| @@ -57,6 +57,21 @@ namespace Tensorflow | |||
| new[] { loop_vars }); | |||
| return results[0]; | |||
| } | |||
| public (Tensor, List<TensorArray>, Tensors, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
| Func<Tensor, List<TensorArray>, Tensors, Tensors, (Tensor, List<TensorArray>, Tensors, Tensors)> body, | |||
| (Tensor, List<TensorArray>, Tensors, Tensors) loop_vars, | |||
| int parallel_iterations = 10) | |||
| => control_flow_ops.while_loop(cond, | |||
| body, | |||
| loop_vars); | |||
| public (Tensor, List<TensorArray>, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
| Func<Tensor, List<TensorArray>, Tensors, (Tensor, List<TensorArray>, Tensors)> body, | |||
| (Tensor, List<TensorArray>, Tensors) loop_vars, | |||
| int parallel_iterations = 10) | |||
| => control_flow_ops.while_loop(cond, | |||
| body, | |||
| loop_vars); | |||
| public Tensor[] while_loop(Func<Tensor[], Tensor> cond, | |||
| Func<Tensor[], Tensor[]> body, | |||
| @@ -1,5 +1,9 @@ | |||
| using Newtonsoft.Json; | |||
| using OneOf; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Keras.Layers; | |||
| using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
| using Tensorflow.NumPy; | |||
| namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
| { | |||
| @@ -7,11 +11,14 @@ namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
| { | |||
| public interface IRnnArgCell : ILayer | |||
| { | |||
| object state_size { get; } | |||
| public Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null); | |||
| public StateSizeWrapper state_size { get; set; } | |||
| public int output_size { get; set; } | |||
| } | |||
| [JsonProperty("cell")] | |||
| // TODO: the cell should be serialized with `serialize_keras_object`. | |||
| public IRnnArgCell Cell { get; set; } = null; | |||
| public OneOf<IList<IRnnArgCell>, IRnnArgCell> Cell { get; set; } | |||
| [JsonProperty("return_sequences")] | |||
| public bool ReturnSequences { get; set; } = false; | |||
| [JsonProperty("return_state")] | |||
| @@ -25,6 +32,7 @@ namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
| [JsonProperty("time_major")] | |||
| public bool TimeMajor { get; set; } = false; | |||
| // TODO: Add `num_constants` and `zero_output_for_mask`. | |||
| public bool ZeroOutputForMask { get; set; } = false; | |||
| public Dictionary<string, object> Kwargs { get; set; } = null; | |||
| public int Units { get; set; } | |||
| @@ -1,10 +1,11 @@ | |||
| using System.Collections.Generic; | |||
| using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
| namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
| { | |||
| public class StackedRNNCellsArgs : LayerArgs | |||
| { | |||
| public IList<RnnCell> Cells { get; set; } | |||
| public IList<IRnnArgCell> Cells { get; set; } | |||
| public Dictionary<string, object> Kwargs { get; set; } = null; | |||
| } | |||
| } | |||
| @@ -0,0 +1,63 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using System.Collections; | |||
| namespace Tensorflow.NumPy | |||
| { | |||
| // Since state_size in RNN is a single integer or array of integer, so use StateSizeWrapper to hold it | |||
| public class StateSizeWrapper : IEnumerable<int> | |||
| { | |||
| int[] _state_size; | |||
| public int[] state_size => _state_size; | |||
| public StateSizeWrapper(int state_size) | |||
| { | |||
| _state_size = new int[] { state_size }; | |||
| } | |||
| public StateSizeWrapper(params int[] state_size) | |||
| { | |||
| _state_size = state_size; | |||
| } | |||
| public StateSizeWrapper(IEnumerable<int> state_size) | |||
| { | |||
| _state_size = state_size.ToArray(); | |||
| } | |||
| public static implicit operator StateSizeWrapper(int[] state_size) | |||
| => new StateSizeWrapper(state_size); | |||
| public static implicit operator StateSizeWrapper(int state_size) | |||
| => new StateSizeWrapper(state_size); | |||
| public static implicit operator StateSizeWrapper((int, int) state_size) | |||
| => new StateSizeWrapper(state_size.Item1, state_size.Item2); | |||
| public static implicit operator StateSizeWrapper(List<int> v) | |||
| => new StateSizeWrapper(v); | |||
| public override string ToString() | |||
| { | |||
| return $"{state_size}"; | |||
| } | |||
| public int this[int n] | |||
| { | |||
| get => n < 0 ? state_size[state_size.Length + n] : state_size[n]; | |||
| set => state_size[n] = value; | |||
| } | |||
| public IEnumerator<int> GetEnumerator() | |||
| { | |||
| return state_size.ToList().GetEnumerator(); | |||
| } | |||
| IEnumerator IEnumerable.GetEnumerator() | |||
| { | |||
| return GetEnumerator(); | |||
| } | |||
| } | |||
| } | |||
| @@ -26,6 +26,7 @@ using Tensorflow.Operations; | |||
| using Tensorflow.Train; | |||
| using Tensorflow.Util; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -50,7 +51,7 @@ namespace Tensorflow | |||
| /// matching structure of Tensors having shape `[batch_size].concatenate(s)` | |||
| /// for each `s` in `self.batch_size`. | |||
| /// </summary> | |||
| public abstract class RnnCell : ILayer, RNNArgs.IRnnArgCell | |||
| public abstract class RnnCell : ILayer | |||
| { | |||
| /// <summary> | |||
| /// Attribute that indicates whether the cell is a TF RNN cell, due the slight | |||
| @@ -698,6 +698,53 @@ namespace Tensorflow | |||
| }); | |||
| } | |||
| public static (Tensor, List<TensorArray>, Tensors, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
| Func<Tensor, List<TensorArray>, Tensors, Tensors, (Tensor, List<TensorArray>, Tensors, Tensors)> body, | |||
| (Tensor, List<TensorArray>, Tensors, Tensors) loop_vars, | |||
| int parallel_iterations = 10, | |||
| string name = null) | |||
| { | |||
| var executing_eagerly = tf.Context.executing_eagerly(); | |||
| if (!executing_eagerly) | |||
| { | |||
| throw new NotImplementedException(""); | |||
| } | |||
| return tf_with(ops.name_scope("name", "while"), delegate | |||
| { | |||
| while ((bool)cond(loop_vars.Item1)) | |||
| { | |||
| loop_vars = body(loop_vars.Item1, loop_vars.Item2, loop_vars.Item3, loop_vars.Item4); | |||
| } | |||
| return loop_vars; | |||
| }); | |||
| } | |||
| public static (Tensor, List<TensorArray>, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
| Func<Tensor, List<TensorArray>, Tensors, (Tensor, List<TensorArray>, Tensors)> body, | |||
| (Tensor, List<TensorArray>, Tensors) loop_vars, | |||
| int parallel_iterations = 10, | |||
| string name = null) | |||
| { | |||
| var executing_eagerly = tf.Context.executing_eagerly(); | |||
| if (!executing_eagerly) | |||
| { | |||
| throw new NotImplementedException(""); | |||
| } | |||
| return tf_with(ops.name_scope("name", "while"), delegate | |||
| { | |||
| while ((bool)cond(loop_vars.Item1)) | |||
| { | |||
