| @@ -7,82 +7,92 @@ using static Tensorflow.KerasApi; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.Keras.UnitTest { | |||
| [TestClass] | |||
| public class ActivationTest : EagerModeTestBase { | |||
| [TestMethod] | |||
| public void LeakyReLU () { | |||
| var layer = keras.layers.LeakyReLU(); | |||
| Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); | |||
| Equal(new[] { -0.9f, -0.3f, 0.0f, 2.0f }, output.ToArray<float>()); | |||
| } | |||
| [TestClass] | |||
| public class ActivationTest : EagerModeTestBase | |||
| { | |||
| [TestMethod] | |||
| public void LeakyReLU() | |||
| { | |||
| var layer = keras.layers.LeakyReLU(); | |||
| Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); | |||
| Equal(new[] { -0.9f, -0.3f, 0.0f, 2.0f }, output.ToArray<float>()); | |||
| } | |||
| [TestMethod] | |||
| public void ELU () { | |||
| Tensors input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.ELU().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -0.0950213f, -0.08646648f, -0.06321206f, 0f, 1f, 2f }); | |||
| Assert.AreEqual(expected.numpy(), output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void ELU() | |||
| { | |||
| Tensors input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.ELU().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -0.0950213f, -0.08646648f, -0.06321206f, 0f, 1f, 2f }); | |||
| Assert.AreEqual(expected.numpy(), output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void SELU () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.SELU().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -1.6705688f, -1.5201665f, -1.1113307f, 0f, 1.050701f, 2.101402f }); | |||
| Assert.AreEqual(expected.numpy(), output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void SELU() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.SELU().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -1.6705688f, -1.5201665f, -1.1113307f, 0f, 1.050701f, 2.101402f }); | |||
| Assert.AreEqual(expected.numpy(), output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Softmax () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Softmax(new Axis(-1)).Apply(input); | |||
| NDArray expected = new NDArray(new float[] { 0.0042697787f, 0.011606461f, 0.031549633f, 0.085760795f, 0.23312202f, 0.6336913f }); | |||
| Assert.AreEqual(expected.numpy(), output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Softmax() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Softmax(new Axis(-1)).Apply(input); | |||
| var expected = new float[] { 0.0042697787f, 0.011606461f, 0.031549633f, 0.085760795f, 0.23312202f, 0.6336913f }; | |||
| Assert.IsTrue(Equal(expected, output.ToArray<float>())); | |||
| } | |||
| [TestMethod] | |||
| public void Softplus () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Softplus().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { 0.04858733f, 0.12692805f, 0.31326166f, 0.6931472f, 1.3132616f, 2.126928f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Softplus() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Softplus().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { 0.04858733f, 0.12692805f, 0.31326166f, 0.6931472f, 1.3132616f, 2.126928f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Softsign () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Softsign().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -0.75f, -0.66666667f, -0.5f, 0f, 0.5f, 0.66666667f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Softsign() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Softsign().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -0.75f, -0.66666667f, -0.5f, 0f, 0.5f, 0.66666667f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Exponential () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Exponential().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { 0.049787067f, 0.13533528f, 0.36787945f, 1f, 2.7182817f, 7.389056f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Exponential() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Exponential().Apply(input); | |||
| var expected = new float[] { 0.049787067f, 0.13533528f, 0.36787945f, 1f, 2.7182817f, 7.389056f }; | |||
| Assert.IsTrue(Equal(expected, output.ToArray<float>())); | |||
| } | |||
| [TestMethod] | |||
| public void HardSigmoid () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.HardSigmoid().Apply(input); | |||
| // Note, this should be [0, 0.1, 0.3, 0.5, 0.7, 0.9] | |||
| // But somehow the second element will have 0.099999994 | |||
| // Probably because there is an accuracy loss somewhere | |||
| NDArray expected = new NDArray(new float[] { 0f, 0.099999994f, 0.3f, 0.5f, 0.7f, 0.9f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void HardSigmoid() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.HardSigmoid().Apply(input); | |||
| // Note, this should be [0, 0.1, 0.3, 0.5, 0.7, 0.9] | |||
| // But somehow the second element will have 0.099999994 | |||
| // Probably because there is an accuracy loss somewhere | |||
| NDArray expected = new NDArray(new float[] { 0f, 0.099999994f, 0.3f, 0.5f, 0.7f, 0.9f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Swish () { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Swish().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -0.14227762f, -0.23840584f, -0.26894143f, 0f, 0.7310586f, 1.761594f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| } | |||
| [TestMethod] | |||
| public void Swish() | |||
| { | |||
| Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); | |||
| Tensor output = keras.layers.Swish().Apply(input); | |||
| NDArray expected = new NDArray(new float[] { -0.14227762f, -0.23840584f, -0.26894143f, 0f, 0.7310586f, 1.761594f }); | |||
| Assert.AreEqual(expected, output.numpy()); | |||
| } | |||
| } | |||
| } | |||