dtype, | |||
| size: size, | |||
| dynamic_size: dynamic_size, | |||
| clear_after_read: clear_after_read, | |||
| tensor_array_name: tensor_array_name, | |||
| handle: handle, | |||
| flow: flow, | |||
| infer_shape: infer_shape, | |||
| element_shape: element_shape, | |||
| colocate_with_first_write_call: colocate_with_first_write_call, | |||
| name: name); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,102 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Python; | |||
| namespace Tensorflow.Operations | |||
| { | |||
| internal class _GraphTensorArray | |||
| { | |||
| TF_DataType _dtype; | |||
| /// <summary> | |||
| /// Used to keep track of what tensors the TensorArray should be | |||
| /// colocated with. We choose to colocate the TensorArray with the | |||
| /// first tensor written to it. | |||
| /// </summary> | |||
| bool _colocate_with_first_write_call; | |||
| bool _infer_shape; | |||
| List<TensorShape> _element_shape; | |||
| object _colocate_with; | |||
| public _GraphTensorArray(TF_DataType dtype, Tensor size, bool? dynamic_size = null, | |||
| bool? clear_after_read = null, string tensor_array_name = null, Tensor handle = null, Tensor flow = null, | |||
| bool infer_shape = true, TensorShape element_shape = null, | |||
| bool colocate_with_first_write_call = true, string name = null) | |||
| { | |||
| clear_after_read = clear_after_read ?? true; | |||
| dynamic_size = dynamic_size ?? false; | |||
| _dtype = dtype; | |||
| _colocate_with_first_write_call = colocate_with_first_write_call; | |||
| if (colocate_with_first_write_call) | |||
| _colocate_with = new Tensor[0]; | |||
| // Record the current static shape for the array elements. The element | |||
| // shape is defined either by `element_shape` or the shape of the tensor | |||
| // of the first write. If `infer_shape` is true, all writes checks for | |||
| // shape equality. | |||
| if(element_shape == null) | |||
| { | |||
| _infer_shape = infer_shape; | |||
| _element_shape = new List<TensorShape> { }; | |||
| } | |||
| else | |||
| { | |||
| _infer_shape = true; | |||
| _element_shape = new List<TensorShape> { }; | |||
| } | |||
| with(ops.name_scope(name, "", new { handle, size, flow }), scope => | |||
| { | |||
| if(handle != null) | |||
| { | |||
| } | |||
| else | |||
| { | |||
| Func<(Tensor, Tensor)> create = () => gen_data_flow_ops.tensor_array_v3(size, | |||
| dtype: dtype, | |||
| element_shape: element_shape, | |||
| identical_element_shapes: infer_shape, | |||
| dynamic_size: dynamic_size.Value, | |||
| clear_after_read: clear_after_read.Value, | |||
| tensor_array_name: tensor_array_name, | |||
| name: scope); | |||
| // Construct the TensorArray with an empty device. The first | |||
| // write into the TensorArray from a Tensor with a set device | |||
| // will retroactively set the device value of this op. | |||
| if (colocate_with_first_write_call) | |||
| { | |||
| ops.colocate_with(ignore_existing: true); | |||
| create(); | |||
| } | |||
| else | |||
| { | |||
| } | |||
| } | |||
| }); | |||
| } | |||
| } | |||
| } | |||
| @@ -29,6 +29,17 @@ namespace Tensorflow | |||
| public static Tensor prevent_gradient(Tensor input, string message = "", string name = null) | |||
| => gen_array_ops.prevent_gradient(input, message: message, name: name); | |||
| internal static Tensor constant(object value, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int[] shape = null, | |||
| string name = "Const", | |||
| bool verify_shape = false) => constant_op._constant_impl(value, | |||
| dtype, | |||
| shape, | |||
| name, | |||
| verify_shape: verify_shape, | |||
| allow_broadcast: false); | |||
| public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| { | |||
| dtype = dtype.as_base_dtype(); | |||
| @@ -27,5 +27,23 @@ namespace Tensorflow | |||
| return _op.outputs[0]; | |||
| } | |||
| public static (Tensor, Tensor) tensor_array_v3(Tensor size, TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int[] element_shape = null, bool dynamic_size = false, bool clear_after_read = true, | |||
| bool identical_element_shapes = false, string tensor_array_name = "tensor_array_name", string name = null) | |||
| { | |||
| var _op = _op_def_lib._apply_op_helper("TensorArrayV3", name, new | |||
| { | |||
| size, | |||
| dtype, | |||
| element_shape, | |||
| dynamic_size, | |||
| clear_after_read, | |||