| loop_vars = body(loop_vars.Item1, loop_vars.Item2, loop_vars.Item3); | |||
| } | |||
| return loop_vars; | |||
| }); | |||
| } | |||
| /// <summary> | |||
| /// Repeat `body` while the condition `cond` is true. | |||
| /// </summary> | |||
| @@ -211,6 +211,28 @@ namespace Tensorflow.Util | |||
| => arg is IEnumerable && !(arg is string) && !(arg is NDArray) && | |||
| !(arg.GetType().IsGenericType && arg.GetType().GetGenericTypeDefinition() == typeof(HashSet<>)); | |||
| public static bool is_nested(object obj) | |||
| { | |||
| // Check if the object is an IEnumerable | |||
| if (obj is IEnumerable) | |||
| { | |||
| // If it is, check if it is a nested structure | |||
| foreach (object item in (IEnumerable)obj) | |||
| { | |||
| if (is_nested(item)) | |||
| { | |||
| return true; | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| else | |||
| { | |||
| // If it is not, return false | |||
| return false; | |||
| } | |||
| } | |||
| public static bool is_mapping(object arg) => arg is IDictionary; | |||
| //# See the swig file (util.i) for documentation. | |||
| @@ -263,7 +285,29 @@ namespace Tensorflow.Util | |||
| } | |||
| } | |||
| public static List<T> FlattenTupple<T>(object tuple) | |||
| { | |||
| List<T> items = new List<T>(); | |||
| var type = tuple.GetType(); | |||
| if (type.GetInterface("ITuple") == null) | |||
| throw new ArgumentException("This is not a tuple!"); | |||
| foreach (var property in type.GetProperties()) | |||
| { | |||
| var value = property.GetValue(tuple); | |||
| if (property.PropertyType.GetInterface("ITuple") != null) | |||
| { | |||
| var subItems = FlattenTupple<T>(value); | |||
| items.AddRange(subItems); | |||
| } | |||
| else | |||
| { | |||
| items.Add((T)value); | |||
| } | |||
| } | |||
| return items; | |||
| } | |||
| //# See the swig file (util.i) for documentation. | |||
| //_same_namedtuples = _pywrap_tensorflow.SameNamedtuples | |||
| @@ -22,6 +22,9 @@ using Tensorflow.Functions; | |||
| using Tensorflow.Graphs; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.Graphs.SubGraphUtility; | |||
| using Tensorflow.Util; | |||
| using Tensorflow.Operations; | |||
| using OneOf; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| @@ -65,7 +68,7 @@ namespace Tensorflow.Keras | |||
| return; | |||
| } | |||
| var graph = v.Graph; | |||
| if(graph is null) | |||
| if (graph is null) | |||
| { | |||
| graph = get_graph(); | |||
| } | |||
| @@ -95,7 +98,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| if (_GRAPH == null) | |||
| _GRAPH = new FuncGraph("keras_graph"); | |||
| return _GRAPH; | |||
| } | |||
| return ops.get_default_graph(); | |||
| @@ -105,7 +108,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| if (_CURRENT_SCRATCH_GRAPH == null) | |||
| _CURRENT_SCRATCH_GRAPH = new FuncGraph("keras_scratch_graph"); | |||
| return _CURRENT_SCRATCH_GRAPH; | |||
| } | |||
| @@ -230,16 +233,16 @@ namespace Tensorflow.Keras | |||
| { | |||
| if (outputs[0].op.type == "Const") | |||
| return tensor_util.constant_value(outputs); | |||
| var source_graph = outputs.graph; | |||
| var exec_graph = _scratch_graph(); | |||
| var global_graph = get_graph(); | |||
| if (source_graph == global_graph && exec_graph != global_graph) | |||
| { | |||
| var lifted_map = lift_to_graph(outputs, exec_graph, | |||
| new List<Tensor>(), | |||
| add_sources: true, | |||
| handle_captures: true, | |||
| var lifted_map = lift_to_graph(outputs, exec_graph, | |||
| new List<Tensor>(), | |||
| add_sources: true, | |||
| handle_captures: true, | |||
| base_graph: source_graph); | |||
| } | |||
| if (outputs[0].op.type == "Placeholder" | |||
| @@ -250,7 +253,7 @@ namespace Tensorflow.Keras | |||
| exec_graph.as_default(); | |||
| exec_graph.Inputs = exec_graph.internal_captures; | |||
| exec_graph.Outputs = outputs; | |||
| var graph_fn = new ConcreteFunction(exec_graph); | |||
| _CURRENT_SCRATCH_GRAPH = null; | |||
| @@ -370,7 +373,7 @@ namespace Tensorflow.Keras | |||
| /// <param name="data_format"></param> | |||
| /// <param name="interpolation"></param> | |||
| /// <returns></returns> | |||
| public Tensor resize_images(Tensor x, int height_factor, int width_factor, | |||
| public Tensor resize_images(Tensor x, int height_factor, int width_factor, | |||
| string data_format, string interpolation = "nearest") | |||
| { | |||
| var (rows, cols) = (0, 0); | |||
| @@ -412,7 +415,7 @@ namespace Tensorflow.Keras | |||
| /// <returns></returns> | |||
| public Tensor concatenate(Tensors tensors, int axis = -1) | |||
| { | |||
| if(axis < 0) | |||
| if (axis < 0) | |||
| { | |||
| var rank = tensors[0].ndim; | |||
| if (rank > -1) | |||
| @@ -450,5 +453,520 @@ namespace Tensorflow.Keras | |||
| return x; | |||
| } | |||
| public static (Tensors, Tensors) convert_inputs_if_ragged(OneOf<Tensor, RaggedTensor> inputs) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| // | |||
| public static (Tensors, Tensors, Tensors) rnn( | |||
| Func<Tensors, Tensors, (Tensors, Tensors)> step_function, // args:inputs, states, return:output, new_states | |||
| Tensors inputs, // inputs is a tuple of tensors (one per input sequence) | |||
| Tensors initial_states, | |||
| bool go_backwards = false, | |||
| Tensor? mask = null, | |||
| Tensors? constants = null, | |||
| bool unroll = false, | |||
| Tensors? input_length = null, // An integer or a 1-D Tensor,depending on whether the time dimension is fixed-length or not | |||
| bool time_major = false, | |||
| bool zero_output_for_mask = false, | |||
| bool return_all_outputs = true) | |||
| { | |||
| Tensors swap_batch_timestep(Tensors input_t) | |||
| { | |||
| var axes = Enumerable.Range(0, input_t.rank).ToArray(); | |||
| axes[0] = 1; | |||
| axes[1] = 0; | |||
| return tf.transpose(input_t, axes); | |||
| } | |||
| if (!time_major) | |||
| { | |||
| inputs = nest.map_structure(swap_batch_timestep, inputs); | |||
| } | |||
| var flatted_inptus = nest.flatten(inputs); | |||
| var time_steps = flatted_inptus[0].shape[0]; | |||
| var batch = flatted_inptus[0].shape[1]; | |||
| var time_step_t = tf.shape(flatted_inptus[0])[0]; | |||
| foreach (var input_ in flatted_inptus) | |||
| { | |||
| input_.shape.with_rank_at_least(3); | |||
| } | |||
| if (mask != null) | |||
| { | |||
| if (mask.dtype != TF_DataType.TF_BOOL) | |||
| { | |||
| mask = tf.cast(mask, TF_DataType.TF_BOOL); | |||
| } | |||
| if (mask.rank == 2) | |||
| { | |||
| mask = tf.expand_dims(mask, -1); | |||
| } | |||
| if (!time_major) | |||
| { | |||
| mask = swap_batch_timestep(mask); | |||
| } | |||
| } | |||
| if (constants == null) | |||
| { | |||
| constants = new List<Tensor>(); | |||
| } | |||
| // tf.where needs its condition tensor to be the same shape as its two | |||
