diff --git a/README.md b/README.md index 1cf19e92..f067f9a4 100644 --- a/README.md +++ b/README.md @@ -201,7 +201,7 @@ for step = 1 to (training_steps + 1) do // Run the optimization to update W and b values. // Wrap computation inside a GradientTape for automatic differentiation. use g = tf.GradientTape() - // Linear regressoin (Wx + b). + // Linear regression (Wx + b). let pred = W * train_X + b // Mean square error. let loss = tf.reduce_sum(tf.pow(pred - train_Y,2)) / (2 * n_samples)