| @@ -1,4 +1,5 @@ | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| namespace Keras | |||
| { | |||
| @@ -19,6 +19,7 @@ using Tensorflow; | |||
| using static Keras.Keras; | |||
| using NumSharp; | |||
| using Tensorflow.Operations.Activation; | |||
| using static Tensorflow.Binding; | |||
| namespace Keras.Layers | |||
| { | |||
| @@ -19,7 +19,7 @@ using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Keras | |||
| { | |||
| @@ -20,7 +20,7 @@ using System.Linq; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| /// <summary> | |||
| /// Concatenates tensors along one dimension. | |||
| @@ -29,7 +29,7 @@ namespace Tensorflow | |||
| /// <param name="axis"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>A `Tensor` resulting from concatenation of the input tensors.</returns> | |||
| public static Tensor concat(IList<Tensor> values, int axis, string name = "concat") | |||
| public Tensor concat(IList<Tensor> values, int axis, string name = "concat") | |||
| { | |||
| if (values.Count == 1) | |||
| throw new NotImplementedException("tf.concat length is 1"); | |||
| @@ -48,7 +48,7 @@ namespace Tensorflow | |||
| /// A `Tensor` with the same data as `input`, but its shape has an additional | |||
| /// dimension of size 1 added. | |||
| /// </returns> | |||
| public static Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1) | |||
| public Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1) | |||
| => array_ops.expand_dims(input, axis, name, dim); | |||
| /// <summary> | |||
| @@ -58,14 +58,14 @@ namespace Tensorflow | |||
| /// <param name="value"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor fill<T>(Tensor dims, T value, string name = null) | |||
| public Tensor fill<T>(Tensor dims, T value, string name = null) | |||
| => gen_array_ops.fill(dims, value, name: name); | |||
| /// <summary> | |||
| /// Return the elements, either from `x` or `y`, depending on the `condition`. | |||
| /// </summary> | |||
| /// <returns></returns> | |||
| public static Tensor where<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| public Tensor where<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| => array_ops.where(condition, x, y, name); | |||
| /// <summary> | |||
| @@ -76,10 +76,10 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <param name="conjugate"></param> | |||
| /// <returns></returns> | |||
| public static Tensor transpose<T1>(T1 a, int[] perm = null, string name = "transpose", bool conjugate = false) | |||
| public Tensor transpose<T1>(T1 a, int[] perm = null, string name = "transpose", bool conjugate = false) | |||
| => array_ops.transpose(a, perm, name, conjugate); | |||
| public static Tensor squeeze(Tensor input, int[] axis = null, string name = null, int squeeze_dims = -1) | |||
| public Tensor squeeze(Tensor input, int[] axis = null, string name = null, int squeeze_dims = -1) | |||
| => gen_array_ops.squeeze(input, axis, name); | |||
| /// <summary> | |||
| @@ -89,10 +89,10 @@ namespace Tensorflow | |||
| /// <param name="axis"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor stack(object values, int axis = 0, string name = "stack") | |||
| public Tensor stack(object values, int axis = 0, string name = "stack") | |||
| => array_ops.stack(values, axis, name: name); | |||
| public static Tensor one_hot(Tensor indices, int depth, | |||
| public Tensor one_hot(Tensor indices, int depth, | |||
| Tensor on_value = null, | |||
| Tensor off_value = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| @@ -110,7 +110,7 @@ namespace Tensorflow | |||
| /// </param> | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>A `Tensor`. Has the same type as `input`.</returns> | |||
| public static Tensor placeholder_with_default<T>(T input, int[] shape, string name = null) | |||
| public Tensor placeholder_with_default<T>(T input, int[] shape, string name = null) | |||
| => gen_array_ops.placeholder_with_default(input, shape, name: name); | |||
| } | |||
| } | |||
| @@ -18,9 +18,9 @@ using System; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor while_loop(Func<Tensor, Tensor> cond, Func<Tensor, Tensor> body, Tensor[] loop_vars, | |||
| public Tensor while_loop(Func<Tensor, Tensor> cond, Func<Tensor, Tensor> body, Tensor[] loop_vars, | |||
| TensorShape shape_invariants = null, | |||
| int parallel_iterations = 10, | |||
| bool back_prop = true, | |||
| @@ -37,7 +37,7 @@ namespace Tensorflow | |||
| maximum_iterations: maximum_iterations, | |||
| return_same_structure: return_same_structure); | |||
| public static _ControlDependenciesController control_dependencies(Operation[] control_inputs) | |||
| public _ControlDependenciesController control_dependencies(Operation[] control_inputs) | |||
| => ops.control_dependencies(control_inputs); | |||
| } | |||
| } | |||
| @@ -16,11 +16,13 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static class distributions | |||
| public distributions_internal distributions { get; } = new distributions_internal(); | |||
| public class distributions_internal | |||
| { | |||
| public static Normal Normal(Tensor loc, | |||
| public Normal Normal(Tensor loc, | |||
| Tensor scale, | |||
| bool validate_args = false, | |||
| bool allow_nan_stats = true, | |||
| @@ -16,9 +16,9 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor exp(Tensor x, | |||
| public Tensor exp(Tensor x, | |||
| string name = null) => gen_math_ops.exp(x, name); | |||
| } | |||
| @@ -16,9 +16,9 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor[] gradients(Tensor[] ys, | |||
| public Tensor[] gradients(Tensor[] ys, | |||
| Tensor[] xs, | |||
| Tensor[] grad_ys = null, | |||
| string name = "gradients", | |||
| @@ -36,7 +36,7 @@ namespace Tensorflow | |||
| stop_gradients: stop_gradients); | |||
| } | |||
| public static Tensor[] gradients(Tensor ys, | |||
| public Tensor[] gradients(Tensor ys, | |||
| Tensor[] xs, | |||
| Tensor[] grad_ys = null, | |||
| string name = "gradients", | |||
| @@ -54,7 +54,7 @@ namespace Tensorflow | |||
| stop_gradients: stop_gradients); | |||
| } | |||
| public static Tensor[] gradients(Tensor ys, | |||
| public Tensor[] gradients(Tensor ys, | |||
| Tensor xs, | |||
| Tensor[] grad_ys = null, | |||
| string name = "gradients", | |||
| @@ -16,15 +16,15 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static graph_util_impl graph_util => new graph_util_impl(); | |||
| public static Graph get_default_graph() | |||
| public graph_util_impl graph_util => new graph_util_impl(); | |||
| public Graph get_default_graph() | |||
| { | |||
| return ops.get_default_graph(); | |||
| } | |||
| public static Graph Graph() | |||
| public Graph Graph() | |||
| => new Graph(); | |||
| } | |||
| } | |||
| @@ -18,14 +18,14 @@ using Tensorflow.Operations.Initializers; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static IInitializer zeros_initializer => new Zeros(); | |||
| public static IInitializer ones_initializer => new Ones(); | |||
| public static IInitializer glorot_uniform_initializer => new GlorotUniform(); | |||
| public static IInitializer uniform_initializer => new RandomUniform(); | |||
| public IInitializer zeros_initializer => new Zeros(); | |||
| public IInitializer ones_initializer => new Ones(); | |||
| public IInitializer glorot_uniform_initializer => new GlorotUniform(); | |||
| public IInitializer uniform_initializer => new RandomUniform(); | |||
| public static variable_scope variable_scope(string name, | |||
| public variable_scope variable_scope(string name, | |||
| string default_name = null, | |||
| Tensor[] values = null, | |||
| bool? reuse = null, | |||
| @@ -35,7 +35,7 @@ namespace Tensorflow | |||
| reuse: reuse, | |||
| auxiliary_name_scope: auxiliary_name_scope); | |||