| // result tensors, but in our case the condition (mask) tensor is | |||
| // (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. | |||
| // So we need to broadcast the mask to match the shape of inputs. | |||
| // That's what the tile call does, it just repeats the mask along its | |||
| // second dimension n times. | |||
| Tensors _expand_mask(Tensors mask_t, Tensors input_t, int fixed_dim = 1) | |||
| { | |||
| if (nest.is_nested(mask_t)) | |||
| { | |||
| throw new ValueError($"mask_t is expected to be tensor, but got {mask_t}"); | |||
| } | |||
| if (nest.is_nested(input_t)) | |||
| { | |||
| throw new ValueError($"input_t is expected to be tensor, but got {input_t}"); | |||
| } | |||
| var rank_diff = input_t.rank - mask_t.rank; | |||
| for (int i = 0; i < rank_diff; i++) | |||
| { | |||
| mask_t = tf.expand_dims(mask_t, -1); | |||
| } | |||
| var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().ToList().GetRange(fixed_dim, input_t.rank)); | |||
| return tf.tile(mask_t, multiples); | |||
| } | |||
| Tensors outputs = new Tensors(); | |||
| Tensors output_time_zero = new Tensors(); | |||
| Tensors last_output = new Tensors(); | |||
| Tensors new_states = new Tensors(); | |||
| if (unroll) | |||
| { | |||
| if (time_steps == 0) | |||
| { | |||
| throw new ValueError("Unrolling requires a fixed number of timesteps."); | |||
| } | |||
| // Process the input tensors. The input tensor need to be split on the | |||
| // time_step dim, and reverse if go_backwards is True. In the case of | |||
| // nested input, the input is flattened and then transformed | |||
| // individually. The result of this will be a tuple of lists, each of | |||
| // the item in tuple is list of the tensor with shape (batch, feature) | |||
| // TODO(Wanglongzhi2001),step_func接受的第二个参数为List,但是最后却用的tuple | |||
| //var states = Tuple.Create(initial_states); | |||
| var states = initial_states; | |||
| var successive_states = new Tensors(); | |||
| var successive_outputs = new Tensors(); | |||
| // Process the input tensors. The input tensor need to be split on the | |||
| // time_step dim, and reverse if go_backwards is True. In the case of | |||
| // nested input, the input is flattened and then transformed | |||
| // individually. The result of this will be a tuple of lists, each of | |||
| // the item in tuple is list of the tensor with shape (batch, feature) | |||
| Tensors _process_single_input_t(Tensors input_t) | |||
| { | |||
| input_t = tf.unstack(input_t); // unstack for time_step dim | |||
| if (go_backwards) | |||
| { | |||
| input_t.Reverse(); | |||
| } | |||
| return input_t; | |||
| } | |||
| // TODO(Wanglongzhi2001) | |||
| Tensors processed_input; | |||
| if (nest.is_nested(inputs)) | |||
| { | |||
| processed_input = nest.map_structure(_process_single_input_t, inputs); | |||
| } | |||
| else | |||
| { | |||
| processed_input = _process_single_input_t(inputs); | |||
| } | |||
| object _get_input_tensor(int time) | |||
| { | |||
| List<Tensor> inp = new List<Tensor>(); | |||
| foreach (var t_ in processed_input) | |||
| { | |||
| inp.Add(t_[time]); | |||
| } | |||
| return nest.pack_sequence_as(inputs, inp); | |||
| } | |||
| if (mask != null) | |||
| { | |||
| var mask_list = tf.unstack(mask); | |||
| if (go_backwards) | |||
| { | |||
| mask_list.Reverse(); | |||
| } | |||
| for (int i = 0; i < time_steps; i++) | |||
| { | |||
| // TODO(Wanglongzhi2001),deal with _get_input_tensor | |||
| var inp = _get_input_tensor(i); | |||
| var mask_t = mask_list[i]; | |||
| // TODO | |||
| var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
| var tiled_mask_t = _expand_mask(mask_t, output); | |||
| Tensors prev_output; | |||
| if (successive_outputs == null) | |||
| { | |||
| prev_output = tf.zeros_like(output); | |||
| } | |||
| else | |||
| { | |||
| prev_output = successive_outputs[successive_outputs.Length - 1]; | |||
| } | |||
| output = tf.where(tiled_mask_t, output, prev_output); | |||
| //var flat_states = nest.flatten(states); | |||
| //var flat_new_states = nest.flatten(newStates); | |||
| var flat_states = states.ToList(); | |||
| var flat_new_states = newStates.ToList(); | |||
| var tiledMaskT = flat_states | |||
| .Select(s => _expand_mask(mask_t, s)) | |||
| .ToArray(); | |||
| var tuple = Tuple.Create(tiledMaskT); | |||
| List<Tensor> flat_final_states = new List<Tensor>(); | |||
| foreach (var (m, s, ps) in Enumerable.Zip(tiled_mask_t, flat_new_states, flat_states)) | |||
| { | |||
| flat_final_states.Add(tf.where(m, s, ps)); | |||
| } | |||
| states = (Tensors)nest.pack_sequence_as(states, flat_final_states); | |||
| if (return_all_outputs) | |||
| { | |||
| successive_outputs.Add(output); | |||
| successive_states.Add(states); | |||
| } | |||
| else | |||
| { | |||
| successive_outputs = new Tensors { output }; | |||
| successive_states = new Tensors { states }; | |||
| } | |||
| } | |||
| last_output = successive_outputs[successive_outputs.Length - 1]; | |||
| new_states = successive_states[successive_states.Length - 1]; | |||
| outputs = tf.stack(successive_outputs); | |||
| if (zero_output_for_mask) | |||
| { | |||
| last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||
| outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | |||
| } | |||
| else // mask is null | |||
| { | |||
| for (int i = 0; i < time_steps; i++) | |||
| { | |||
| var inp = _get_input_tensor(i); | |||
| var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
| states = newStates; | |||
| if (return_all_outputs) | |||
| { | |||
| successive_outputs.Add(output); | |||
| successive_states.Add(newStates); | |||
| } | |||
| else | |||
| { | |||
| successive_outputs = new Tensors { output }; | |||
| successive_states = new Tensors { newStates }; | |||
| } | |||
| } | |||
| last_output = successive_outputs[successive_outputs.Length - 1]; | |||
| new_states = successive_states[successive_states.Length - 1]; | |||
| outputs = tf.stack(successive_outputs); | |||
| } | |||
| } | |||
| } | |||
| else // unroll == false | |||
| { | |||
| var states = initial_states; | |||
| // Create input tensor array, if the inputs is nested tensors, then it | |||
| // will be flattened first, and tensor array will be created one per | |||
| // flattened tensor. | |||
| var input_ta = new List<TensorArray>(); | |||
| for (int i = 0; i < flatted_inptus.Count; i++) | |||
| { | |||
| input_ta.Add(tf.TensorArray(dtype: flatted_inptus[i].dtype, size: time_step_t)); | |||
| } | |||
| // Get the time(0) input and compute the output for that, the output will | |||
| // be used to determine the dtype of output tensor array. Don't read from | |||
| // input_ta due to TensorArray clear_after_read default to True. | |||
| var inps = new Tensors(); | |||
