| @@ -47,10 +47,14 @@ namespace Tensorflow | |||
| x = math_ops.conj(x); | |||
| y = math_ops.conj(y); | |||
| var r1 = math_ops.reduce_sum(gen_math_ops.mul(grad, y), rx); | |||
| var r2 = math_ops.reduce_sum(gen_math_ops.mul(x, grad), ry); | |||
| return (gen_array_ops.reshape(r1, sx), gen_array_ops.reshape(r2, sy)); | |||
| var mul1 = gen_math_ops.mul(grad, y); | |||
| var mul2 = gen_math_ops.mul(x, grad); | |||
| var reduce_sum1 = math_ops.reduce_sum(mul1, rx); | |||
| var reduce_sum2 = math_ops.reduce_sum(mul2, ry); | |||
| var reshape1 = gen_array_ops.reshape(reduce_sum1, sx); | |||
| var reshape2 = gen_array_ops.reshape(reduce_sum2, sy); | |||
| return (reshape1, reshape2); | |||
| } | |||
| public static (Tensor, Tensor) _SubGrad(Operation op, Tensor grad) | |||
| @@ -129,9 +133,12 @@ namespace Tensorflow | |||
| var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); | |||
| x = math_ops.conj(x); | |||
| y = math_ops.conj(y); | |||
| y = math_ops.conj(z); | |||
| var gx = gen_array_ops.reshape(math_ops.reduce_sum(grad * y * gen_math_ops.pow(x, y - 1.0), rx), sx); | |||
| Tensor log_x = null; | |||
| z = math_ops.conj(z); | |||
| var pow = gen_math_ops.pow(x, y - 1.0f); | |||
| var mul = grad * y * pow; | |||
| var reduce_sum = math_ops.reduce_sum(mul, rx); | |||
| var gx = gen_array_ops.reshape(reduce_sum, sx); | |||
| // Avoid false singularity at x = 0 | |||
| Tensor mask = null; | |||
| if (x.dtype.is_complex()) | |||
| @@ -142,8 +149,10 @@ namespace Tensorflow | |||
| var safe_x = array_ops.where(mask, x, ones); | |||
| var x1 = gen_array_ops.log(safe_x); | |||
| var y1 = array_ops.zeros_like(x); | |||
| log_x = array_ops.where(mask, x1, y1); | |||
| var gy = gen_array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy); | |||
| var log_x = array_ops.where(mask, x1, y1); | |||
| var mul1 = grad * z * log_x; | |||
| var reduce_sum1 = math_ops.reduce_sum(mul1, ry); | |||
| var gy = gen_array_ops.reshape(reduce_sum1, sy); | |||
| return (gx, gy); | |||
| } | |||
| @@ -196,11 +196,11 @@ namespace Tensorflow | |||
| _create_op_helper(op, true); | |||
| Console.Write($"create_op: {op_type} '{node_def.Name}'"); | |||
| /*Console.Write($"create_op: {op_type} '{node_def.Name}'"); | |||
| Console.Write($", inputs: {(inputs.Length == 0 ? "empty" : String.Join(", ", inputs.Select(x => x.name)))}"); | |||
| Console.Write($", control_inputs: {(control_inputs.Length == 0 ? "empty" : String.Join(", ", control_inputs.Select(x => x.name)))}"); | |||
| Console.Write($", outputs: {(op.outputs.Length == 0 ? "empty" : String.Join(", ", op.outputs.Select(x => x.name)))}"); | |||
| Console.WriteLine(); | |||
| Console.WriteLine();*/ | |||
| return op; | |||
| } | |||
| @@ -1,5 +1,4 @@ | |||
| using Newtonsoft.Json; | |||
| using System; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Runtime.InteropServices; | |||
| @@ -15,7 +14,7 @@ namespace Tensorflow | |||
| private Tensor[] _outputs; | |||
| public Tensor[] outputs => _outputs; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Tensor output => _outputs.FirstOrDefault(); | |||
| public int NumControlOutputs => c_api.TF_OperationNumControlOutputs(_handle); | |||
| @@ -1,5 +1,4 @@ | |||
| using Google.Protobuf.Collections; | |||
| using Newtonsoft.Json; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| @@ -13,15 +12,15 @@ namespace Tensorflow | |||
| private readonly IntPtr _handle; // _c_op in python | |||
| private Graph _graph; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Graph graph => _graph; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public int _id => _id_value; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public int _id_value; | |||
| public string type => OpType; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Operation op => this; | |||
| public TF_DataType dtype => TF_DataType.DtInvalid; | |||