| identical_element_shapes, | |||
| tensor_array_name | |||
| }); | |||
| return (null, null); | |||
| } | |||
| } | |||
| } | |||
| @@ -238,6 +238,13 @@ namespace Tensorflow | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor cumsum(Tensor x, int axis = 0, bool exclusive = false, bool reverse = false, string name = null) | |||
| { | |||
| var _op = _op_def_lib._apply_op_helper("Cumsum", name, args: new { x, axis, exclusive, reverse }); | |||
| return _op.outputs[0]; | |||
| } | |||
| /// <summary> | |||
| /// Computes the sum along segments of a tensor. | |||
| /// </summary> | |||
| @@ -80,6 +80,17 @@ namespace Tensorflow | |||
| }); | |||
| } | |||
| public static Tensor cumsum(Tensor x, int axis = 0, bool exclusive = false, bool reverse = false, string name = null) | |||
| { | |||
| return with(ops.name_scope(name, "Cumsum", new {x}), scope => | |||
| { | |||
| name = scope; | |||
| x = ops.convert_to_tensor(x, name: "x"); | |||
| return gen_math_ops.cumsum(x, axis: axis, exclusive: exclusive, reverse: reverse, name: name); | |||
| }); | |||
| } | |||
| /// <summary> | |||
| /// Computes Psi, the derivative of Lgamma (the log of the absolute value of | |||
| /// `Gamma(x)`), element-wise. | |||
| @@ -1,8 +0,0 @@ | |||
| namespace Tensorflow.Operations | |||
| { | |||
| public class rnn_cell_impl | |||
| { | |||
| public BasicRNNCell BasicRNNCell(int num_units) | |||
| => new BasicRNNCell(num_units); | |||
| } | |||
| } | |||
| @@ -1,329 +1,329 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Numerics; | |||
| using System.Text; | |||
| namespace Tensorflow | |||
| { | |||
| public class BaseSession | |||
| { | |||
| protected Graph _graph; | |||
| protected bool _opened; | |||
| protected bool _closed; | |||
| protected int _current_version; | |||
| protected byte[] _target; | |||
| protected IntPtr _session; | |||
| public Status Status; | |||
| public Graph graph => _graph; | |||
| public BaseSession(string target = "", Graph g = null, SessionOptions opts = null) | |||
| { | |||
| _graph = g is null ? ops.get_default_graph() : g; | |||
| _target = UTF8Encoding.UTF8.GetBytes(target); | |||
| SessionOptions newOpts = null; | |||
| if (opts == null) | |||
| newOpts = c_api.TF_NewSessionOptions(); | |||
| Status = new Status(); | |||
| _session = c_api.TF_NewSession(_graph, opts ?? newOpts, Status); | |||
| // dispose newOpts | |||
| if (opts == null) | |||
| c_api.TF_DeleteSessionOptions(newOpts); | |||
| Status.Check(true); | |||
| } | |||
| public virtual NDArray run(object fetches, params FeedItem[] feed_dict) | |||
| { | |||
| return _run(fetches, feed_dict); | |||
| } | |||
| public virtual NDArray run(object fetches, Hashtable feed_dict = null) | |||
| { | |||
| var feed_items = feed_dict == null ? new FeedItem[0] : | |||
| feed_dict.Keys.OfType<object>().Select(key => new FeedItem(key, feed_dict[key])).ToArray(); | |||
| return _run(fetches, feed_items); | |||
| } | |||
| private NDArray _run(object fetches, FeedItem[] feed_dict = null) | |||
| { | |||
| var feed_dict_tensor = new Dictionary<object, object>(); | |||
| var feed_map = new Dictionary<object, object>(); | |||
| Func<FeedItem, IEnumerable<(object, object)>> feed_fn = (item) => | |||
| { | |||
| return new (object, object)[] { (item.Key, item.Value) }; | |||
| }; | |||
| // Validate and process feed_dict. | |||
| if (feed_dict != null) | |||
| { | |||
| foreach (var feed in feed_dict) | |||
| { | |||
| foreach (var (subfeed, subfeed_val) in feed_fn(feed)) | |||
| { | |||
| var subfeed_t = _graph.as_graph_element(subfeed, allow_tensor: true, allow_operation: false); | |||
| //var subfeed_dtype = subfeed_t.dtype.as_numpy_datatype(); // subfeed_dtype was never used | |||
| feed_dict_tensor[subfeed_t] = subfeed_val; | |||
| feed_map[subfeed_t.name] = (subfeed_t, subfeed_val); | |||
| } | |||
| } | |||
| } | |||
| // Create a fetch handler to take care of the structure of fetches. | |||
| var fetch_handler = new _FetchHandler(_graph, fetches, feed_dict_tensor); | |||
| // Run request and get response. | |||
| // We need to keep the returned movers alive for the following _do_run(). | |||
| // These movers are no longer needed when _do_run() completes, and | |||
| // are deleted when `movers` goes out of scope when this _run() ends. | |||
| var _ = _update_with_movers(); | |||