| foreach (var inp in flatted_inptus) | |||
| { | |||
| inps.Add(inp[0]); | |||
| } | |||
| var input_time_zero = nest.pack_sequence_as(inputs, inps); | |||
| // output_time_zero is used to determine the cell output shape and its | |||
| // dtype. the value is discarded. | |||
| (output_time_zero, _) = step_function((Tensor)input_time_zero, new Tensors { initial_states, constants }); | |||
| var output_ta_size = return_all_outputs ? time_step_t : tf.constant(1); | |||
| var output_ta = new List<TensorArray>(); | |||
| for (int i = 0; i < output_time_zero.ToList().Count; i++) | |||
| { | |||
| var Out = output_time_zero.ToList()[i]; | |||
| output_ta.Add(tf.TensorArray(dtype: Out.dtype, size: output_ta_size, element_shape: Out.shape)); | |||
| } | |||
| var time = tf.constant(0, dtype: TF_DataType.TF_INT32, name: "time"); | |||
| Func<Tensor, Tensor>? masking_fn; | |||
| Func<Tensors, Tensors, Tensors, Tensors>? compute_masked_output = null; | |||
| if (mask != null) | |||
| { | |||
| if (go_backwards) | |||
| { | |||
| mask = tf.reverse(mask, axis: new[] { 0 }); | |||
| } | |||
| var mask_ta = tf.TensorArray(dtype: TF_DataType.TF_BOOL, size: time_step_t); | |||
| mask_ta = mask_ta.unstack(mask); | |||
| masking_fn = (time) => | |||
| { | |||
| return mask_ta.read(time); | |||
| }; | |||
| compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
| { | |||
| var tiled_mask_t = new Tensors(); | |||
| foreach (var o in flat_out) | |||
| { | |||
| tiled_mask_t.Add(_expand_mask(mask_t, o, fixed_dim: mask_t.rank)); | |||
| } | |||
| Tensors res = new Tensors(); | |||
| foreach (var (m, o, fm) in Enumerable.Zip(tiled_mask_t, flat_out, flat_mask)) | |||
| { | |||
| res.Add(tf.where(m, o, fm)); | |||
| } | |||
| return res; | |||
| }; | |||
| } | |||
| // TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||
| else if (input_length is Tensor) | |||
| { | |||
| if (go_backwards) | |||
| { | |||
| var max_len = tf.reduce_max(input_length, axis: 0); | |||
| var rev_input_length = tf.subtract(max_len - 1, input_length); | |||
| masking_fn = (time) => | |||
| { | |||
| return tf.less(rev_input_length, time); | |||
| }; | |||
| } | |||
| else | |||
| { | |||
| masking_fn = (time) => | |||
| { | |||
| return tf.greater(input_length, time); | |||
| }; | |||
| } | |||
| compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
| { | |||
| var res = new List<Tensor>(); | |||
| foreach (var (o, zo) in zip(flat_out, flat_mask)) | |||
| { | |||
| res.Add(tf.where(mask_t, o, zo)); | |||
| } | |||
| return res; | |||
| }; | |||
| } | |||
| else | |||
| { | |||
| masking_fn = null; | |||
| } | |||
| if (masking_fn != null) | |||
| { | |||
| // Mask for the T output will be base on the output of T - 1. In the | |||
| // case T = 0, a zero filled tensor will be used. | |||
| var flat_zero_output = new Tensors(); | |||
| foreach (var o in nest.flatten(output_time_zero)) | |||
| { | |||
| flat_zero_output.Add(tf.zeros_like(o)); | |||
| } | |||
| (Tensor, List<TensorArray>, Tensors, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors prev_output, Tensors states) | |||
| { | |||
| /* | |||
| RNN step function. | |||
| Args: | |||
| time: Current timestep value. | |||
| output_ta_t: TensorArray. | |||
| prev_output: tuple of outputs from time - 1. | |||
| *states: List of states. | |||
| Returns: | |||
| Tuple(todo): `(time + 1, output_ta_t, output) + tuple(new_states)` | |||
| */ | |||
| var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
| // maybe set shape | |||
| // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
| current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
| var mask_t = masking_fn(time); | |||
| var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
| // mask output | |||
| //var flat_output = nest.flatten(output); | |||
| var flat_output = output.ToList(); | |||
| var flat_mask_output = zero_output_for_mask ? flat_zero_output : prev_output.ToList(); | |||
| // TODO(Wanglongzhi2001),deal with compute_masked_output's third parameter's type | |||
| var flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output); | |||
| // mask states | |||
| var flat_state = states.ToList(); | |||
| var flat_new_state = new_states.ToList(); | |||
| foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
| { | |||
| if (new_state is Tensor) | |||
| { | |||
| new_state.set_shape(state.shape); | |||
| } | |||
| } | |||
| var flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state); | |||
| new_states = (Tensors)nest.pack_sequence_as(new_states, flat_final_state); | |||
| var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
| var Output_ta_t = new List<TensorArray>(); | |||
| // TODO(Wanglongzhi2001),deal with zip output_ta_t | |||
| foreach (var (ta, Out) in zip(output_ta_t, flat_new_output)) | |||
| { | |||
| Output_ta_t.Add(ta.write(ta_index_to_write, Out)); | |||
| } | |||
| //new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
| return (time + 1, Output_ta_t, flat_new_output, new_states); | |||
| } | |||
| Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
| var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, flat_zero_output, states)); | |||
| new_states = final_outputs.Item4; | |||
| output_ta = final_outputs.Item2; | |||
| } | |||
| else | |||
| { | |||
| (Tensor, List<TensorArray>, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors states) | |||
| { | |||
| var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
| // maybe set shape | |||
| // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
| current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
| var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
| var flat_state = states.ToList(); | |||
| var flat_new_state = new_states.ToList(); | |||
| foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
| { | |||
| if (new_state is Tensor) | |||
| { | |||
| new_state.set_shape(state.shape); | |||
| } | |||
| } | |||
| var flat_output = output.ToList(); | |||
| var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
| var Output_ta_t = new List<TensorArray>(); | |||
| foreach (var (ta, out_) in zip(output_ta_t, flat_output)) | |||
| { | |||
| Output_ta_t.Add(ta.write(ta_index_to_write, out_)); | |||
| } | |||
| new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
| return (time + 1, Output_ta_t, new_states); | |||
| } | |||
| Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
| var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, states)); | |||
| new_states = final_outputs.Item3; | |||
| output_ta = final_outputs.Item2; | |||
| } | |||
| //Tensors outputs = new Tensors(); | |||
| foreach (var o in output_ta) | |||
| { | |||
| outputs.Add(o.stack()); | |||
| } | |||
