| @@ -32,6 +32,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||
| public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn | |||
| private const int CHAR_MAX_LEN = 1014; | |||
| private const int WORD_MAX_LEN = 1014; | |||
| private const int NUM_CLASS = 2; | |||
| private const int BATCH_SIZE = 64; | |||
| private const int NUM_EPOCHS = 10; | |||
| @@ -58,6 +59,8 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||
| Console.WriteLine("\tDONE "); | |||
| var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | |||
| Console.WriteLine("Training set size: " + train_x.shape[0]); | |||
| Console.WriteLine("Test set size: " + valid_x.shape[0]); | |||
| Console.WriteLine("Import graph..."); | |||
| var meta_file = model_name + ".meta"; | |||
| @@ -74,7 +77,6 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||
| Tensor model_x = graph.get_operation_by_name("x"); | |||
| Tensor model_y = graph.get_operation_by_name("y"); | |||
| Tensor loss = graph.get_operation_by_name("loss/value"); | |||
| //var optimizer_nodes = graph._nodes_by_name.Keys.Where(key => key.Contains("optimizer")).ToArray(); | |||
| Tensor optimizer = graph.get_operation_by_name("loss/optimizer"); | |||
| Tensor global_step = graph.get_operation_by_name("global_step"); | |||
| Tensor accuracy = graph.get_operation_by_name("accuracy/value"); | |||
| @@ -92,7 +94,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||
| // original python: | |||
| //_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict) | |||
| var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict); | |||
| //loss_value = result[2]; | |||
| loss_value = result[2]; | |||
| var step = result[1]; | |||
| if (step % 10 == 0) | |||
| { | |||
| @@ -177,7 +179,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||
| private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs) | |||
| { | |||
| var num_batches_per_epoch = (len(inputs) - 1) / batch_size; | |||
| var num_batches_per_epoch = (len(inputs) - 1) / batch_size +1; | |||
| var total_batches = num_batches_per_epoch * num_epochs; | |||
| foreach (var epoch in range(num_epochs)) | |||
| { | |||
| @@ -202,8 +204,13 @@ namespace TensorFlowNET.Examples.CnnTextClassification | |||
| { | |||
| // download graph meta data | |||
| var meta_file = model_name + ".meta"; | |||
| if (File.GetLastWriteTime(meta_file) < new DateTime(2019,05,11)) // delete old cached file which contains errors | |||
| File.Delete(meta_file); | |||
| var meta_path = Path.Combine("graph", meta_file); | |||
| if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11)) | |||
| { | |||
| // delete old cached file which contains errors | |||
| Console.WriteLine("Discarding cached file: " + meta_path); | |||
| File.Delete(meta_path); | |||
| } | |||
| url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; | |||
| Web.Download(url, "graph", meta_file); | |||
| } | |||