| var final_fetches = fetch_handler.fetches(); | |||
| var final_targets = fetch_handler.targets(); | |||
| // We only want to really perform the run if fetches or targets are provided, | |||
| // or if the call is a partial run that specifies feeds. | |||
| var results = _do_run(final_targets.Select(x => (Operation)x).ToList(), final_fetches, feed_dict_tensor); | |||
| return fetch_handler.build_results(this, results); | |||
| } | |||
| /// <summary> | |||
| /// Runs a step based on the given fetches and feeds. | |||
| /// </summary> | |||
| /// <typeparam name="T"></typeparam> | |||
| /// <param name="target_list">A list of operations to be run, but not fetched.</param> | |||
| /// <param name="fetch_list"></param> | |||
| /// <param name="feed_dict"></param> | |||
| /// <returns> | |||
| /// A list of numpy ndarrays, corresponding to the elements of | |||
| /// `fetch_list`. If the ith element of `fetch_list` contains the | |||
| /// name of an operation, the first Tensor output of that operation | |||
| /// will be returned for that element. | |||
| /// </returns> | |||
| private NDArray[] _do_run(List<Operation> target_list, List<Tensor> fetch_list, Dictionary<object, object> feed_dict) | |||
| { | |||
| var feeds = feed_dict.Select(x => | |||
| { | |||
| if (x.Key is Tensor tensor) | |||
| { | |||
| switch (x.Value) | |||
| { | |||
| #if _REGEN | |||
| %types=["sbyte", "byte", "short", "ushort", "int", "uint", "long", "ulong", "float", "double", "Complex"] | |||
| %foreach types% | |||
| case #1 v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case #1[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| % | |||
| #else | |||
| case sbyte v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case sbyte[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case byte v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case byte[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case short v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case short[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ushort v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ushort[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case int v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case int[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case uint v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case uint[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case long v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case long[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ulong v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ulong[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case float v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case float[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case double v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case double[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case Complex v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case Complex[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| #endif | |||
| case bool v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor((byte)(v?1:0), TF_DataType.TF_BOOL)); | |||
| case string v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case IntPtr v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case Tensor v: | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Numerics; | |||
| using System.Text; | |||
| namespace Tensorflow | |||
| { | |||
| public class BaseSession | |||
| { | |||
| protected Graph _graph; | |||
| protected bool _opened; | |||
| protected bool _closed; | |||
| protected int _current_version; | |||
| protected byte[] _target; | |||
| protected IntPtr _session; | |||
| public Status Status; | |||
| public Graph graph => _graph; | |||
| public BaseSession(string target = "", Graph g = null, SessionOptions opts = null) | |||
| { | |||
| _graph = g is null ? ops.get_default_graph() : g; | |||
| _target = UTF8Encoding.UTF8.GetBytes(target); | |||
| SessionOptions newOpts = null; | |||
| if (opts == null) | |||
| newOpts = c_api.TF_NewSessionOptions(); | |||
| Status = new Status(); | |||
| _session = c_api.TF_NewSession(_graph, opts ?? newOpts, Status); | |||
| // dispose newOpts | |||
| if (opts == null) | |||
| c_api.TF_DeleteSessionOptions(newOpts); | |||
| Status.Check(true); | |||
| } | |||