| foreach (var o in outputs) | |||
| { | |||
| last_output.Add(o[-1]); | |||
| } | |||
| outputs = (Tensors)nest.pack_sequence_as(output_time_zero, outputs); | |||
| last_output = (Tensors)nest.pack_sequence_as(output_time_zero, last_output); | |||
| } | |||
| Func<Tensor, Tensor> set_shape; | |||
| set_shape = (output_) => | |||
| { | |||
| if (output_ is Tensor) | |||
| { | |||
| var shape = output_.shape.as_int_list(); | |||
| if (return_all_outputs) | |||
| { | |||
| shape[0] = (int)time_steps; | |||
| } | |||
| else | |||
| { | |||
| shape[0] = 1; | |||
| } | |||
| shape[1] = (int)batch; | |||
| output_.set_shape(new Tensor(shape)); | |||
| } | |||
| return output_; | |||
| }; | |||
| var Outputs = (Tensors)nest.map_structure(set_shape, outputs); | |||
| if (!time_major) | |||
| { | |||
| Outputs = nest.map_structure(swap_batch_timestep, outputs); | |||
| } | |||
| return (last_output, Outputs, new_states); | |||
| } | |||
| } | |||
| } | |||
| @@ -332,9 +332,9 @@ namespace Tensorflow.Keras.Engine | |||
| /// <param name="state"></param> | |||
| /// <param name="training"></param> | |||
| /// <returns></returns> | |||
| protected virtual Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected virtual Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if(ReplacedCall is not null) | |||
| if (ReplacedCall is not null) | |||
| { | |||
| return ReplacedCall(inputs); | |||
| } | |||
| @@ -29,7 +29,7 @@ namespace Tensorflow.Keras.Layers { | |||
| base.build(input_shape); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor output = inputs; | |||
| output = tf.where(output > 0f, output, | |||
| @@ -17,7 +17,7 @@ namespace Tensorflow.Keras.Layers { | |||
| { | |||
| base.build(input_shape); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor output = inputs; | |||
| return tf.exp(output); | |||
| @@ -10,7 +10,8 @@ namespace Tensorflow.Keras.Layers { | |||
| public HardSigmoid ( LayerArgs args ) : base(args) { | |||
| // hard sigmoid has no arguments | |||
| } | |||
| protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor x = inputs; | |||
| return tf.clip_by_value( | |||
| tf.add(tf.multiply(x, 0.2f), 0.5f), 0f, 1f); | |||
| @@ -19,7 +19,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.args = args; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return tf.nn.leaky_relu(inputs, alpha: alpha); | |||
| } | |||
| @@ -22,7 +22,8 @@ namespace Tensorflow.Keras.Layers { | |||
| } | |||
| base.build(input_shape); | |||
| } | |||
| protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor output = inputs; | |||
| return tf.where(output > 0f, | |||
| tf.multiply(scale, output), | |||
| @@ -11,7 +11,8 @@ namespace Tensorflow.Keras.Layers { | |||
| public Softmax ( SoftmaxArgs args ) : base(args) { | |||
| axis = args.axis; | |||
| } | |||
| protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor x = inputs.Length == 2 ? inputs + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) | |||
| : inputs; | |||
| Tensor e = tf.exp(tf.sub(x, tf.reduce_max(x, axis: this.axis, keepdims: true))); | |||
| @@ -10,7 +10,8 @@ namespace Tensorflow.Keras.Layers { | |||
| public Softplus ( LayerArgs args ) : base(args) { | |||
| // Softplus has no arguments | |||
| } | |||
| protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor x = inputs; | |||
| return tf.log( | |||
| tf.add(tf.exp(x), 1f)); | |||
| @@ -10,7 +10,8 @@ namespace Tensorflow.Keras.Layers { | |||
| public Softsign ( LayerArgs args ) : base(args) { | |||
| // Softsign has no arguments | |||
| } | |||
| protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor x = inputs; | |||
| // x / (abs(x) + 1) | |||
| return tf.div(x, tf.add(1f, tf.abs(x))); | |||
| @@ -10,7 +10,8 @@ namespace Tensorflow.Keras.Layers { | |||
| public Swish ( LayerArgs args ) : base(args) { | |||
| // Swish has no arguments | |||
| } | |||
| protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor x = inputs; | |||
| // x / (1 + exp(-x)) | |||
| @@ -13,7 +13,7 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| // Tanh has no arguments | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor x = inputs; | |||
| @@ -114,7 +114,7 @@ namespace Tensorflow.Keras.Layers | |||
| return (tf.linalg.einsum("bij,bjk->bik", (weights, value)), weights); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensors _inp; | |||
| Tensors _mask = null; | |||
| @@ -252,7 +252,7 @@ namespace Tensorflow.Keras.Layers | |||
| return (attention_output, attention_scores); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensors _inp; | |||
| Tensor _mask = null; | |||
| @@ -103,7 +103,7 @@ namespace Tensorflow.Keras.Layers | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = false) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| var outputs = _convolution_op.Apply(inputs, kernel.AsTensor()); | |||
| if (use_bias) | |||
| @@ -69,7 +69,7 @@ namespace Tensorflow.Keras.Layers | |||
| built = true; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor outputs = null; | |||
| var rank = inputs.rank; | |||
| @@ -189,7 +189,7 @@ namespace Tensorflow.Keras.Layers | |||
| // return new dict(base_config.items().ToList() + config.items().ToList()); | |||
| //} | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| var ret = tf.linalg.einsum(this.equation, (inputs, this.kernel.AsTensor())); | |||
| if (this.bias != null) | |||
| @@ -66,7 +66,7 @@ namespace Tensorflow.Keras.Layers | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| var dtype = inputs.dtype; | |||
| if (dtype != tf.int32 && dtype != tf.int64) | |||
| @@ -21,7 +21,7 @@ namespace Tensorflow.Keras.Layers | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return _merge_function(inputs); | |||
| } | |||
| @@ -146,7 +146,7 @@ namespace Tensorflow.Keras.Layers | |||
| return false; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor outputs = null; | |||
| var training_tensor = training == null | |||
| @@ -101,7 +101,7 @@ namespace Tensorflow.Keras.Layers | |||
| return input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor outputs = null; | |||
| var inputs_dtype = inputs.dtype.as_base_dtype(); | |||
| @@ -157,7 +157,7 @@ namespace Tensorflow.Keras.Layers | |||
| base.adapt(data, batch_size: batch_size, steps: steps); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (_args.Invert) | |||
| { | |||
| @@ -12,7 +12,7 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_mean(inputs, 1, false); | |||
| @@ -12,7 +12,7 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_mean(inputs, (1, 2), false); | |||
| @@ -12,7 +12,7 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_max(inputs, 1, false); | |||
| @@ -12,7 +12,7 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_max(inputs, (1, 2), false); | |||