| public static variable_scope variable_scope(VariableScope scope, | |||
| public variable_scope variable_scope(VariableScope scope, | |||
| string default_name = null, | |||
| Tensor[] values = null, | |||
| bool? reuse = null, | |||
| @@ -45,7 +45,7 @@ namespace Tensorflow | |||
| reuse: reuse, | |||
| auxiliary_name_scope: auxiliary_name_scope); | |||
| public static IInitializer truncated_normal_initializer(float mean = 0.0f, | |||
| public IInitializer truncated_normal_initializer(float mean = 0.0f, | |||
| float stddev = 1.0f, | |||
| int? seed = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid) => new TruncatedNormal(mean: mean, | |||
| @@ -19,14 +19,14 @@ using Tensorflow.IO; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static GFile gfile = new GFile(); | |||
| public static Tensor read_file(string filename, string name = null) => gen_io_ops.read_file(filename, name); | |||
| public GFile gfile = new GFile(); | |||
| public Tensor read_file(string filename, string name = null) => gen_io_ops.read_file(filename, name); | |||
| public static gen_image_ops image => new gen_image_ops(); | |||
| public gen_image_ops image => new gen_image_ops(); | |||
| public static void import_graph_def(GraphDef graph_def, | |||
| public void import_graph_def(GraphDef graph_def, | |||
| Dictionary<string, Tensor> input_map = null, | |||
| string[] return_elements = null, | |||
| string name = null, | |||
| @@ -16,14 +16,17 @@ | |||
| using Tensorflow.Keras.Layers; | |||
| using Tensorflow.Operations.Activation; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static class layers | |||
| public layers_internal layers { get; } = new layers_internal(); | |||
| public class layers_internal | |||
| { | |||
| public static Tensor conv2d(Tensor inputs, | |||
| public Tensor conv2d(Tensor inputs, | |||
| int filters, | |||
| int[] kernel_size, | |||
| int[] strides = null, | |||
| @@ -80,7 +83,7 @@ namespace Tensorflow | |||
| /// <param name="renorm"></param> | |||
| /// <param name="renorm_momentum"></param> | |||
| /// <returns></returns> | |||
| public static Tensor batch_normalization(Tensor inputs, | |||
| public Tensor batch_normalization(Tensor inputs, | |||
| int axis = -1, | |||
| float momentum = 0.99f, | |||
| float epsilon = 0.001f, | |||
| @@ -124,7 +127,7 @@ namespace Tensorflow | |||
| /// <param name="data_format"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor max_pooling2d(Tensor inputs, | |||
| public Tensor max_pooling2d(Tensor inputs, | |||
| int[] pool_size, | |||
| int[] strides, | |||
| string padding = "valid", | |||
| @@ -140,7 +143,7 @@ namespace Tensorflow | |||
| return layer.apply(inputs); | |||
| } | |||
| public static Tensor dense(Tensor inputs, | |||
| public Tensor dense(Tensor inputs, | |||
| int units, | |||
| IActivation activation = null, | |||
| bool use_bias = true, | |||
| @@ -16,15 +16,15 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor diag(Tensor diagonal, string name = null) | |||
| public Tensor diag(Tensor diagonal, string name = null) | |||
| => gen_array_ops.diag(diagonal, name: name); | |||
| public static Tensor matmul(Tensor a, Tensor b) | |||
| public Tensor matmul(Tensor a, Tensor b) | |||
| => gen_math_ops.mat_mul(a, b); | |||
| public static Tensor batch_matmul(Tensor x, Tensor y) | |||
| public Tensor batch_matmul(Tensor x, Tensor y) | |||
| => gen_math_ops.batch_mat_mul(x, y); | |||
| } | |||
| } | |||
| @@ -16,8 +16,8 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static LossesImpl losses => new LossesImpl(); | |||
| public LossesImpl losses => new LossesImpl(); | |||
| } | |||
| } | |||
| @@ -16,9 +16,9 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor abs(Tensor x, string name = null) | |||
| public Tensor abs(Tensor x, string name = null) | |||
| => math_ops.abs(x, name); | |||
| /// <summary> | |||
| @@ -27,7 +27,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor acos(Tensor x, string name = null) | |||
| public Tensor acos(Tensor x, string name = null) | |||
| => gen_math_ops.acos(x, name); | |||
| /// <summary> | |||
| @@ -36,10 +36,10 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor asin(Tensor x, string name = null) | |||
| public Tensor asin(Tensor x, string name = null) | |||
| => gen_math_ops.asin(x, name); | |||
| public static Tensor add<Tx, Ty>(Tx a, Ty b, string name = null) | |||
| public Tensor add<Tx, Ty>(Tx a, Ty b, string name = null) | |||
| => gen_math_ops.add(a, b, name: name); | |||
| /// <summary> | |||
| @@ -48,19 +48,19 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor atan(Tensor x, string name = null) | |||
| public Tensor atan(Tensor x, string name = null) | |||
| => gen_math_ops.atan(x, name); | |||
| public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||
| public Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||
| => gen_math_ops.arg_max(input, dimension, output_type: output_type, name: name); | |||
| public static Tensor arg_min(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||
| public Tensor arg_min(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||
| => gen_math_ops.arg_min(input, dimension, output_type: output_type, name: name); | |||
| public static Tensor is_finite(Tensor input, string name = null) | |||
| public Tensor is_finite(Tensor input, string name = null) | |||
| => gen_math_ops.is_finite(input, name); | |||
| public static Tensor is_nan(Tensor input, string name = null) | |||
| public Tensor is_nan(Tensor input, string name = null) | |||
| => gen_math_ops.is_nan(input, name); | |||
| /// <summary> | |||
| @@ -69,7 +69,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor ceil(Tensor x, string name = null) | |||
| public Tensor ceil(Tensor x, string name = null) | |||
| => gen_math_ops.ceil(x, name); | |||
| /// <summary> | |||
| @@ -78,7 +78,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor sin(Tensor x, string name = null) | |||
| public Tensor sin(Tensor x, string name = null) | |||
| => gen_math_ops.sin(x, name); | |||
| /// <summary> | |||
| @@ -87,7 +87,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor sinh(Tensor x, string name = null) | |||
| public Tensor sinh(Tensor x, string name = null) | |||
| => gen_math_ops.sinh(x, name); | |||
| /// <summary> | |||
| @@ -96,7 +96,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor cos(Tensor x, string name = null) | |||
| public Tensor cos(Tensor x, string name = null) | |||
| => gen_math_ops.cos(x, name); | |||
| /// <summary> | |||
| @@ -105,13 +105,13 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor cosh(Tensor x, string name = null) | |||
| public Tensor cosh(Tensor x, string name = null) | |||
| => gen_math_ops.cosh(x, name); | |||
| public static Tensor tan(Tensor x, string name = null) | |||
| public Tensor tan(Tensor x, string name = null) | |||
| => gen_math_ops.tan(x, name); | |||
| public static Tensor tanh(Tensor x, string name = null) | |||
| public Tensor tanh(Tensor x, string name = null) | |||
| => gen_math_ops.tanh(x, name); | |||
| /// <summary> | |||
| @@ -120,7 +120,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor floor(Tensor x, string name = null) | |||
| public Tensor floor(Tensor x, string name = null) | |||
| => gen_math_ops.floor(x, name); | |||
| /// <summary> | |||
| @@ -132,7 +132,7 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor greater<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| public Tensor greater<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.greater(x, y, name); | |||
| /// <summary> | |||
| @@ -144,7 +144,7 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor greater_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| public Tensor greater_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.greater_equal(x, y, name); | |||