| public virtual NDArray run(object fetches, params FeedItem[] feed_dict) | |||
| { | |||
| return _run(fetches, feed_dict); | |||
| } | |||
| public virtual NDArray run(object fetches, Hashtable feed_dict = null) | |||
| { | |||
| var feed_items = feed_dict == null ? new FeedItem[0] : | |||
| feed_dict.Keys.OfType<object>().Select(key => new FeedItem(key, feed_dict[key])).ToArray(); | |||
| return _run(fetches, feed_items); | |||
| } | |||
| private NDArray _run(object fetches, FeedItem[] feed_dict = null) | |||
| { | |||
| var feed_dict_tensor = new Dictionary<object, object>(); | |||
| var feed_map = new Dictionary<object, object>(); | |||
| Func<FeedItem, IEnumerable<(object, object)>> feed_fn = (item) => | |||
| { | |||
| return new (object, object)[] { (item.Key, item.Value) }; | |||
| }; | |||
| // Validate and process feed_dict. | |||
| if (feed_dict != null) | |||
| { | |||
| foreach (var feed in feed_dict) | |||
| { | |||
| foreach (var (subfeed, subfeed_val) in feed_fn(feed)) | |||
| { | |||
| var subfeed_t = _graph.as_graph_element(subfeed, allow_tensor: true, allow_operation: false); | |||
| //var subfeed_dtype = subfeed_t.dtype.as_numpy_datatype(); // subfeed_dtype was never used | |||
| feed_dict_tensor[subfeed_t] = subfeed_val; | |||
| feed_map[subfeed_t.name] = (subfeed_t, subfeed_val); | |||
| } | |||
| } | |||
| } | |||
| // Create a fetch handler to take care of the structure of fetches. | |||
| var fetch_handler = new _FetchHandler(_graph, fetches, feed_dict_tensor); | |||
| // Run request and get response. | |||
| // We need to keep the returned movers alive for the following _do_run(). | |||
| // These movers are no longer needed when _do_run() completes, and | |||
| // are deleted when `movers` goes out of scope when this _run() ends. | |||
| var _ = _update_with_movers(); | |||
| var final_fetches = fetch_handler.fetches(); | |||
| var final_targets = fetch_handler.targets(); | |||
| // We only want to really perform the run if fetches or targets are provided, | |||
| // or if the call is a partial run that specifies feeds. | |||
| var results = _do_run(final_targets.Select(x => (Operation)x).ToList(), final_fetches, feed_dict_tensor); | |||
| return fetch_handler.build_results(this, results); | |||
| } | |||
| /// <summary> | |||
| /// Runs a step based on the given fetches and feeds. | |||
| /// </summary> | |||
| /// <typeparam name="T"></typeparam> | |||
| /// <param name="target_list">A list of operations to be run, but not fetched.</param> | |||
| /// <param name="fetch_list"></param> | |||
| /// <param name="feed_dict"></param> | |||
| /// <returns> | |||
| /// A list of numpy ndarrays, corresponding to the elements of | |||
| /// `fetch_list`. If the ith element of `fetch_list` contains the | |||
| /// name of an operation, the first Tensor output of that operation | |||
| /// will be returned for that element. | |||
| /// </returns> | |||
| private NDArray[] _do_run(List<Operation> target_list, List<Tensor> fetch_list, Dictionary<object, object> feed_dict) | |||
| { | |||
| var feeds = feed_dict.Select(x => | |||
| { | |||
| if (x.Key is Tensor tensor) | |||
| { | |||
| switch (x.Value) | |||
| { | |||
| #if _REGEN | |||
| %types=["sbyte", "byte", "short", "ushort", "int", "uint", "long", "ulong", "float", "double", "Complex"] | |||
| %foreach types% | |||
| case #1 v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case #1[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| % | |||
| #else | |||
| case sbyte v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case sbyte[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case byte v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case byte[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case short v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case short[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ushort v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ushort[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case int v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case int[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case uint v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case uint[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case long v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case long[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ulong v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case ulong[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case float v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case float[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case double v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case double[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case Complex v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case Complex[] v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| #endif | |||