| @@ -36,7 +36,7 @@ namespace Tensorflow.Keras.Layers | |||
| input_spec = new InputSpec(ndim: 3); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| int pad_axis = args.DataFormat == "channels_first" ? 2 : 3; | |||
| inputs = tf.expand_dims(inputs, pad_axis); | |||
| @@ -36,7 +36,7 @@ namespace Tensorflow.Keras.Layers | |||
| input_spec = new InputSpec(ndim: 4); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| int[] pool_shape; | |||
| int[] strides; | |||
| @@ -15,7 +15,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.args = args; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| var depth = args.NumTokens; | |||
| var max_value = tf.reduce_max(inputs); | |||
| @@ -17,7 +17,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.args = args; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| scale = constant_op.constant(args.Scale, args.DType); | |||
| offset = constant_op.constant(args.Offset, args.DType); | |||
| @@ -19,7 +19,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.args = args; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return image_ops_impl.resize_images_v2(inputs, new[] { args.Height, args.Width }, method: args.Interpolation); | |||
| } | |||
| @@ -15,7 +15,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.args = args; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (training == null) | |||
| training = false; | |||
| @@ -27,7 +27,7 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor output = inputs; | |||
| if (output.rank != 3) | |||
| @@ -21,7 +21,7 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
| built = true; | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor output = inputs; | |||
| if (output.rank != 4) | |||
| @@ -21,7 +21,7 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor output = inputs; | |||
| if (output.rank != 5) | |||
| @@ -23,7 +23,7 @@ namespace Tensorflow.Keras.Layers | |||
| _channels_first = args.DataFormat == "channels_first"; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (_channels_first) | |||
| { | |||
| @@ -28,7 +28,7 @@ namespace Tensorflow.Keras.Layers { | |||
| built = true; | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| Tensor outputs = inputs; | |||
| return tf.transpose(outputs, new Axis(permute)); | |||
| @@ -19,7 +19,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.args = args; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| var shapes = new List<Tensor>(); | |||
| shapes.Add(array_ops.shape(inputs)[0]); | |||
| @@ -24,7 +24,7 @@ namespace Tensorflow.Keras.Layers | |||
| inputSpec = new InputSpec(ndim: 4); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return keras.backend.resize_images(inputs, | |||
| size[0], size[1], | |||
| @@ -26,7 +26,7 @@ namespace Tensorflow.Keras.Layers | |||
| this.input_spec = new InputSpec(ndim: 4); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return keras.backend.spatial_2d_padding(inputs, | |||
| padding: padding, | |||
| @@ -26,9 +26,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| .ToArray(); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return base.Call(inputs, state: state, training: training); | |||
| return base.Call(inputs, initial_state: initial_state, training: training); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,9 +1,15 @@ | |||
| using System; | |||
| using System.Collections; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using System.Reflection; | |||
| using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
| using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Saving; | |||
| using Tensorflow.Util; | |||
| using OneOf; | |||
| using OneOf.Types; | |||
| using Tensorflow.Common.Extensions; | |||
| // from tensorflow.python.distribute import distribution_strategy_context as ds_context; | |||
| namespace Tensorflow.Keras.Layers.Rnn | |||
| @@ -19,11 +25,46 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| protected IVariableV1 kernel; | |||
| protected IVariableV1 bias; | |||
| protected ILayer cell; | |||
| public RNN(RNNArgs args) : base(PreConstruct(args)) | |||
| { | |||
| this.args = args; | |||
| SupportsMasking = true; | |||
| // if is StackedRnncell | |||
| if (args.Cell.IsT0) | |||
| { | |||
| cell = new StackedRNNCells(new StackedRNNCellsArgs | |||
| { | |||
| Cells = args.Cell.AsT0, | |||
| }); | |||
| } | |||
| else | |||
| { | |||
| cell = args.Cell.AsT1; | |||
| } | |||
| Type type = cell.GetType(); | |||
| MethodInfo methodInfo = type.GetMethod("Call"); | |||
| if (methodInfo == null) | |||
| { | |||
| throw new ValueError(@"Argument `cell` or `cells`should have a `call` method. "); | |||
| } | |||
| PropertyInfo propertyInfo = type.GetProperty("state_size"); | |||
| if (propertyInfo == null) | |||
| { | |||
| throw new ValueError(@"The RNN cell should have a `state_size` attribute"); | |||
| } | |||
| // get input_shape | |||
| this.args = PreConstruct(args); | |||
| // The input shape is unknown yet, it could have nested tensor inputs, and | |||
| // the input spec will be the list of specs for nested inputs, the structure | |||
| // of the input_spec will be the same as the input. | |||
| @@ -37,17 +78,384 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| //} | |||
| } | |||
| // States is a tuple consist of cell states_size, like (cell1.state_size, cell2.state_size,...) | |||
| // state_size can be a single integer, can also be a list/tuple of integers, can also be TensorShape or a list/tuple of TensorShape | |||
| public object States | |||
| { | |||
| get | |||
| { | |||
| if (_states == null) | |||
| { | |||
| var state = nest.map_structure(x => null, cell.state_size); | |||
| return nest.is_nested(state) ? state : new Tensors { state }; | |||
| } | |||
| return _states; | |||
| } | |||
| set { _states = value; } | |||
| } | |||
| private OneOf<Shape, List<Shape>> compute_output_shape(Shape input_shape) | |||
| { | |||
| var batch = input_shape[0]; | |||
| var time_step = input_shape[1]; | |||
| if (args.TimeMajor) | |||
| { | |||
| (batch, time_step) = (time_step, batch); | |||
| } | |||
| // state_size is a array of ints or a positive integer | |||
| var state_size = cell.state_size; | |||
| // TODO(wanglongzhi2001),flat_output_size应该是什么类型的,Shape还是Tensor | |||
| Func<Shape, Shape> _get_output_shape; | |||
| _get_output_shape = (flat_output_size) => | |||
| { | |||
| var output_dim = flat_output_size.as_int_list(); | |||
| Shape output_shape; | |||
| if (args.ReturnSequences) | |||
| { | |||
| if (args.TimeMajor) | |||
| { | |||
| output_shape = new Shape(new int[] { (int)time_step, (int)batch }.concat(output_dim)); | |||
| } | |||
| else | |||
| { | |||