| /// <summary> | |||
| @@ -156,7 +156,7 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor less<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| public Tensor less<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.less(x, y, name); | |||
| /// <summary> | |||
| @@ -165,7 +165,7 @@ namespace Tensorflow | |||
| /// <param name="x">A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.</param> | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>A `Tensor`. Has the same type as `x`.</returns> | |||
| public static Tensor lgamma(Tensor x, string name = null) | |||
| public Tensor lgamma(Tensor x, string name = null) | |||
| => gen_math_ops.lgamma(x, name: name); | |||
| /// <summary> | |||
| @@ -177,7 +177,7 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor less_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| public Tensor less_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.less_equal(x, y, name); | |||
| /// <summary> | |||
| @@ -186,19 +186,19 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor log1p(Tensor x, string name = null) | |||
| public Tensor log1p(Tensor x, string name = null) | |||
| => gen_math_ops.log1p(x, name); | |||
| public static Tensor logical_and(Tensor x, Tensor y, string name = null) | |||
| public Tensor logical_and(Tensor x, Tensor y, string name = null) | |||
| => gen_math_ops.logical_and(x, y, name); | |||
| public static Tensor logical_not(Tensor x, string name = null) | |||
| public Tensor logical_not(Tensor x, string name = null) | |||
| => gen_math_ops.logical_not(x, name); | |||
| public static Tensor logical_or(Tensor x, Tensor y, string name = null) | |||
| public Tensor logical_or(Tensor x, Tensor y, string name = null) | |||
| => gen_math_ops.logical_or(x, y, name); | |||
| public static Tensor logical_xor(Tensor x, Tensor y, string name = "LogicalXor") | |||
| public Tensor logical_xor(Tensor x, Tensor y, string name = "LogicalXor") | |||
| => gen_math_ops.logical_xor(x, y, name); | |||
| /// <summary> | |||
| @@ -209,28 +209,28 @@ namespace Tensorflow | |||
| /// <param name="clip_value_max"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) | |||
| public Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) | |||
| => gen_math_ops._clip_by_value(t, clip_value_min, clip_value_max); | |||
| public static Tensor sub(Tensor a, Tensor b) | |||
| public Tensor sub(Tensor a, Tensor b) | |||
| => gen_math_ops.sub(a, b); | |||
| public static Tensor divide(Tensor a, Tensor b) | |||
| public Tensor divide(Tensor a, Tensor b) | |||
| => gen_math_ops.real_div(a, b); | |||
| public static Tensor sqrt(Tensor a, string name = null) | |||
| public Tensor sqrt(Tensor a, string name = null) | |||
| => gen_math_ops.sqrt(a, name); | |||
| public static Tensor sign(Tensor a, string name = null) | |||
| public Tensor sign(Tensor a, string name = null) | |||
| => gen_math_ops.sign(a, name); | |||
| public static Tensor subtract<T>(Tensor x, T[] y, string name = null) where T : struct | |||
| public Tensor subtract<T>(Tensor x, T[] y, string name = null) where T : struct | |||
| => gen_math_ops.sub(x, ops.convert_to_tensor(y, dtype: x.dtype.as_base_dtype(), name: "y"), name); | |||
| public static Tensor log(Tensor x, string name = null) | |||
| public Tensor log(Tensor x, string name = null) | |||
| => gen_math_ops.log(x, name); | |||
| public static Tensor equal(Tensor x, Tensor y, string name = null) | |||
| public Tensor equal(Tensor x, Tensor y, string name = null) | |||
| => gen_math_ops.equal(x, y, name); | |||
| /// <summary> | |||
| @@ -240,7 +240,7 @@ namespace Tensorflow | |||
| /// <param name="x"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor atan2(Tensor y, Tensor x, string name = null) | |||
| public Tensor atan2(Tensor y, Tensor x, string name = null) | |||
| => gen_math_ops.atan2(y, x, name); | |||
| /// <summary> | |||
| @@ -253,7 +253,7 @@ namespace Tensorflow | |||
| /// <param name="keep_dims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor max<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| public Tensor max<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| => gen_math_ops._max(input, axis, keep_dims: keep_dims, name: name); | |||
| /// <summary> | |||
| @@ -266,7 +266,7 @@ namespace Tensorflow | |||
| /// <param name="keep_dims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor min<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| public Tensor min<Tx, Ty>(Tx input, Ty axis, bool keep_dims = false, string name = null) | |||
| => gen_math_ops._min(input, axis, keep_dims: keep_dims, name: name); | |||
| /// <summary> | |||
| @@ -278,7 +278,7 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor maximum<T1, T2>(T1 x, T2 y, string name = null) | |||
| public Tensor maximum<T1, T2>(T1 x, T2 y, string name = null) | |||
| => gen_math_ops.maximum(x, y, name: name); | |||
| /// <summary> | |||
| @@ -290,13 +290,13 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor minimum<T1, T2>(T1 x, T2 y, string name = null) | |||
| public Tensor minimum<T1, T2>(T1 x, T2 y, string name = null) | |||
| => gen_math_ops.minimum(x, y, name: name); | |||
| public static Tensor multiply<Tx, Ty>(Tx x, Ty y) | |||
| public Tensor multiply<Tx, Ty>(Tx x, Ty y) | |||
| => gen_math_ops.mul(x, y); | |||
| public static Tensor negative(Tensor x, string name = null) | |||
| public Tensor negative(Tensor x, string name = null) | |||
| => gen_math_ops.neg(x, name); | |||
| /// <summary> | |||
| @@ -306,13 +306,13 @@ namespace Tensorflow | |||
| /// <param name="y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor div(Tensor x, Tensor y, string name = null) | |||
| public Tensor div(Tensor x, Tensor y, string name = null) | |||
| => math_ops.div(x, y, name: name); | |||
| public static Tensor divide<T>(Tensor x, T[] y, string name = null) where T : struct | |||
| public Tensor divide<T>(Tensor x, T[] y, string name = null) where T : struct | |||
| => x / ops.convert_to_tensor(y, dtype: x.dtype.as_base_dtype(), name: "y"); | |||
| public static Tensor pow<T1, T2>(T1 x, T2 y) | |||
| public Tensor pow<T1, T2>(T1 x, T2 y) | |||
| => gen_math_ops.pow(x, y); | |||
| /// <summary> | |||
| @@ -321,14 +321,14 @@ namespace Tensorflow | |||
| /// <param name="input"></param> | |||
| /// <param name="axis"></param> | |||
| /// <returns></returns> | |||
| public static Tensor reduce_sum(Tensor input, int? axis = null, int? reduction_indices = null) | |||
| public Tensor reduce_sum(Tensor input, int? axis = null, int? reduction_indices = null) | |||
| { | |||
| if(!axis.HasValue && reduction_indices.HasValue) | |||
| return math_ops.reduce_sum(input, reduction_indices.Value); | |||
| return math_ops.reduce_sum(input); | |||
| } | |||
| public static Tensor reduce_sum(Tensor input, int axis, int? reduction_indices = null) | |||
| public Tensor reduce_sum(Tensor input, int axis, int? reduction_indices = null) | |||
| => math_ops.reduce_sum(input, axis); | |||
| /// <summary> | |||
| @@ -339,34 +339,34 @@ namespace Tensorflow | |||
| /// <param name="keepdims"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor reduce_max(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_max(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_max(input_tensor, axis, keepdims, name); | |||
| public static Tensor reduce_min(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| public Tensor reduce_min(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
| => math_ops.reduce_min(input_tensor, axis, keepdims, name); | |||
| public static Tensor sigmoid<T>(T x, string name = null) | |||