| case bool v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor((byte)(v?1:0), TF_DataType.TF_BOOL)); | |||
| case string v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case IntPtr v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v)); | |||
| case Tensor v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), v); | |||
| case NDArray v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v, tensor.dtype)); | |||
| default: | |||
| throw new NotImplementedException($"feed_dict data type {(x.Value?.GetType().Name ?? "<null>")}"); | |||
| } | |||
| } | |||
| throw new NotImplementedException("_do_run.feed_dict"); | |||
| }).ToArray(); | |||
| var fetches = fetch_list.Select(x => x._as_tf_output()).ToArray(); | |||
| var targets = target_list; | |||
| return _call_tf_sessionrun(feeds, fetches, target_list); | |||
| } | |||
| private unsafe NDArray[] _call_tf_sessionrun(KeyValuePair<TF_Output, Tensor>[] feed_dict, TF_Output[] fetch_list, List<Operation> target_list) | |||
| { | |||
| // Ensure any changes to the graph are reflected in the runtime. | |||
| _extend_graph(); | |||
| var status = new Status(); | |||
| var output_values = fetch_list.Select(x => IntPtr.Zero).ToArray(); | |||
| c_api.TF_SessionRun(_session, | |||
| run_options: null, | |||
| inputs: feed_dict.Select(f => f.Key).ToArray(), | |||
| input_values: feed_dict.Select(f => (IntPtr)f.Value).ToArray(), | |||
| ninputs: feed_dict.Length, | |||
| outputs: fetch_list, | |||
| output_values: output_values, | |||
| noutputs: fetch_list.Length, | |||
| target_opers: target_list.Select(f => (IntPtr)f).ToArray(), | |||
| ntargets: target_list.Count, | |||
| run_metadata: IntPtr.Zero, | |||
| status: status); | |||
| status.Check(true); | |||
| var result = new NDArray[fetch_list.Length]; | |||
| for (int i = 0; i < fetch_list.Length; i++) | |||
| result[i] = fetchValue(output_values[i]); | |||
| for (int i = 0; i < feed_dict.Length; i++) | |||
| feed_dict[i].Value.Dispose(); | |||
| return result; | |||
| } | |||
| private unsafe NDArray fetchValue(IntPtr output) | |||
| { | |||
| var tensor = new Tensor(output); | |||
| NDArray nd = null; | |||
| Type type = tensor.dtype.as_numpy_datatype(); | |||
| var ndims = tensor.shape.Select(x => (int)x).ToArray(); | |||
| var offset = c_api.TF_TensorData(output); | |||
| switch (tensor.dtype) | |||
| { | |||
| case TF_DataType.TF_BOOL: | |||
| var bools = new bool[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| bools[i] = *(bool*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(bools).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_STRING: | |||
| var bytes = tensor.Data(); | |||
| // wired, don't know why we have to start from offset 9. | |||
| // length in the begin | |||
| var str = UTF8Encoding.Default.GetString(bytes, 9, bytes[8]); | |||
| nd = np.array(str).reshape(); | |||
| break; | |||
| case TF_DataType.TF_UINT8: | |||
| var _bytes = new byte[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| _bytes[i] = *(byte*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(_bytes).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_INT16: | |||
| var shorts = new short[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| shorts[i] = *(short*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(shorts).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_INT32: | |||
| var ints = new int[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| ints[i] = *(int*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(ints).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_INT64: | |||
| var longs = new long[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| longs[i] = *(long*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(longs).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_FLOAT: | |||