| output_shape = new Shape(new int[] { (int)batch, (int)time_step }.concat(output_dim)); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| output_shape = new Shape(new int[] { (int)batch }.concat(output_dim)); | |||
| } | |||
| return output_shape; | |||
| }; | |||
| Shape output_shape; | |||
| if (cell.output_size != 0) | |||
| { | |||
| output_shape = nest.map_structure(_get_output_shape, cell.output_size); | |||
| // TODO(wanglongzhi2001),output_shape应该简单的就是一个元组还是一个Shape类型 | |||
| output_shape = (output_shape.Length == 1 ? (int)output_shape[0] : output_shape); | |||
| } | |||
| else | |||
| { | |||
| output_shape = _get_output_shape(state_size[0]); | |||
| } | |||
| if (args.ReturnState) | |||
| { | |||
| Func<Shape, Shape> _get_state_shape; | |||
| _get_state_shape = (flat_state) => | |||
| { | |||
| var state_shape = new int[] { (int)batch }.concat(flat_state.as_int_list()); | |||
| return new Shape(state_shape); | |||
| }; | |||
| var state_shape = _get_state_shape(new Shape(state_size.ToArray())); | |||
| return new List<Shape> { output_shape, state_shape }; | |||
| } | |||
| else | |||
| { | |||
| return output_shape; | |||
| } | |||
| } | |||
| private Tensors compute_mask(Tensors inputs, Tensors mask) | |||
| { | |||
| // Time step masks must be the same for each input. | |||
| // This is because the mask for an RNN is of size [batch, time_steps, 1], | |||
| // and specifies which time steps should be skipped, and a time step | |||
| // must be skipped for all inputs. | |||
| mask = nest.flatten(mask)[0]; | |||
| var output_mask = args.ReturnSequences ? mask : null; | |||
| if (args.ReturnState) | |||
| { | |||
| var state_mask = new List<Tensor>(); | |||
| for (int i = 0; i < len(States); i++) | |||
| { | |||
| state_mask.Add(null); | |||
| } | |||
| return new List<Tensor> { output_mask }.concat(state_mask); | |||
| } | |||
| else | |||
| { | |||
| return output_mask; | |||
| } | |||
| } | |||
| public override void build(KerasShapesWrapper input_shape) | |||
| { | |||
| object get_input_spec(Shape shape) | |||
| { | |||
| var input_spec_shape = shape.as_int_list(); | |||
| var (batch_index, time_step_index) = args.TimeMajor ? (1, 0) : (0, 1); | |||
| if (!args.Stateful) | |||
| { | |||
| input_spec_shape[batch_index] = -1; | |||
| } | |||
| input_spec_shape[time_step_index] = -1; | |||
| return new InputSpec(shape: input_spec_shape); | |||
| } | |||
| Shape get_step_input_shape(Shape shape) | |||
| { | |||
| // return shape[1:] if self.time_major else (shape[0],) + shape[2:] | |||
| if (args.TimeMajor) | |||
| { | |||
| return shape.as_int_list().ToList().GetRange(1, shape.Length - 1).ToArray(); | |||
| } | |||
| else | |||
| { | |||
| return new int[] { shape.as_int_list()[0] }.concat(shape.as_int_list().ToList().GetRange(2, shape.Length - 2).ToArray()); | |||
| } | |||
| } | |||
| object get_state_spec(Shape shape) | |||
| { | |||
| var state_spec_shape = shape.as_int_list(); | |||
| // append bacth dim | |||
| state_spec_shape = new int[] { -1 }.concat(state_spec_shape); | |||
| return new InputSpec(shape: state_spec_shape); | |||
| } | |||
| // Check whether the input shape contains any nested shapes. It could be | |||
| // (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from | |||
| // numpy inputs. | |||
| if (!cell.Built) | |||
| { | |||
| cell.build(input_shape); | |||
| } | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| // inputs: Tensors | |||
| // mask: Binary tensor of shape [batch_size, timesteps] indicating whether a given timestep should be masked | |||
| // training: bool | |||
| // initial_state: List of initial state tensors to be passed to the first call of the cell | |||
| // constants: List of constant tensors to be passed to the cell at each timestep | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return base.Call(inputs, state, training); | |||
| //var (inputs_padded, row_length) = BackendImpl.convert_inputs_if_ragged(inputs); | |||
| //bool is_ragged_input = row_length != null; | |||
| //_validate_args_if_ragged(is_ragged_input, mask); | |||
| var (inputs_processed, initial_state_processed, constants_processed) = _process_inputs(inputs, initial_state, constants); | |||
| _maybe_reset_cell_dropout_mask(cell); | |||
| if (cell is StackedRNNCells) | |||
| { | |||
| foreach (var cell in ((StackedRNNCells)cell).Cells) | |||
| { | |||
| _maybe_reset_cell_dropout_mask(cell); | |||
| } | |||
| } | |||
| if (mask != null) | |||
| { | |||
| // Time step masks must be the same for each input. | |||
| //mask = nest.flatten(mask)[0]; | |||
| mask = mask[0]; | |||
| } | |||
| Shape input_shape; | |||
| if (nest.is_nested(initial_state_processed)) | |||
| { | |||
| // In the case of nested input, use the first element for shape check | |||
| // input_shape = nest.flatten(inputs)[0].shape; | |||
| input_shape = inputs[0].shape; | |||
| } | |||
| else | |||
| { | |||
| input_shape = inputs.shape; | |||
| } | |||
| var timesteps = args.TimeMajor ? input_shape[0] : input_shape[1]; | |||
| if (args.Unroll && timesteps != null) | |||
| { | |||
| throw new ValueError( | |||
| "Cannot unroll a RNN if the " + | |||
| "time dimension is undefined. \n" + | |||
| "- If using a Sequential model, " + | |||
| "specify the time dimension by passing " + | |||
| "an `input_shape` or `batch_input_shape` " + | |||
| "argument to your first layer. If your " + | |||
| "first layer is an Embedding, you can " + | |||
| "also use the `input_length` argument.\n" + | |||
| "- If using the functional API, specify " + | |||
| "the time dimension by passing a `shape` " + | |||
| "or `batch_shape` argument to your Input layer." | |||
| ); | |||
| } | |||
| // cell_call_fn = (self.cell.__call__ if callable(self.cell) else self.cell.call) | |||
| var cell_call_fn = cell.Call; | |||
| Func<Tensors, Tensors, (Tensors, Tensors)> step; | |||
| if (constants != null) | |||
| { | |||
| ParameterInfo[] parameters = cell_call_fn.GetMethodInfo().GetParameters(); | |||
| bool hasParam = parameters.Any(p => p.Name == "constants"); | |||
| if (!hasParam) | |||
| { | |||
| throw new ValueError( | |||
| $"RNN cell {cell} does not support constants." + | |||
| $"Received: constants={constants}"); | |||
| } | |||
| step = (inputs, states) => | |||
| { | |||
| // constants = states[-self._num_constants :] | |||
| constants = states.numpy()[new Slice(states.Length - _num_constants, states.Length)]; | |||
| // states = states[: -self._num_constants] | |||
| states = states.numpy()[new Slice(0, states.Length - _num_constants)]; | |||
| // states = (states[0] if len(states) == 1 and is_tf_rnn_cell else states) | |||
| states = states.Length == 1 ? states[0] : states; | |||
| var (output, new_states) = cell_call_fn(inputs, null, null, states, constants); | |||
