| @@ -30,10 +30,10 @@ namespace TensorFlowNET.UnitTest.Keras | |||||
| var inputs = keras.Input(shape: 784); | var inputs = keras.Input(shape: 784); | ||||
| Assert.AreEqual((None, 784), inputs.TensorShape); | Assert.AreEqual((None, 784), inputs.TensorShape); | ||||
| var dense = layers.Dense(64, activation: "relu"); | |||||
| var dense = layers.Dense(64, activation: tf.keras.activations.Relu); | |||||
| var x = dense.Apply(inputs); | var x = dense.Apply(inputs); | ||||
| x = layers.Dense(64, activation: "relu").Apply(x); | |||||
| x = layers.Dense(64, activation: tf.keras.activations.Relu).Apply(x); | |||||
| var outputs = layers.Dense(10).Apply(x); | var outputs = layers.Dense(10).Apply(x); | ||||
| var model = keras.Model(inputs, outputs, name: "mnist_model"); | var model = keras.Model(inputs, outputs, name: "mnist_model"); | ||||
| @@ -75,7 +75,7 @@ namespace TensorFlowNET.UnitTest.Keras | |||||
| // Create a `Sequential` model and add a Dense layer as the first layer. | // Create a `Sequential` model and add a Dense layer as the first layer. | ||||
| var model = tf.keras.Sequential(); | var model = tf.keras.Sequential(); | ||||
| model.add(tf.keras.Input(shape: 16)); | model.add(tf.keras.Input(shape: 16)); | ||||
| model.add(tf.keras.layers.Dense(32, activation: "relu")); | |||||
| model.add(tf.keras.layers.Dense(32, activation: tf.keras.activations.Relu)); | |||||
| // Now the model will take as input arrays of shape (None, 16) | // Now the model will take as input arrays of shape (None, 16) | ||||
| // and output arrays of shape (None, 32). | // and output arrays of shape (None, 32). | ||||
| // Note that after the first layer, you don't need to specify | // Note that after the first layer, you don't need to specify | ||||