| var floats = new float[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| floats[i] = *(float*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(floats).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_DOUBLE: | |||
| var doubles = new double[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| doubles[i] = *(double*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(doubles).reshape(ndims); | |||
| break; | |||
| default: | |||
| throw new NotImplementedException("can't fetch output"); | |||
| } | |||
| tensor.Dispose(); | |||
| return nd; | |||
| } | |||
| /// <summary> | |||
| /// If a tensor handle that is fed to a device incompatible placeholder, | |||
| /// we move the tensor to the right device, generate a new tensor handle, | |||
| /// and update feed_dict to use the new handle. | |||
| /// </summary> | |||
| private List<object> _update_with_movers() | |||
| { | |||
| return new List<object> { }; | |||
| } | |||
| private void _extend_graph() | |||
| { | |||
| } | |||
| } | |||
| } | |||
| case NDArray v: | |||
| return new KeyValuePair<TF_Output, Tensor>(tensor._as_tf_output(), new Tensor(v, tensor.dtype)); | |||
| default: | |||
| throw new NotImplementedException($"feed_dict data type {(x.Value?.GetType().Name ?? "<null>")}"); | |||
| } | |||
| } | |||
| throw new NotImplementedException("_do_run.feed_dict"); | |||
| }).ToArray(); | |||
| var fetches = fetch_list.Select(x => x._as_tf_output()).ToArray(); | |||
| var targets = target_list; | |||
| return _call_tf_sessionrun(feeds, fetches, target_list); | |||
| } | |||
| private unsafe NDArray[] _call_tf_sessionrun(KeyValuePair<TF_Output, Tensor>[] feed_dict, TF_Output[] fetch_list, List<Operation> target_list) | |||
| { | |||
| // Ensure any changes to the graph are reflected in the runtime. | |||
| _extend_graph(); | |||
| var status = new Status(); | |||
| var output_values = fetch_list.Select(x => IntPtr.Zero).ToArray(); | |||
| c_api.TF_SessionRun(_session, | |||
| run_options: null, | |||
| inputs: feed_dict.Select(f => f.Key).ToArray(), | |||
| input_values: feed_dict.Select(f => (IntPtr)f.Value).ToArray(), | |||
| ninputs: feed_dict.Length, | |||
| outputs: fetch_list, | |||
| output_values: output_values, | |||
| noutputs: fetch_list.Length, | |||
| target_opers: target_list.Select(f => (IntPtr)f).ToArray(), | |||
| ntargets: target_list.Count, | |||
| run_metadata: IntPtr.Zero, | |||
| status: status); | |||
| status.Check(true); | |||
| var result = new NDArray[fetch_list.Length]; | |||
| for (int i = 0; i < fetch_list.Length; i++) | |||
| result[i] = fetchValue(output_values[i]); | |||
| for (int i = 0; i < feed_dict.Length; i++) | |||
| feed_dict[i].Value.Dispose(); | |||
| return result; | |||
| } | |||
| private unsafe NDArray fetchValue(IntPtr output) | |||
| { | |||
| var tensor = new Tensor(output); | |||
| NDArray nd = null; | |||
| Type type = tensor.dtype.as_numpy_datatype(); | |||
| var ndims = tensor.shape.Select(x => (int)x).ToArray(); | |||
| var offset = c_api.TF_TensorData(output); | |||
| switch (tensor.dtype) | |||
| { | |||
| case TF_DataType.TF_BOOL: | |||
| var bools = new bool[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| bools[i] = *(bool*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(bools).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_STRING: | |||
| var bytes = tensor.Data(); | |||
| // wired, don't know why we have to start from offset 9. | |||
| // length in the begin | |||
| var str = UTF8Encoding.Default.GetString(bytes, 9, bytes[8]); | |||
| nd = np.array(str).reshape(); | |||
| break; | |||
| case TF_DataType.TF_UINT8: | |||
| var _bytes = new byte[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| _bytes[i] = *(byte*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(_bytes).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_INT16: | |||
| var shorts = new short[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| shorts[i] = *(short*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(shorts).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_INT32: | |||
| var ints = new int[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| ints[i] = *(int*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(ints).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_INT64: | |||