| if (!nest.is_nested(new_states)) | |||
| { | |||
| return (output, new Tensors { new_states }); | |||
| } | |||
| return (output, new_states); | |||
| }; | |||
| } | |||
| else | |||
| { | |||
| step = (inputs, states) => | |||
| { | |||
| // states = (states[0] if len(states) == 1 and is_tf_rnn_cell else states) | |||
| states = states.Length == 1 ? states[0] : states; | |||
| var (output, new_states) = cell_call_fn(inputs, null, null, states, constants); | |||
| if (!nest.is_nested(new_states)) | |||
| { | |||
| return (output, new Tensors { new_states }); | |||
| } | |||
| return (output, new_states); | |||
| }; | |||
| } | |||
| var (last_output, outputs, states) = BackendImpl.rnn(step, | |||
| inputs, | |||
| initial_state, | |||
| constants: constants, | |||
| go_backwards: args.GoBackwards, | |||
| mask: mask, | |||
| unroll: args.Unroll, | |||
| input_length: row_length != null ? row_length : new Tensor(timesteps), | |||
| time_major: args.TimeMajor, | |||
| zero_output_for_mask: args.ZeroOutputForMask, | |||
| return_all_outputs: args.ReturnSequences); | |||
| if (args.Stateful) | |||
| { | |||
| throw new NotImplementedException("this argument havn't been developed!"); | |||
| } | |||
| Tensors output = new Tensors(); | |||
| if (args.ReturnSequences) | |||
| { | |||
| throw new NotImplementedException("this argument havn't been developed!"); | |||
| } | |||
| else | |||
| { | |||
| output = last_output; | |||
| } | |||
| if (args.ReturnState) | |||
| { | |||
| foreach (var state in states) | |||
| { | |||
| output.Add(state); | |||
| } | |||
| return output; | |||
| } | |||
| else | |||
| { | |||
| return output; | |||
| } | |||
| } | |||
| private (Tensors, Tensors, Tensors) _process_inputs(Tensor inputs, Tensors initial_state, Tensors constants) | |||
| { | |||
| bool IsSequence(object obj) | |||
| { | |||
| // Check if the object is an IEnumerable | |||
| if (obj is IEnumerable) | |||
| { | |||
| // If it is, check if it is a tuple | |||
| if (!(obj is Tuple)) | |||
| { | |||
| return true; | |||
| } | |||
| } | |||
| // If it is not, return false | |||
| return false; | |||
| } | |||
| if (IsSequence(input)) | |||
| { | |||
| if (_num_constants != 0) | |||
| { | |||
| initial_state = inputs[new Slice(1, len(inputs))]; | |||
| } | |||
| else | |||
| { | |||
| initial_state = inputs[new Slice(1, len(inputs) - _num_constants)]; | |||
| } | |||
| if (len(initial_state) == 0) | |||
| initial_state = null; | |||
| inputs = inputs[0]; | |||
| } | |||
| if (args.Stateful) | |||
| { | |||
| throw new NotImplementedException("argument stateful has not been implemented!"); | |||
| } | |||
| return (inputs, initial_state, constants); | |||
| } | |||
| private void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) | |||
| { | |||
| if (is_ragged_input) | |||
| { | |||
| if (args.Unroll) | |||
| { | |||
| throw new ValueError("The input received contains RaggedTensors and does " + | |||
| "not support unrolling. Disable unrolling by passing " + | |||
| "`unroll=False` in the RNN Layer constructor."); | |||
| } | |||
| if (mask != null) | |||
| { | |||
| throw new ValueError($"The mask that was passed in was {mask}, which " + | |||
| "cannot be applied to RaggedTensor inputs. Please " + | |||
| "make sure that there is no mask injected by upstream " + | |||
| "layers."); | |||
| } | |||
| } | |||
| } | |||
| void _maybe_reset_cell_dropout_mask(ILayer cell) | |||
| { | |||
| //if (cell is DropoutRNNCellMixin) | |||
| //{ | |||
| // cell.reset_dropout_mask(); | |||
| // cell.reset_recurrent_dropout_mask(); | |||
| //} | |||
| } | |||
| private static RNNArgs PreConstruct(RNNArgs args) | |||
| @@ -77,6 +485,10 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| return args; | |||
| } | |||
| public Tensors __call__(Tensors inputs, Tensor state = null, Tensor training = null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public RNN New(LayerRnnCell cell, | |||
| bool return_sequences = false, | |||
| bool return_state = false, | |||
| @@ -95,7 +507,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| TimeMajor = time_major | |||
| }); | |||
| public RNN New(IList<RnnCell> cell, | |||
| public RNN New(IList<IRnnArgCell> cell, | |||
| bool return_sequences = false, | |||
| bool return_state = false, | |||
| bool go_backwards = false, | |||
| @@ -125,7 +537,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| } | |||
| // Check whether the state_size contains multiple states. | |||
| public static bool _is_multiple_state(object state_size) | |||
| public static bool is_multiple_state(object state_size) | |||
| { | |||
| var myIndexerProperty = state_size.GetType().GetProperty("Item"); | |||
| return myIndexerProperty != null | |||
| @@ -42,9 +42,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| built = true; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| return base.Call(inputs, state, training); | |||
| return base.Call(inputs, initial_state, training); | |||
| } | |||
| } | |||
| } | |||
| @@ -2,15 +2,16 @@ | |||
| using System.Collections.Generic; | |||
| using System.ComponentModel; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
| using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Saving; | |||
| using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
| namespace Tensorflow.Keras.Layers.Rnn | |||
| { | |||
| public class StackedRNNCells : Layer, RNNArgs.IRnnArgCell | |||
| public class StackedRNNCells : Layer | |||
| { | |||
| public IList<RnnCell> Cells { get; set; } | |||
| public IList<IRnnArgCell> Cells { get; set; } | |||
| public bool reverse_state_order; | |||
| public StackedRNNCells(StackedRNNCellsArgs args) : base(args) | |||
| @@ -51,7 +52,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| { | |||
| return lastCell.output_size; | |||
| } | |||
| else if (RNN._is_multiple_state(lastCell.state_size)) | |||
| else if (RNN.is_multiple_state(lastCell.state_size)) | |||
| { | |||
| // return ((dynamic)Cells[-1].state_size)[0]; | |||
| throw new NotImplementedException(""); | |||
| @@ -63,6 +64,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| } | |||
| } | |||
| public object get_initial_state() | |||
| { | |||
| throw new NotImplementedException(); | |||
| @@ -80,7 +82,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
| // return tuple(initial_states) | |||
| } | |||
| public object call() | |||
| public Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| throw new NotImplementedException(); | |||
| // def call(self, inputs, states, constants= None, training= None, ** kwargs): | |||
| @@ -34,7 +34,7 @@ namespace Tensorflow.Keras.Layers | |||
| built = true; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| return DeFunCall(inputs); | |||