| public Tensor sigmoid<T>(T x, string name = null) | |||
| => math_ops.sigmoid(x, name: name); | |||
| public static Tensor sum(Tensor input, int axis, bool keep_dims = false, string name = null) | |||
| public Tensor sum(Tensor input, int axis, bool keep_dims = false, string name = null) | |||
| => gen_math_ops._sum(input, axis, keep_dims: keep_dims, name: name); | |||
| public static Tensor reduce_mean(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| public Tensor reduce_mean(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) | |||
| => math_ops.reduce_mean(input_tensor, axis: axis, keepdims: keepdims, name: name, reduction_indices: reduction_indices); | |||
| public static Tensor round(Tensor x, string name = null) | |||
| public Tensor round(Tensor x, string name = null) | |||
| => gen_math_ops.round(x, name: name); | |||
| public static Tensor cast(Tensor x, TF_DataType dtype = TF_DataType.DtInvalid, string name = null) | |||
| public Tensor cast(Tensor x, TF_DataType dtype = TF_DataType.DtInvalid, string name = null) | |||
| => math_ops.cast(x, dtype, name); | |||
| public static Tensor cumsum(Tensor x, int axis = 0, bool exclusive = false, bool reverse = false, string name = null) | |||
| public Tensor cumsum(Tensor x, int axis = 0, bool exclusive = false, bool reverse = false, string name = null) | |||
| => math_ops.cumsum(x, axis: axis, exclusive: exclusive, reverse: reverse, name: name); | |||
| public static Tensor argmax(Tensor input, int axis = -1, string name = null, int? dimension = null, TF_DataType output_type = TF_DataType.TF_INT64) | |||
| public Tensor argmax(Tensor input, int axis = -1, string name = null, int? dimension = null, TF_DataType output_type = TF_DataType.TF_INT64) | |||
| => gen_math_ops.arg_max(input, axis, name: name, output_type: output_type); | |||
| public static Tensor square(Tensor x, string name = null) | |||
| public Tensor square(Tensor x, string name = null) | |||
| => gen_math_ops.square(x, name: name); | |||
| } | |||
| } | |||
| @@ -20,11 +20,13 @@ using static Tensorflow.Python; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static class nn | |||
| public nn_internal nn { get; } = new nn_internal(); | |||
| public class nn_internal | |||
| { | |||
| public static Tensor conv2d(Tensor input, RefVariable filter, int[] strides, string padding, bool use_cudnn_on_gpu = true, | |||
| public Tensor conv2d(Tensor input, RefVariable filter, int[] strides, string padding, bool use_cudnn_on_gpu = true, | |||
| string data_format= "NHWC", int[] dilations= null, string name = null) | |||
| { | |||
| var parameters = new Conv2dParams | |||
| @@ -54,7 +56,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <param name="rate">A scalar `Tensor` with the same type as `x`.</param> | |||
| /// <returns>A Tensor of the same shape of `x`.</returns> | |||
| public static Tensor dropout(Tensor x, Tensor keep_prob = null, Tensor noise_shape = null, int? seed = null, string name = null, | |||
| public Tensor dropout(Tensor x, Tensor keep_prob = null, Tensor noise_shape = null, int? seed = null, string name = null, | |||
| float? rate = null) | |||
| { | |||
| Tensor keep = null; | |||
| @@ -74,17 +76,17 @@ namespace Tensorflow | |||
| /// <param name="swap_memory"></param> | |||
| /// <param name="time_major"></param> | |||
| /// <returns>A pair (outputs, state)</returns> | |||
| public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs, | |||
| public (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs, | |||
| Tensor sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int? parallel_iterations = null, bool swap_memory = false, bool time_major = false) | |||
| => rnn.dynamic_rnn(cell, inputs, sequence_length: sequence_length, dtype: dtype, | |||
| parallel_iterations: parallel_iterations, swap_memory: swap_memory, | |||
| time_major: time_major); | |||
| public static Tensor elu(Tensor features, string name = null) | |||
| public Tensor elu(Tensor features, string name = null) | |||
| => gen_nn_ops.elu(features, name: name); | |||
| public static (Tensor, Tensor) moments(Tensor x, | |||
| public (Tensor, Tensor) moments(Tensor x, | |||
| int[] axes, | |||
| string name = null, | |||
| bool keep_dims = false) => nn_impl.moments(x, | |||
| @@ -92,7 +94,7 @@ namespace Tensorflow | |||
| name: name, | |||
| keep_dims: keep_dims); | |||
| public static Tensor embedding_lookup(RefVariable @params, | |||
| public Tensor embedding_lookup(RefVariable @params, | |||
| Tensor ids, | |||
| string partition_strategy = "mod", | |||
| string name = null) => embedding_ops._embedding_lookup_and_transform(@params, | |||
| @@ -100,7 +102,7 @@ namespace Tensorflow | |||
| partition_strategy: partition_strategy, | |||
| name: name); | |||
| public static Tensor embedding_lookup(Tensor @params, | |||
| public Tensor embedding_lookup(Tensor @params, | |||
| Tensor ids, | |||
| string partition_strategy = "mod", | |||
| string name = null) => embedding_ops._embedding_lookup_and_transform(new Tensor[] { @params }, | |||
| @@ -108,11 +110,11 @@ namespace Tensorflow | |||
| partition_strategy: partition_strategy, | |||
| name: name); | |||
| public static IActivation relu() => new relu(); | |||
| public IActivation relu() => new relu(); | |||
| public static Tensor relu(Tensor features, string name = null) => gen_nn_ops.relu(features, name); | |||
| public Tensor relu(Tensor features, string name = null) => gen_nn_ops.relu(features, name); | |||
| public static Tensor[] fused_batch_norm(Tensor x, | |||
| public Tensor[] fused_batch_norm(Tensor x, | |||
| RefVariable scale, | |||
| RefVariable offset, | |||
| Tensor mean = null, | |||
| @@ -126,18 +128,18 @@ namespace Tensorflow | |||
| is_training: is_training, | |||
| name: name); | |||
| public static IPoolFunction max_pool_fn => new MaxPoolFunction(); | |||
| public IPoolFunction max_pool_fn => new MaxPoolFunction(); | |||
| public static Tensor max_pool(Tensor value, int[] ksize, int[] strides, string padding, string data_format = "NHWC", string name = null) | |||
| public Tensor max_pool(Tensor value, int[] ksize, int[] strides, string padding, string data_format = "NHWC", string name = null) | |||
| => nn_ops.max_pool(value, ksize, strides, padding, data_format: data_format, name: name); | |||
| public static Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = "InTopK") | |||
| public Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = "InTopK") | |||
| => gen_ops.in_top_k(predictions, targets, k, name); | |||
| public static Tensor[] top_k(Tensor input, int k = 1, bool sorted = true, string name = null) | |||
| public Tensor[] top_k(Tensor input, int k = 1, bool sorted = true, string name = null) | |||
| => gen_nn_ops.top_kv2(input, k: k, sorted: sorted, name: name); | |||
| public static Tensor bias_add(Tensor value, RefVariable bias, string data_format = null, string name = null) | |||
| public Tensor bias_add(Tensor value, RefVariable bias, string data_format = null, string name = null) | |||
| { | |||
| return Python.tf_with(ops.name_scope(name, "BiasAdd", new { value, bias }), scope => | |||
| { | |||
| @@ -146,9 +148,9 @@ namespace Tensorflow | |||
| }); | |||
| } | |||
| public static rnn_cell_impl rnn_cell => new rnn_cell_impl(); | |||
| public rnn_cell_impl rnn_cell => new rnn_cell_impl(); | |||
| public static Tensor softmax(Tensor logits, int axis = -1, string name = null) | |||
| public Tensor softmax(Tensor logits, int axis = -1, string name = null) | |||
| => gen_nn_ops.softmax(logits, name); | |||
| /// <summary> | |||
| @@ -158,7 +160,7 @@ namespace Tensorflow | |||
| /// <param name="logits"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor sparse_softmax_cross_entropy_with_logits(Tensor labels = null, | |||
| public Tensor sparse_softmax_cross_entropy_with_logits(Tensor labels = null, | |||
| Tensor logits = null, string name = null) | |||
| => nn_ops.sparse_softmax_cross_entropy_with_logits(labels: labels, logits: logits, name: name); | |||
| @@ -170,7 +172,7 @@ namespace Tensorflow | |||
| /// <param name="dim"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor softmax_cross_entropy_with_logits(Tensor labels, Tensor logits, int dim = -1, string name = null) | |||
| public Tensor softmax_cross_entropy_with_logits(Tensor labels, Tensor logits, int dim = -1, string name = null) | |||
| { | |||
| tf_with(ops.name_scope(name, "softmax_cross_entropy_with_logits_sg", new { logits, labels }), scope => | |||
| { | |||
| @@ -181,7 +183,7 @@ namespace Tensorflow | |||
| return softmax_cross_entropy_with_logits_v2(labels, logits, axis: dim, name: name); | |||
| } | |||
| public static Tensor softmax_cross_entropy_with_logits_v2(Tensor labels, Tensor logits, int axis = -1, string name = null) | |||
| public Tensor softmax_cross_entropy_with_logits_v2(Tensor labels, Tensor logits, int axis = -1, string name = null) | |||
| => nn_ops.softmax_cross_entropy_with_logits_v2_helper(labels, logits, axis: axis, name: name); | |||
| } | |||
| } | |||
| @@ -16,12 +16,12 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor assign(Tensor @ref, object value, bool validate_shape = true, bool use_locking = true, string name = null) | |||
| public Tensor assign(Tensor @ref, object value, bool validate_shape = true, bool use_locking = true, string name = null) | |||
| => state_ops.assign(@ref, value, validate_shape, use_locking, name); | |||
| public static object get_collection(string key, string scope = "") | |||
| public object get_collection(string key, string scope = "") | |||
| => get_default_graph().get_collection(key, scope: scope); | |||
| /// <summary> | |||
| @@ -31,7 +31,7 @@ namespace Tensorflow | |||
| /// <param name="default_name">The default name to use if the name argument is None.</param> | |||
| /// <param name="values">The list of Tensor arguments that are passed to the op function.</param> | |||
| /// <returns>The scope name.</returns> | |||
| public static ops.NameScope name_scope(string name, string default_name = "", object values = null) | |||
| public ops.NameScope name_scope(string name, string default_name = "", object values = null) | |||
| => new ops.NameScope(name, default_name, values); | |||
| } | |||
| } | |||
| @@ -16,7 +16,7 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| /// <summary> | |||
| /// Outputs random values from a normal distribution. | |||
| @@ -28,21 +28,21 @@ namespace Tensorflow | |||
| /// <param name="seed"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor random_normal(int[] shape, | |||
| public Tensor random_normal(int[] shape, | |||
| float mean = 0.0f, | |||
| float stddev = 1.0f, | |||
| TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
| int? seed = null, | |||
| string name = null) => random_ops.random_normal(shape, mean, stddev, dtype, seed, name); | |||
| public static Tensor random_uniform(int[] shape, | |||
| public Tensor random_uniform(int[] shape, | |||
| float minval = 0, | |||
| float maxval = 1, | |||
| TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
| int? seed = null, | |||
| string name = null) => random_ops.random_uniform(shape, minval, maxval, dtype, seed, name); | |||
| public static Tensor truncated_normal(int[] shape, | |||
| public Tensor truncated_normal(int[] shape, | |||
| float mean = 0.0f, | |||
| float stddev = 1.0f, | |||
| TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
| @@ -16,9 +16,9 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor reduce_logsumexp(Tensor input_tensor, | |||
| public Tensor reduce_logsumexp(Tensor input_tensor, | |||
| int[] axis = null, | |||
| bool keepdims = false, | |||
| string name = null) => math_ops.reduce_logsumexp(input_tensor, axis, keepdims, name); | |||
| @@ -16,13 +16,13 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor reshape(Tensor tensor, | |||
| public Tensor reshape(Tensor tensor, | |||
| Tensor shape, | |||
| string name = null) => gen_array_ops.reshape(tensor, shape, name); | |||
| public static Tensor reshape(Tensor tensor, | |||
| public Tensor reshape(Tensor tensor, | |||
| int[] shape, | |||
| string name = null) => gen_array_ops.reshape(tensor, shape, name); | |||
| } | |||
| @@ -16,11 +16,11 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Summaries.Summary summary = new Summaries.Summary(); | |||
| public Summaries.Summary summary = new Summaries.Summary(); | |||
| public static Tensor scalar(string name, Tensor tensor) | |||
| public Tensor scalar(string name, Tensor tensor) | |||
| => summary.scalar(name, tensor); | |||
| } | |||
| } | |||
| @@ -16,12 +16,12 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor convert_to_tensor(object value, | |||
| public Tensor convert_to_tensor(object value, | |||
| string name = null) => ops.convert_to_tensor(value, name: name); | |||
| public static Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides = null, | |||
| public Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides = null, | |||
| int begin_mask = 0, | |||
| int end_mask = 0, | |||
| int ellipsis_mask = 0, | |||
| @@ -38,7 +38,7 @@ namespace Tensorflow | |||
| shrink_axis_mask: shrink_axis_mask, | |||
| name: name); | |||
| public static Tensor strided_slice<T>(Tensor input, T[] begin, T[] end, T[] strides = null, | |||
| public Tensor strided_slice<T>(Tensor input, T[] begin, T[] end, T[] strides = null, | |||
| int begin_mask = 0, | |||
| int end_mask = 0, | |||
| int ellipsis_mask = 0, | |||
| @@ -18,12 +18,12 @@ using NumSharp; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static Tensor tile(Tensor input, | |||
| public Tensor tile(Tensor input, | |||
| Tensor multiples, | |||
| string name = null) => gen_array_ops.tile(input, multiples, name); | |||
| public static Tensor tile(NDArray input, | |||
| public Tensor tile(NDArray input, | |||
| int[] multiples, | |||
| string name = null) => gen_array_ops.tile(input, multiples, name); | |||
| @@ -18,21 +18,21 @@ using System.Collections.Generic; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static VariableV1[] global_variables(string scope = null) | |||
| public VariableV1[] global_variables(string scope = null) | |||
| { | |||
| return (ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope) as List<VariableV1>) | |||
| .ToArray(); | |||
| } | |||
| public static Operation global_variables_initializer() | |||
| public Operation global_variables_initializer() | |||
| { | |||
| var g = variables.global_variables(); | |||
| return variables.variables_initializer(g.ToArray()); | |||
| } | |||
| public static RefVariable get_variable(string name, | |||
| public RefVariable get_variable(string name, | |||
| TensorShape shape = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| object initializer = null, // IInitializer or Tensor | |||
| @@ -0,0 +1,11 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow | |||
| { | |||
| public static class Binding | |||
| { | |||
| public static tensorflow tf { get; } = Python.New<tensorflow>(); | |||
| } | |||
| } | |||
| @@ -15,6 +15,7 @@ | |||
| ******************************************************************************/ | |||
| using System; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Clustering | |||
| { | |||
| @@ -22,6 +22,7 @@ using System.Linq; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.CollectionDef; | |||
| using static Tensorflow.MetaGraphDef.Types; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -18,6 +18,7 @@ using System.Collections.Generic; | |||