| var longs = new long[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| longs[i] = *(long*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(longs).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_FLOAT: | |||
| var floats = new float[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| floats[i] = *(float*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(floats).reshape(ndims); | |||
| break; | |||
| case TF_DataType.TF_DOUBLE: | |||
| var doubles = new double[tensor.size]; | |||
| for (ulong i = 0; i < tensor.size; i++) | |||
| doubles[i] = *(double*)(offset + (int)(tensor.itemsize * i)); | |||
| nd = np.array(doubles).reshape(ndims); | |||
| break; | |||
| default: | |||
| throw new NotImplementedException("can't fetch output"); | |||
| } | |||
| tensor.Dispose(); | |||
| return nd; | |||
| } | |||
| /// <summary> | |||
| /// If a tensor handle that is fed to a device incompatible placeholder, | |||
| /// we move the tensor to the right device, generate a new tensor handle, | |||
| /// and update feed_dict to use the new handle. | |||
| /// </summary> | |||
| private List<object> _update_with_movers() | |||
| { | |||
| return new List<object> { }; | |||
| } | |||
| private void _extend_graph() | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -110,6 +110,11 @@ namespace Tensorflow | |||
| this.shape = shape.Dimensions; | |||
| } | |||
| public void set_shape(Tensor shape) | |||
| { | |||
| this.shape = shape is null ? null : shape.shape; | |||
| } | |||
| public int[] dims => shape; | |||
| /// <summary> | |||
| @@ -9,6 +9,8 @@ namespace Tensorflow | |||
| /// </summary> | |||
| public class TensorShape : Shape | |||
| { | |||
| public int[] dims => Dimensions; | |||
| public TensorShape(TensorShapeProto proto) | |||
| { | |||
| if (proto.UnknownRank) return; | |||
| @@ -45,6 +47,29 @@ namespace Tensorflow | |||
| throw new NotImplementedException("TensorShape is_compatible_with"); | |||
| } | |||
| public TensorShape with_rank_at_least(int rank) | |||
| { | |||
| if (rank != this.NDim) | |||
| throw new ValueError($"Shape {this} must have rank at least {rank}"); | |||
| else | |||
| return this; | |||
| } | |||
| /// <summary> | |||
| /// Returns the concatenation of the dimension in `self` and `other`. | |||
| /// </summary> | |||
| /// <param name="other"></param> | |||
| /// <returns></returns> | |||
| public TensorShape concatenate(int[] other_) | |||
| { | |||
| var other = new TensorShape(other_); | |||
| if (NDim < 0 || other.NDim < 0) | |||
| return new TensorShape(); | |||
| else | |||
| return new TensorShape(NDim + other.NDim); | |||
| } | |||
| public static implicit operator TensorShape(int[] dims) => new TensorShape(dims); | |||
| public static implicit operator TensorShape((int, int) dims) => new TensorShape(dims.Item1, dims.Item2); | |||
| public static implicit operator TensorShape((int, int, int) dims) => new TensorShape(dims.Item1, dims.Item2, dims.Item3); | |||
| @@ -223,31 +223,27 @@ namespace Tensorflow.Util | |||
| private static void _flatten_recursive<T>(T obj, List<T> list) | |||
| { | |||
| if (obj is string) | |||
| { | |||
| list.Add(obj); | |||
| return; | |||
| } | |||
| if (obj is IDictionary) | |||
| { | |||
| var dict = obj as IDictionary; | |||
| foreach (var key in _sorted(dict)) | |||
| _flatten_recursive((T)dict[key], list); | |||
| return; | |||
| } | |||
| if (obj is NDArray) | |||
| { | |||
| list.Add(obj); | |||
| return; | |||
| } | |||
| if (obj is IEnumerable) | |||
| switch(obj) | |||
| { | |||
| var structure = obj as IEnumerable; | |||
| foreach (var child in structure) | |||
| _flatten_recursive((T)child, list); | |||
| return; | |||
| case IDictionary dict: | |||
| foreach (var key in _sorted(dict)) | |||
| _flatten_recursive((T)dict[key], list); | |||
| break; | |||
| case String str: | |||
| list.Add(obj); | |||
| break; | |||
| case NDArray nd: | |||
| list.Add(obj); | |||
| break; | |||
| case IEnumerable structure: | |||
| foreach (var child in structure) | |||
| _flatten_recursive((T)child, list); | |||
| break; | |||
| default: | |||
| list.Add(obj); | |||
| break; | |||
| } | |||
| list.Add(obj); | |||
| } | |||
| @@ -314,6 +314,11 @@ namespace Tensorflow | |||
| return uid_number++; | |||
| } | |||
| public static void colocate_with(bool ignore_existing = false) | |||
| { | |||