| private Status status = new Status(); | |||
| @@ -52,10 +52,4 @@ Upgraded to TensorFlow 1.13 RC2. | |||
| <Content CopyToOutputDirectory="PreserveNewest" Include="./runtimes/win-x64/native/tensorflow.dll" Link="tensorflow.dll" Pack="true" PackagePath="runtimes/win-x64/native/tensorflow.dll" /> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <Reference Include="Newtonsoft.Json"> | |||
| <HintPath>C:\Program Files\dotnet\sdk\NuGetFallbackFolder\newtonsoft.json\9.0.1\lib\netstandard1.0\Newtonsoft.Json.dll</HintPath> | |||
| </Reference> | |||
| </ItemGroup> | |||
| </Project> | |||
| @@ -1,5 +1,4 @@ | |||
| using Newtonsoft.Json; | |||
| using NumSharp.Core; | |||
| using NumSharp.Core; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| @@ -18,13 +17,13 @@ namespace Tensorflow | |||
| private readonly IntPtr _handle; | |||
| private int _id; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public int Id => _id; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Graph graph => op?.graph; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Operation op { get; } | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Tensor[] outputs => op.outputs; | |||
| /// <summary> | |||
| @@ -104,7 +103,7 @@ namespace Tensorflow | |||
| public int NDims => rank; | |||
| [JsonIgnore] | |||
| //[JsonIgnore] | |||
| public Operation[] Consumers => consumers(); | |||
| public string Device => op.Device; | |||
| @@ -351,7 +351,7 @@ namespace Tensorflow | |||
| return (oper, out_grads) => | |||
| { | |||
| Console.WriteLine($"get_gradient_function: {oper.type} '{oper.name}'"); | |||
| // Console.WriteLine($"get_gradient_function: {oper.type} '{oper.name}'"); | |||
| switch (oper.type) | |||
| { | |||
| @@ -1,5 +1,4 @@ | |||
| using Newtonsoft.Json; | |||
| using NumSharp.Core; | |||
| using NumSharp.Core; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| @@ -13,17 +12,15 @@ namespace TensorFlowNET.Examples | |||
| /// </summary> | |||
| public class LinearRegression : Python, IExample | |||
| { | |||
| private NumPyRandom rng = np.random; | |||
| NumPyRandom rng = np.random; | |||
| // Parameters | |||
| float learning_rate = 0.01f; | |||
| int training_epochs = 1000; | |||
| int display_step = 50; | |||
| public void Run() | |||
| { | |||
| var graph = tf.Graph().as_default(); | |||
| // Parameters | |||
| float learning_rate = 0.01f; | |||
| int training_epochs = 1000; | |||
| int display_step = 10; | |||
| // Training Data | |||
| var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, | |||
| 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); | |||
| @@ -31,46 +28,28 @@ namespace TensorFlowNET.Examples | |||
| 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); | |||
| var n_samples = train_X.shape[0]; | |||
| var graph = tf.Graph().as_default(); | |||
| // tf Graph Input | |||
| var X = tf.placeholder(tf.float32); | |||
| var Y = tf.placeholder(tf.float32); | |||
| // Set model weights | |||
| //var rnd1 = rng.randn<float>(); | |||
| //var rnd2 = rng.randn<float>(); | |||
| // We can set a fixed init value in order to debug | |||
| // var rnd1 = rng.randn<float>(); | |||
| // var rnd2 = rng.randn<float>(); | |||
| var W = tf.Variable(-0.06f, name: "weight"); | |||
| var b = tf.Variable(-0.73f, name: "bias"); | |||
| var mul = tf.multiply(X, W); | |||
| var pred = tf.add(mul, b); | |||
| // Construct a linear model | |||
| var pred = tf.add(tf.multiply(X, W), b); | |||
| // Mean squared error | |||
| var sub = pred - Y; | |||
| var pow = tf.pow(sub, 2.0f); | |||
| var reduce = tf.reduce_sum(pow); | |||
| var cost = reduce / (2.0f * n_samples); | |||
| var cost = tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * n_samples); | |||
| // radient descent | |||
| // Note, minimize() knows to modify W and b because Variable objects are trainable=True by default | |||
