| @@ -180,10 +180,11 @@ namespace Tensorflow.Keras.Datasets | |||||
| // 0 (padding), 1 (start), 2 (OOV) | // 0 (padding), 1 (start), 2 (OOV) | ||||
| if (oov_char != null) | if (oov_char != null) | ||||
| { | { | ||||
| int[,] new_xs_array = new int[xs_array.GetLength(0), xs_array.GetLength(1)]; | |||||
| for (var i = 0; i < xs_array.GetLength(0); i++) | |||||
| var (d1, d2) = (xs_array.GetLength(0), xs_array.GetLength(1)); | |||||
| int[,] new_xs_array = new int[d1, d2]; | |||||
| for (var i = 0; i < d1; i++) | |||||
| { | { | ||||
| for (var j = 0; j < xs_array.GetLength(1); j++) | |||||
| for (var j = 0; j < d2; j++) | |||||
| { | { | ||||
| if (xs_array[i, j] == 0 || skip_top <= xs_array[i, j] && xs_array[i, j] < num_words) | if (xs_array[i, j] == 0 || skip_top <= xs_array[i, j] && xs_array[i, j] < num_words) | ||||
| new_xs_array[i, j] = xs_array[i, j]; | new_xs_array[i, j] = xs_array[i, j]; | ||||
| @@ -195,11 +196,12 @@ namespace Tensorflow.Keras.Datasets | |||||
| } | } | ||||
| else | else | ||||
| { | { | ||||
| int[,] new_xs_array = new int[xs_array.GetLength(0), xs_array.GetLength(1)]; | |||||
| for (var i = 0; i < xs_array.GetLength(0); i++) | |||||
| var (d1, d2) = (xs_array.GetLength(0), xs_array.GetLength(1)); | |||||
| int[,] new_xs_array = new int[d1, d2]; | |||||
| for (var i = 0; i < d1; i++) | |||||
| { | { | ||||
| int k = 0; | int k = 0; | ||||
| for (var j = 0; j < xs_array.GetLength(1); j++) | |||||
| for (var j = 0; j < d2; j++) | |||||
| { | { | ||||
| if (xs_array[i, j] == 0 || skip_top <= xs_array[i, j] && xs_array[i, j] < num_words) | if (xs_array[i, j] == 0 || skip_top <= xs_array[i, j] && xs_array[i, j] < num_words) | ||||
| new_xs_array[i, k++] = xs_array[i, j]; | new_xs_array[i, k++] = xs_array[i, j]; | ||||