| using System.Linq; | |||
| using Tensorflow.Framework; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Gradients | |||
| { | |||
| @@ -18,6 +18,7 @@ using System; | |||
| using System.Linq; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Gradients | |||
| { | |||
| @@ -16,6 +16,7 @@ | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -18,6 +18,7 @@ using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Runtime.InteropServices; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -22,7 +22,7 @@ namespace Tensorflow | |||
| /// Called when the instance is created. | |||
| /// </summary> | |||
| /// <param name="args"></param> | |||
| void __init__(IPyClass self, dynamic args); | |||
| void __init__(IPyClass self); | |||
| void __enter__(IPyClass self); | |||
| @@ -17,6 +17,7 @@ | |||
| using System; | |||
| using System.Linq; | |||
| using Tensorflow.Keras.Utils; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| @@ -19,7 +19,7 @@ using System.Collections.Generic; | |||
| using System.Linq; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Operations.Activation; | |||
| using static Tensorflow.tf; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| @@ -86,7 +86,7 @@ namespace Tensorflow.Keras.Layers | |||
| } | |||
| if (use_bias) | |||
| outputs = nn.bias_add(outputs, bias); | |||
| outputs = tf.nn.bias_add(outputs, bias); | |||
| if (activation != null) | |||
| return activation.Activate(outputs); | |||
| @@ -14,6 +14,8 @@ | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class Embedding : Layer | |||
| @@ -21,6 +21,7 @@ using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Utils; | |||
| using Tensorflow.Train; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| @@ -1,4 +1,4 @@ | |||
| using static Tensorflow.tf; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| @@ -9,7 +9,7 @@ namespace Tensorflow.Keras.Layers | |||
| int[] strides, | |||
| string padding = "valid", | |||
| string data_format = null, | |||
| string name = null) : base(nn.max_pool_fn, pool_size, | |||
| string name = null) : base(tf.nn.max_pool_fn, pool_size, | |||
| strides, | |||
| padding: padding, | |||
| data_format: data_format, | |||
| @@ -17,6 +17,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Utils | |||
| { | |||
| @@ -17,6 +17,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| @@ -28,7 +29,7 @@ namespace Tensorflow.Keras | |||
| //Func<Array, bool> py_any = any; | |||
| //Func<double, double, double, IEnumerable<double>> py_slice = slice; | |||
| public static Session _SESSION = Tensorflow.tf.defaultSession; | |||
| public static Session _SESSION = tf.defaultSession; | |||
| public static Graph _GRAPH = null; | |||
| public static Dictionary<Graph, GraphLearningPhase> _GRAPH_LEARNING_PHASES; | |||
| //Dictionary<Graph, Dictionary<string, int>> PER_GRAPH_LAYER_NAME_UIDS; | |||
| @@ -2,9 +2,9 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static class keras | |||
| public class keras | |||
| { | |||
| public static Initializers initializers => new Initializers(); | |||
| } | |||
| @@ -17,6 +17,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Layers | |||
| { | |||
| @@ -17,6 +17,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -19,7 +19,7 @@ using System.Collections.Generic; | |||
| using System.Linq; | |||
| using static Tensorflow.Python; | |||
| using Tensorflow.Util; | |||
| using NumSharp; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Operations | |||
| { | |||
| @@ -18,6 +18,7 @@ using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -16,6 +16,7 @@ | |||
| using System; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -66,12 +66,10 @@ namespace Tensorflow | |||
| return Enumerable.Range(start, end - start); | |||
| } | |||
| public static T New<T>(object args) where T : IPyClass | |||
| public static T New<T>() where T : IPyClass, new() | |||
| { | |||
| var instance = Activator.CreateInstance<T>(); | |||
| instance.__init__(instance, args); | |||
| var instance = new T(); | |||
| instance.__init__(instance); | |||
| return instance; | |||
| } | |||
| @@ -347,9 +345,4 @@ namespace Tensorflow | |||
| void __exit__(); | |||
| } | |||
| public class PyObject<T> where T : IPyClass | |||
| { | |||
| public T Instance { get; set; } | |||
| } | |||
| } | |||
| @@ -15,7 +15,7 @@ | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Runtime.InteropServices; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -16,6 +16,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -18,11 +18,11 @@ using NumSharp; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| // public static Tensor constant(NDArray nd, string name = "Const") => constant_op.constant(nd, name: name); | |||
| public static Tensor constant(object value, | |||
| public Tensor constant(object value, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int[] shape = null, | |||
| string name = "Const", | |||
| @@ -33,30 +33,30 @@ namespace Tensorflow | |||
| verify_shape: verify_shape, | |||
| allow_broadcast: false); | |||
| public static Tensor constant(string value, | |||
| public Tensor constant(string value, | |||
| string name = "Const") => constant_op._constant_impl(value, | |||
| tf.@string, | |||
| @string, | |||
| new int[] { 1 }, | |||
| name, | |||
| verify_shape: false, | |||
| allow_broadcast: false); | |||
| public static Tensor constant(float value, | |||
| public Tensor constant(float value, | |||
| int shape, | |||
| string name = "Const") => constant_op._constant_impl(value, | |||
| tf.float32, | |||
| float32, | |||
| new int[] { shape }, | |||
| name, | |||
| verify_shape: false, | |||
| allow_broadcast: false); | |||
| public static Tensor zeros(TensorShape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| public Tensor zeros(TensorShape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| => array_ops.zeros(shape, dtype, name); | |||
| public static Tensor ones(TensorShape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| public Tensor ones(TensorShape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| => array_ops.ones(shape, dtype, name); | |||
| public static Tensor size(Tensor input, | |||
| public Tensor size(Tensor input, | |||
| string name = null, | |||
| TF_DataType out_type = TF_DataType.TF_INT32) => array_ops.size(input, | |||
| name, | |||
| @@ -20,6 +20,7 @@ using System.Linq; | |||
| using Tensorflow.Framework; | |||
| using Tensorflow.Train; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -19,6 +19,7 @@ using System.Collections.Generic; | |||
| using System.IO; | |||
| using System.Linq; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -17,6 +17,7 @@ | |||
| using System; | |||
| using Tensorflow.Operations.Initializers; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Train | |||
| { | |||
| @@ -19,28 +19,30 @@ using Tensorflow.Train; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow | |||
| { | |||
| public static class train | |||
| public train_internal train { get; } = new train_internal(); | |||
| public class train_internal | |||
| { | |||
| public static Optimizer GradientDescentOptimizer(float learning_rate) | |||
| public Optimizer GradientDescentOptimizer(float learning_rate) | |||
| => new GradientDescentOptimizer(learning_rate); | |||
| public static Optimizer AdamOptimizer(float learning_rate, string name = "Adam") | |||
| public Optimizer AdamOptimizer(float learning_rate, string name = "Adam") | |||
| => new AdamOptimizer(learning_rate, name: name); | |||
| public static Saver Saver(VariableV1[] var_list = null) => new Saver(var_list: var_list); | |||
| public Saver Saver(VariableV1[] var_list = null) => new Saver(var_list: var_list); | |||
