|
|
|
@@ -19,14 +19,13 @@ namespace TensorFlowNET.Examples |
|
|
|
int training_epochs = 1000; |
|
|
|
int display_step = 50; |
|
|
|
|
|
|
|
NDArray train_X, train_Y; |
|
|
|
int n_samples; |
|
|
|
|
|
|
|
public void Run() |
|
|
|
{ |
|
|
|
// Training Data |
|
|
|
var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, |
|
|
|
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); |
|
|
|
var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, |
|
|
|
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); |
|
|
|
var n_samples = train_X.shape[0]; |
|
|
|
PrepareData(); |
|
|
|
|
|
|
|
// tf Graph Input |
|
|
|
var X = tf.placeholder(tf.float32); |
|
|
|
@@ -95,5 +94,14 @@ namespace TensorFlowNET.Examples |
|
|
|
Console.WriteLine($"Absolute mean square loss difference: {Math.Abs((float)training_cost - (float)testing_cost)}"); |
|
|
|
}); |
|
|
|
} |
|
|
|
|
|
|
|
public void PrepareData() |
|
|
|
{ |
|
|
|
train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, |
|
|
|
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); |
|
|
|
train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, |
|
|
|
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); |
|
|
|
n_samples = train_X.shape[0]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |