diff --git a/src/TensorFlowNET.Core/TensorFlowNET.Core.csproj b/src/TensorFlowNET.Core/TensorFlowNET.Core.csproj index f1ee0cdd..51b9fd8e 100644 --- a/src/TensorFlowNET.Core/TensorFlowNET.Core.csproj +++ b/src/TensorFlowNET.Core/TensorFlowNET.Core.csproj @@ -54,7 +54,7 @@ Docs: https://tensorflownet.readthedocs.io - + diff --git a/test/KerasNET.Test/Keras.UnitTest.csproj b/test/KerasNET.Test/Keras.UnitTest.csproj index 1e9a2253..a775ad25 100644 --- a/test/KerasNET.Test/Keras.UnitTest.csproj +++ b/test/KerasNET.Test/Keras.UnitTest.csproj @@ -26,7 +26,7 @@ - + diff --git a/test/TensorFlowNET.Examples/ImageProcess/DigitRecognitionNN.cs b/test/TensorFlowNET.Examples/ImageProcess/DigitRecognitionNN.cs new file mode 100644 index 00000000..c46453dd --- /dev/null +++ b/test/TensorFlowNET.Examples/ImageProcess/DigitRecognitionNN.cs @@ -0,0 +1,63 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow; +using TensorFlowNET.Examples.Utility; + +namespace TensorFlowNET.Examples.ImageProcess +{ + /// + /// Neural Network classifier for Hand Written Digits + /// Sample Neural Network architecture with two layers implemented for classifying MNIST digits + /// http://www.easy-tensorflow.com/tf-tutorials/neural-networks + /// + public class DigitRecognitionNN : IExample + { + public bool Enabled { get; set; } = true; + public bool IsImportingGraph { get; set; } = false; + + public string Name => "Digits Recognition Neural Network"; + + const int img_h = 28; + const int img_w = 28; + int img_size_flat = img_h * img_w; // 784, the total number of pixels + int n_classes = 10; // Number of classes, one class per digit + int training_epochs = 10; + int? train_size = null; + int validation_size = 5000; + int? test_size = null; + int batch_size = 100; + Datasets mnist; + + public bool Run() + { + PrepareData(); + return true; + } + + public Graph BuildGraph() + { + throw new NotImplementedException(); + } + + public Graph ImportGraph() + { + throw new NotImplementedException(); + } + + public bool Predict() + { + throw new NotImplementedException(); + } + + public void PrepareData() + { + mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size: validation_size, test_size: test_size); + } + + public bool Train() + { + throw new NotImplementedException(); + } + } +} diff --git a/test/TensorFlowNET.Examples/TensorFlowNET.Examples.csproj b/test/TensorFlowNET.Examples/TensorFlowNET.Examples.csproj index 470399ff..176a4d58 100644 --- a/test/TensorFlowNET.Examples/TensorFlowNET.Examples.csproj +++ b/test/TensorFlowNET.Examples/TensorFlowNET.Examples.csproj @@ -17,7 +17,7 @@ - + diff --git a/test/TensorFlowNET.Examples/TextProcess/CnnTextClassification.cs b/test/TensorFlowNET.Examples/TextProcess/CnnTextClassification.cs index 883783b2..3339840f 100644 --- a/test/TensorFlowNET.Examples/TextProcess/CnnTextClassification.cs +++ b/test/TensorFlowNET.Examples/TextProcess/CnnTextClassification.cs @@ -61,11 +61,6 @@ namespace TensorFlowNET.Examples valid_y = y[new Slice(start: train_size)]; Console.WriteLine("\tDONE"); - train_x = np.Load(Path.Join("word_cnn", "train_x.npy")); - valid_x = np.Load(Path.Join("word_cnn", "valid_x.npy")); - train_y = np.Load(Path.Join("word_cnn", "train_y.npy")); - valid_y = np.Load(Path.Join("word_cnn", "valid_y.npy")); - return (train_x, valid_x, train_y, valid_y); } diff --git a/test/TensorFlowNET.UnitTest/TensorFlowNET.UnitTest.csproj b/test/TensorFlowNET.UnitTest/TensorFlowNET.UnitTest.csproj index f76ca132..b8917b91 100644 --- a/test/TensorFlowNET.UnitTest/TensorFlowNET.UnitTest.csproj +++ b/test/TensorFlowNET.UnitTest/TensorFlowNET.UnitTest.csproj @@ -16,7 +16,7 @@ - +