| public static string write_graph(Graph graph, string logdir, string name, bool as_text = true) | |||
| public string write_graph(Graph graph, string logdir, string name, bool as_text = true) | |||
| => graph_io.write_graph(graph, logdir, name, as_text); | |||
| public static Saver import_meta_graph(string meta_graph_or_file, | |||
| public Saver import_meta_graph(string meta_graph_or_file, | |||
| bool clear_devices = false, | |||
| string import_scope = "") => saver._import_meta_graph_with_return_elements(meta_graph_or_file, | |||
| clear_devices, | |||
| import_scope).Item1; | |||
| public static (MetaGraphDef, Dictionary<string, RefVariable>) export_meta_graph(string filename = "", | |||
| public (MetaGraphDef, Dictionary<string, RefVariable>) export_meta_graph(string filename = "", | |||
| bool as_text = false, | |||
| bool clear_devices = false, | |||
| bool clear_extraneous_savers = false, | |||
| @@ -16,6 +16,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -21,6 +21,7 @@ using Google.Protobuf; | |||
| using System.Linq; | |||
| using NumSharp; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -18,25 +18,25 @@ using Tensorflow.Eager; | |||
| namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| public partial class tensorflow : IPyClass | |||
| { | |||
| public static TF_DataType @byte = TF_DataType.TF_UINT8; | |||
| public static TF_DataType @sbyte = TF_DataType.TF_INT8; | |||
| public static TF_DataType int16 = TF_DataType.TF_INT16; | |||
| public static TF_DataType int32 = TF_DataType.TF_INT32; | |||
| public static TF_DataType int64 = TF_DataType.TF_INT64; | |||
| public static TF_DataType float16 = TF_DataType.TF_HALF; | |||
| public static TF_DataType float32 = TF_DataType.TF_FLOAT; | |||
| public static TF_DataType float64 = TF_DataType.TF_DOUBLE; | |||
| public static TF_DataType @bool = TF_DataType.TF_BOOL; | |||
| public static TF_DataType chars = TF_DataType.TF_STRING; | |||
| public static TF_DataType @string = TF_DataType.TF_STRING; | |||
| public static Context context = new Context(new ContextOptions(), new Status()); | |||
| public static Session defaultSession; | |||
| public static RefVariable Variable<T>(T data, | |||
| public TF_DataType @byte = TF_DataType.TF_UINT8; | |||
| public TF_DataType @sbyte = TF_DataType.TF_INT8; | |||
| public TF_DataType int16 = TF_DataType.TF_INT16; | |||
| public TF_DataType int32 = TF_DataType.TF_INT32; | |||
| public TF_DataType int64 = TF_DataType.TF_INT64; | |||
| public TF_DataType float16 = TF_DataType.TF_HALF; | |||
| public TF_DataType float32 = TF_DataType.TF_FLOAT; | |||
| public TF_DataType float64 = TF_DataType.TF_DOUBLE; | |||
| public TF_DataType @bool = TF_DataType.TF_BOOL; | |||
| public TF_DataType chars = TF_DataType.TF_STRING; | |||
| public TF_DataType @string = TF_DataType.TF_STRING; | |||
| public Context context = new Context(new ContextOptions(), new Status()); | |||
| public Session defaultSession; | |||
| public RefVariable Variable<T>(T data, | |||
| bool trainable = true, | |||
| bool validate_shape = true, | |||
| string name = null, | |||
| @@ -49,33 +49,53 @@ namespace Tensorflow | |||
| dtype: dtype); | |||
| } | |||
| public static unsafe Tensor placeholder(TF_DataType dtype, TensorShape shape = null, string name = null) | |||
| public unsafe Tensor placeholder(TF_DataType dtype, TensorShape shape = null, string name = null) | |||
| { | |||
| return gen_array_ops.placeholder(dtype, shape, name); | |||
| } | |||
| public static void enable_eager_execution() | |||
| public void enable_eager_execution() | |||
| { | |||
| // contex = new Context(); | |||
| context.default_execution_mode = Context.EAGER_MODE; | |||
| } | |||
| public static string VERSION => c_api.StringPiece(c_api.TF_Version()); | |||
| public string VERSION => c_api.StringPiece(c_api.TF_Version()); | |||
| public static Session Session() | |||
| public Session Session() | |||
| { | |||
| defaultSession = new Session(); | |||
| return defaultSession; | |||
| } | |||
| public static Session Session(Graph graph) | |||
| public Session Session(Graph graph) | |||
| { | |||
| return new Session(graph); | |||
| } | |||
| public static Session Session(SessionOptions opts) | |||
| public Session Session(SessionOptions opts) | |||
| { | |||
| return new Session(null, opts); | |||
| } | |||
| public void __init__(IPyClass self) | |||
| { | |||
| } | |||
| public void __enter__(IPyClass self) | |||
| { | |||
| } | |||
| public void __exit__(IPyClass self) | |||
| { | |||
| } | |||
| public void __del__(IPyClass self) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -2,6 +2,7 @@ | |||
| using BenchmarkDotNet.Attributes; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowBenchmark | |||
| { | |||
| @@ -6,7 +6,6 @@ open NumSharp | |||
| open Tensorflow | |||
| open System | |||
| let run()= | |||
| let N_points = 75 // Number of points for constructing function | |||
| @@ -40,6 +39,7 @@ let run()= | |||
| let n_hidden_layer_1 = 25 // Hidden layer 1 | |||
| let n_hidden_layer_2 = 25 // Hidden layer 2 | |||
| let tf = Python.New<tensorflow>() | |||
| let x = tf.placeholder(tf.float64, new TensorShape(N_points,n_input)) | |||
| let y = tf.placeholder(tf.float64, new TensorShape(n_output)) | |||
| @@ -1,5 +1,6 @@ | |||
| using System; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -20,6 +20,7 @@ using System.Diagnostics; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -18,6 +18,7 @@ using NumSharp; | |||
| using System; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -21,6 +21,7 @@ using System.IO; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -18,7 +18,7 @@ using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow; | |||
| using NumSharp; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| using System.IO; | |||
| using TensorFlowNET.Examples.Utility; | |||
| @@ -19,6 +19,7 @@ using System; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -18,7 +18,7 @@ using System; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -1,7 +1,7 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -95,7 +95,7 @@ namespace TensorFlowNET.Examples | |||
| Console.WriteLine(result.ToString()); // ==> [[ 12.]] | |||
| }; | |||
| // `BatchMatMul` is actually embedded into the `MatMul` operation on the tensorflow.dll side. Every time we ask | |||
| // `BatchMatMul` is actually embedded into the `MatMul` operation on the tf.dll side. Every time we ask | |||
| // for a multiplication between matrices with rank > 2, the first rank - 2 dimensions are checked to be consistent | |||
| // across the two matrices and a common matrix multiplication is done on the residual 2 dimensions. | |||
| // | |||
| @@ -1,6 +1,6 @@ | |||
| using System; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -20,6 +20,7 @@ using System.Diagnostics; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -27,7 +28,7 @@ namespace TensorFlowNET.Examples | |||
| /// Convolutional Neural Network classifier for Hand Written Digits | |||
| /// CNN architecture with two convolutional layers, followed by two fully-connected layers at the end. | |||
| /// Use Stochastic Gradient Descent (SGD) optimizer. | |||
| /// http://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns/cnn1 | |||
| /// http://www.easy-tf.com/tf-tutorials/convolutional-neural-nets-cnns/cnn1 | |||
| /// </summary> | |||
| public class DigitRecognitionCNN : IExample | |||
| { | |||
| @@ -19,6 +19,7 @@ using System; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -26,7 +27,7 @@ namespace TensorFlowNET.Examples | |||
| /// Neural Network classifier for Hand Written Digits | |||
| /// Sample Neural Network architecture with two layers implemented for classifying MNIST digits. | |||