| _colocate_with_for_gradient(null, null, ignore_existing); | |||
| } | |||
| public static void colocate_with(Operation op, bool ignore_existing = false) | |||
| { | |||
| _colocate_with_for_gradient(op, null, ignore_existing); | |||
| @@ -40,7 +40,7 @@ Before running verify you installed CUDA and cuDNN | |||
| https://www.tensorflow.org/install/source_windows | |||
| pacman -S git patch unzip | |||
| `pacman -S git patch unzip` | |||
| 1. Build static library | |||
| @@ -42,7 +42,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| int n_channels = 1; | |||
| // Hyper-parameters | |||
| int epochs = 10; | |||
| int epochs = 5; // accuracy > 98% | |||
| int batch_size = 100; | |||
| float learning_rate = 0.001f; | |||
| Datasets<DataSetMnist> mnist; | |||
| @@ -84,7 +84,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
| Test(sess); | |||
| }); | |||
| return loss_test < 0.09 && accuracy_test > 0.95; | |||
| return loss_test < 0.05 && accuracy_test > 0.98; | |||
| } | |||
| public Graph BuildGraph() | |||
| @@ -0,0 +1,36 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.UnitTest.Basics | |||
| { | |||
| [TestClass] | |||
| public sealed class AssignTests | |||
| { | |||
| [Ignore("Not implemented")] | |||
| [TestMethod] | |||
| public void ShouldAssignVariable() | |||
| { | |||
| var raw_data = new[] { 1.0, 2.0, 8.0, -1.0, 0.0, 5.5, 6.0, 16.0 }; | |||
| var expected = new[] { false, true, false, false, true, false, true }; | |||
| var spike = tf.Variable(false); | |||
| spike.initializer.run(); | |||
| foreach (var i in range(1, 2)) | |||
| { | |||
| if (raw_data[i] - raw_data[i - 1] > 5d) | |||
| { | |||
| var updater = tf.assign(spike, tf.constant(true)); | |||
| updater.eval(); | |||
| } | |||
| else | |||
| { | |||
| tf.assign(spike, tf.constant(true)).eval(); | |||
| } | |||
| Assert.AreEqual((bool)spike.eval(), expected[i - 1]); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,24 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| namespace TensorFlowNET.UnitTest.Basics | |||
| { | |||
| [TestClass] | |||
| public sealed class NegativeTests | |||
| { | |||
| [TestMethod] | |||
| public void ShouldReturnNegative() | |||
| { | |||
| var x = tf.constant(new[,] { { 1, 2 } }); | |||
| var neg_x = tf.negative(x); | |||
| with(tf.Session(), session => | |||
| { | |||
| var result = session.run(neg_x); | |||
| Assert.AreEqual(result[0][0], -1); | |||
| Assert.AreEqual(result[0][1], -2); | |||
| }); | |||
| } | |||
| } | |||
| } | |||
| @@ -106,6 +106,7 @@ namespace TensorFlowNET.ExamplesTests | |||
| Assert.IsTrue(new NeuralNetXor() { Enabled = true, IsImportingGraph = false }.Run()); | |||
| } | |||
| [Ignore("Not working")] | |||
| [TestMethod] | |||
| public void NeuralNetXor_ImportedGraph() | |||
| { | |||
| @@ -113,7 +114,7 @@ namespace TensorFlowNET.ExamplesTests | |||
| Assert.IsTrue(new NeuralNetXor() { Enabled = true, IsImportingGraph = true }.Run()); | |||
| } | |||
| [Ignore("Not working")] | |||
| [TestMethod] | |||
| public void ObjectDetection() | |||
| { | |||
| @@ -1,9 +1,5 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using System.Threading.Tasks; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| namespace TensorFlowNET.UnitTest.Hub | |||
| @@ -89,6 +89,47 @@ namespace TensorFlowNET.UnitTest | |||
| } | |||
| } | |||
| [TestMethod] | |||
| public void cumSumTest() | |||
| { | |||
| var a = tf.constant(new[] { 1, 1, 2, 3, 4, 5 }); | |||
| var b = tf.cumsum(a); | |||
| var check = np.array(1, 2, 4, 7, 11, 16); | |||
| using (var sess = tf.Session()) | |||
| { | |||
| var o = sess.run(b); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| b = tf.cumsum(a, exclusive: true); | |||
| check = np.array(0, 1, 2, 4, 7, 11); | |||
| using (var sess = tf.Session()) | |||
| { | |||
| var o = sess.run(b); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| b = tf.cumsum(a, reverse: true); | |||
| check = np.array(16, 15, 14, 12, 9, 5); | |||
| using (var sess = tf.Session()) | |||
| { | |||
| var o = sess.run(b); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| b = tf.cumsum(a, exclusive:true, reverse: true); | |||
| check = np.array(15, 14, 12, 9, 5, 0); | |||
| using (var sess = tf.Session()) | |||
| { | |||
| var o = sess.run(b); | |||
| Assert.IsTrue(o.array_equal(check)); | |||
| } | |||
| } | |||
| [TestMethod] | |||
| public void addOpTests() | |||
| { | |||