| var grad = tf.train.GradientDescentOptimizer(learning_rate); | |||
| var optimizer = grad.minimize(cost); | |||
| //tf.train.export_meta_graph(filename: "linear_regression.meta.bin"); | |||
| // import meta | |||
| // var new_saver = tf.train.import_meta_graph("linear_regression.meta.bin"); | |||
| var text = JsonConvert.SerializeObject(graph, new JsonSerializerSettings | |||
| { | |||
| Formatting = Formatting.Indented | |||
| }); | |||
| /*var cost = graph.OperationByName("truediv").output; | |||
| var pred = graph.OperationByName("Add").output; | |||
| var optimizer = graph.OperationByName("GradientDescent"); | |||
| var X = graph.OperationByName("Placeholder").output; | |||
| var Y = graph.OperationByName("Placeholder_1").output; | |||
| var W = graph.OperationByName("weight").output; | |||
| var b = graph.OperationByName("bias").output;*/ | |||
| var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost); | |||
| // Initialize the variables (i.e. assign their default value) | |||
| var init = tf.global_variables_initializer(); | |||
| @@ -89,22 +68,33 @@ namespace TensorFlowNET.Examples | |||
| sess.run(optimizer, | |||
| new FeedItem(X, x), | |||
| new FeedItem(Y, y)); | |||
| var rW = sess.run(W); | |||
| } | |||
| // Display logs per epoch step | |||
| /*if ((epoch + 1) % display_step == 0) | |||
| if ((epoch + 1) % display_step == 0) | |||
| { | |||
| var c = sess.run(cost, | |||
| new FeedItem(X, train_X), | |||
| new FeedItem(Y, train_Y)); | |||
| var rW = sess.run(W); | |||
| Console.WriteLine($"Epoch: {epoch + 1} cost={c} " + | |||
| $"W={rW} b={sess.run(b)}"); | |||
| }*/ | |||
| Console.WriteLine($"Epoch: {epoch + 1} cost={c} " + $"W={sess.run(W)} b={sess.run(b)}"); | |||
| } | |||
| } | |||
| Console.WriteLine("Optimization Finished!"); | |||
| var training_cost = sess.run(cost, | |||
| new FeedItem(X, train_X), | |||
| new FeedItem(Y, train_Y)); | |||
| Console.WriteLine($"Training cost={training_cost} W={sess.run(W)} b={sess.run(b)}"); | |||
| // Testing example | |||
| var test_X = np.array(6.83f, 4.668f, 8.9f, 7.91f, 5.7f, 8.7f, 3.1f, 2.1f); | |||
| var test_Y = np.array(1.84f, 2.273f, 3.2f, 2.831f, 2.92f, 3.24f, 1.35f, 1.03f); | |||
| Console.WriteLine("Testing... (Mean square loss Comparison)"); | |||
| var testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * test_X.shape[0]), | |||
| new FeedItem(X, test_X), | |||
| new FeedItem(Y, test_Y)); | |||
| Console.WriteLine($"Testing cost={testing_cost}"); | |||
| Console.WriteLine($"Absolute mean square loss difference: {Math.Abs((float)training_cost - (float)testing_cost)}"); | |||
| }); | |||
| } | |||
| } | |||
| @@ -6,7 +6,6 @@ | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| <PackageReference Include="Newtonsoft.Json" Version="12.0.1" /> | |||
| <PackageReference Include="NumSharp" Version="0.7.3" /> | |||
| <PackageReference Include="TensorFlow.NET" Version="0.3.0" /> | |||
| </ItemGroup> | |||
| @@ -23,6 +23,23 @@ namespace TensorFlowNET.UnitTest | |||
| { | |||
| var new_saver = tf.train.import_meta_graph("C:/tmp/my-model.meta"); | |||
| }); | |||
| //tf.train.export_meta_graph(filename: "linear_regression.meta.bin"); | |||
| // import meta | |||
| /*tf.train.import_meta_graph("linear_regression.meta.bin"); | |||
| var cost = graph.OperationByName("truediv").output; | |||
| var pred = graph.OperationByName("Add").output; | |||
| var optimizer = graph.OperationByName("GradientDescent"); | |||
| var X = graph.OperationByName("Placeholder").output; | |||
| var Y = graph.OperationByName("Placeholder_1").output; | |||
| var W = graph.OperationByName("weight").output; | |||
| var b = graph.OperationByName("bias").output;*/ | |||
| /*var text = JsonConvert.SerializeObject(graph, new JsonSerializerSettings | |||
| { | |||
| Formatting = Formatting.Indented | |||
| });*/ | |||
| } | |||
| public void ImportSavedModel() | |||