| /// Use Stochastic Gradient Descent (SGD) optimizer. | |||
| /// http://www.easy-tensorflow.com/tf-tutorials/neural-networks | |||
| /// http://www.easy-tf.com/tf-tutorials/neural-networks | |||
| /// </summary> | |||
| public class DigitRecognitionNN : IExample | |||
| { | |||
| @@ -19,6 +19,7 @@ using System; | |||
| using Tensorflow; | |||
| using Tensorflow.Hub; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -2,7 +2,7 @@ | |||
| using System.IO; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -6,7 +6,7 @@ using System.IO; | |||
| using Console = Colorful.Console; | |||
| using Tensorflow; | |||
| using System.Drawing; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -89,7 +89,7 @@ namespace TensorFlowNET.Examples | |||
| Directory.CreateDirectory(dir); | |||
| // get model file | |||
| string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip"; | |||
| string url = "https://storage.googleapis.com/download.tf.org/models/inception5h.zip"; | |||
| Utility.Web.Download(url, dir, "inception5h.zip"); | |||
| @@ -3,7 +3,7 @@ using System; | |||
| using System.IO; | |||
| using System.Linq; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -93,7 +93,7 @@ namespace TensorFlowNET.Examples | |||
| Directory.CreateDirectory(dir); | |||
| // get model file | |||
| string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz"; | |||
| string url = "https://storage.googleapis.com/download.tf.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz"; | |||
| Utility.Web.Download(url, dir, $"{pbFile}.tar.gz"); | |||
| @@ -22,7 +22,7 @@ using TensorFlowNET.Examples.Utility; | |||
| using System.Drawing; | |||
| using System.Drawing.Drawing2D; | |||
| using System.Linq; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -84,7 +84,7 @@ namespace TensorFlowNET.Examples | |||
| public void PrepareData() | |||
| { | |||
| // get model file | |||
| string url = "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz"; | |||
| string url = "http://download.tf.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz"; | |||
| Web.Download(url, modelDir, "ssd_mobilenet_v1_coco.tar.gz"); | |||
| Compress.ExtractTGZ(Path.Join(modelDir, "ssd_mobilenet_v1_coco.tar.gz"), "./"); | |||
| @@ -24,6 +24,7 @@ using System.Linq; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -32,7 +33,7 @@ namespace TensorFlowNET.Examples | |||
| /// and simply train a new classification layer on top. Transfer learning is a technique that shortcuts much of this | |||
| /// by taking a piece of a model that has already been trained on a related task and reusing it in a new model. | |||
| /// | |||
| /// https://www.tensorflow.org/hub/tutorials/image_retraining | |||
| /// https://www.tf.org/hub/tutorials/image_retraining | |||
| /// </summary> | |||
| public class RetrainImageClassifier : IExample | |||
| { | |||
| @@ -167,7 +168,7 @@ namespace TensorFlowNET.Examples | |||
| /// weights, and then sets up all the gradients for the backward pass. | |||
| /// | |||
| /// The set up for the softmax and fully-connected layers is based on: | |||
| /// https://www.tensorflow.org/tutorials/mnist/beginners/index.html | |||
| /// https://www.tf.org/tutorials/mnist/beginners/index.html | |||
| /// </summary> | |||
| /// <param name="class_count"></param> | |||
| /// <param name="final_tensor_name"></param> | |||
| @@ -508,7 +509,7 @@ namespace TensorFlowNET.Examples | |||
| { | |||
| // get a set of images to teach the network about the new classes | |||
| string fileName = "flower_photos.tgz"; | |||
| string url = $"http://download.tensorflow.org/example_images/{fileName}"; | |||
| string url = $"http://download.tf.org/example_images/{fileName}"; | |||
| Web.Download(url, data_dir, fileName); | |||
| Compress.ExtractTGZ(Path.Join(data_dir, fileName), data_dir); | |||
| @@ -4,6 +4,7 @@ using Tensorflow; | |||
| using Keras.Layers; | |||
| using NumSharp; | |||
| using Keras; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -22,6 +22,7 @@ using System.Linq; | |||
| using System.Reflection; | |||
| using Tensorflow; | |||
| using Console = Colorful.Console; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -25,6 +25,7 @@ using Tensorflow.Sessions; | |||
| using TensorFlowNET.Examples.Text; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -7,6 +7,7 @@ using Tensorflow; | |||
| using Tensorflow.Estimator; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| using static TensorFlowNET.Examples.DataHelpers; | |||
| namespace TensorFlowNET.Examples.Text.NER | |||
| @@ -6,6 +6,7 @@ using System.Linq; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples | |||
| { | |||
| @@ -1,5 +1,6 @@ | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples.Text | |||
| { | |||
| @@ -2,6 +2,7 @@ | |||
| using System.Linq; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples.Text | |||
| { | |||
| @@ -32,7 +33,7 @@ namespace TensorFlowNET.Examples.Text | |||
| num_filters = new int[] { 64, 64, 128, 256, 512 }; | |||
| num_blocks = new int[] { 2, 2, 2, 2 }; | |||
| learning_rate = 0.001f; | |||
| cnn_initializer = tf.keras.initializers.he_normal(); | |||
| cnn_initializer = tensorflow.keras.initializers.he_normal(); | |||
| fc_initializer = tf.truncated_normal_initializer(stddev: 0.05f); | |||
| x = tf.placeholder(tf.int32, new TensorShape(-1, document_max_len), name: "x"); | |||
| @@ -17,6 +17,7 @@ | |||
| using System.Collections.Generic; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.Examples.Text | |||
| { | |||
| @@ -1,6 +1,6 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest.Basics | |||
| { | |||
| @@ -1,6 +1,6 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest.Basics | |||
| { | |||
| @@ -4,7 +4,7 @@ using System; | |||
| using System.Linq; | |||
| using System.Runtime.InteropServices; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -1,5 +1,6 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -1,6 +1,7 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.ExamplesTests | |||
| { | |||
| @@ -3,6 +3,7 @@ using NumSharp; | |||
| using System.Linq; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -3,7 +3,7 @@ using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow; | |||
| using Buffer = Tensorflow.Buffer; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -2,6 +2,7 @@ | |||
| using Keras.Layers; | |||
| using NumSharp; | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -1,6 +1,7 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -5,6 +5,7 @@ using System.Linq; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Buffer = Tensorflow.Buffer; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -1,6 +1,6 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -5,8 +5,7 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Newtonsoft.Json.Linq; | |||
| using NumSharp; | |||
| using Tensorflow; | |||
| using Tensorflow.Util; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -3,7 +3,7 @@ using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -6,6 +6,7 @@ using System.Runtime.InteropServices; | |||
| using System.Threading; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -2,6 +2,7 @@ | |||
| using System; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -1,6 +1,7 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Python; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -28,7 +29,7 @@ namespace TensorFlowNET.UnitTest | |||
| } | |||
| /// <summary> | |||
| /// https://www.tensorflow.org/api_docs/python/tf/variable_scope | |||
| /// https://www.tf.org/api_docs/python/tf/variable_scope | |||
| /// how to create a new variable | |||
| /// </summary> | |||
| [TestMethod] | |||
| @@ -1,5 +1,6 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||