| @@ -22,8 +22,10 @@ namespace Tensorflow.Gradients | |||
| var sy = array_ops.shape(y); | |||
| var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); | |||
| var r1 = gen_array_ops.reshape(math_ops.reduce_sum(grad, rx), sx); | |||
| var r2 = gen_array_ops.reshape(math_ops.reduce_sum(grad, ry), sy); | |||
| var sum1 = math_ops.reduce_sum(grad, rx); | |||
| var r1 = gen_array_ops.reshape(sum1, sx); | |||
| var sum2 = math_ops.reduce_sum(grad, ry); | |||
| var r2 = gen_array_ops.reshape(sum2, sy); | |||
| return new Tensor[] { r1, r2 }; | |||
| } | |||
| @@ -48,7 +50,8 @@ namespace Tensorflow.Gradients | |||
| var x = op.inputs[0]; | |||
| var y = op.inputs[1]; | |||
| var grad = grads[0]; | |||
| if (grad is Tensor && _ShapesFullySpecifiedAndEqual(x, y, grad) && | |||
| if (grad is Tensor && | |||
| _ShapesFullySpecifiedAndEqual(x, y, grad) && | |||
| new TF_DataType[] { tf.int32, tf.float32 }.Contains(grad.dtype)) | |||
| return new Tensor[] { gen_math_ops.mul(grad, y), gen_math_ops.mul(grad, x) }; | |||
| @@ -60,10 +63,11 @@ namespace Tensorflow.Gradients | |||
| y = math_ops.conj(y); | |||
| var mul1 = gen_math_ops.mul(grad, y); | |||
| var mul2 = gen_math_ops.mul(x, grad); | |||
| var reduce_sum1 = math_ops.reduce_sum(mul1, rx); | |||
| var reduce_sum2 = math_ops.reduce_sum(mul2, ry); | |||
| var reshape1 = gen_array_ops.reshape(reduce_sum1, sx); | |||
| var mul2 = gen_math_ops.mul(x, grad); | |||
| var reduce_sum2 = math_ops.reduce_sum(mul2, ry); | |||
| var reshape2 = gen_array_ops.reshape(reduce_sum2, sy); | |||
| return new Tensor[] { reshape1, reshape2 }; | |||
| @@ -146,7 +150,13 @@ namespace Tensorflow.Gradients | |||
| public static bool _ShapesFullySpecifiedAndEqual(Tensor x, Tensor y, Tensor grad) | |||
| { | |||
| return x.NDims == y.NDims && y.NDims == grad.NDims && x.NDims > -1; | |||
| var x_shape = x._shape_tuple(); | |||
| var y_shape = y._shape_tuple(); | |||
| var grad_shape = grad._shape_tuple(); | |||
| return Enumerable.SequenceEqual(x_shape, y_shape) && | |||
| Enumerable.SequenceEqual(y_shape, grad_shape) && | |||
| x.NDims != -1 && | |||
| !x_shape.Contains(-1); | |||
| } | |||
| public static Tensor[] _SumGrad(Operation op, Tensor[] grads) | |||
| @@ -2,6 +2,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.ComponentModel; | |||
| using System.Linq; | |||
| using System.Text; | |||
| namespace Tensorflow | |||
| @@ -16,6 +17,11 @@ namespace Tensorflow | |||
| Console.WriteLine(obj.ToString()); | |||
| } | |||
| protected IEnumerable<int> range(int end) | |||
| { | |||
| return Enumerable.Range(0, end); | |||
| } | |||
| public static T New<T>(object args) where T : IPyClass | |||
| { | |||
| var instance = Activator.CreateInstance<T>(); | |||
| @@ -43,6 +43,8 @@ namespace Tensorflow | |||
| public IntPtr buffer => _handle == IntPtr.Zero ? IntPtr.Zero : c_api.TF_TensorData(_handle); | |||
| public int num_consumers(TF_Output oper_out) => _handle == IntPtr.Zero ? 0 : c_api.TF_OperationOutputNumConsumers(oper_out); | |||
| private TF_Output? _tf_output; | |||
| public long[] shape | |||
| { | |||
| get | |||
| @@ -123,7 +125,10 @@ namespace Tensorflow | |||
| public TF_Output _as_tf_output() | |||
| { | |||
| return new TF_Output(op, value_index); | |||
| if(!_tf_output.HasValue) | |||
| _tf_output = new TF_Output(op, value_index); | |||
| return _tf_output.Value; | |||
| } | |||
| public T[] Data<T>() | |||
| @@ -1,6 +1,8 @@ | |||
| using NumSharp.Core; | |||
| using Newtonsoft.Json; | |||
| using NumSharp.Core; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using Tensorflow; | |||
| using TensorFlowNET.Examples.Utility; | |||
| @@ -26,8 +28,6 @@ namespace TensorFlowNET.Examples | |||
| private void PrepareData() | |||
| { | |||
| //var mnist = MnistDataSet.read_data_sets("logistic_regression", one_hot: true); | |||
| // tf Graph Input | |||
| var x = tf.placeholder(tf.float32, new TensorShape(-1, 784)); // mnist data image of shape 28*28=784 | |||
| var y = tf.placeholder(tf.float32, new TensorShape(-1, 10)); // 0-9 digits recognition => 10 classes | |||
| @@ -49,13 +49,37 @@ namespace TensorFlowNET.Examples | |||
| // Gradient Descent | |||
| var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost); | |||
| //var new_saver = tf.train.import_meta_graph("logistic_regression.meta.bin"); | |||
| /*var text = JsonConvert.SerializeObject(tf.get_default_graph(), new JsonSerializerSettings | |||
| { | |||
| Formatting = Formatting.Indented | |||
| });*/ | |||
| // Initialize the variables (i.e. assign their default value) | |||
| var init = tf.global_variables_initializer(); | |||
| with(tf.Session(), sess => | |||
| { | |||
| var mnist = MnistDataSet.read_data_sets("logistic_regression", one_hot: true); | |||
| // Run the initializer | |||
| sess.run(init); | |||
| // Training cycle | |||
| foreach(var epoch in range(training_epochs)) | |||
| { | |||
| var avg_cost = 0.0f; | |||
| var total_batch = (int)(mnist.train.num_examples / batch_size); | |||
| // Loop over all batches | |||
| foreach (var i in range(total_batch)) | |||
| { | |||
| var (batch_xs, batch_ys) = mnist.train.next_batch(batch_size); | |||
| // Run optimization op (backprop) and cost op (to get loss value) | |||
| /*sess.run(optimizer, | |||
| new FeedItem(x, batch_xs), | |||
| new FeedItem(y, batch_ys));*/ | |||
| } | |||
| } | |||
| }); | |||
| } | |||
| } | |||
| @@ -9,10 +9,15 @@ namespace TensorFlowNET.Examples.Utility | |||
| public class DataSet | |||
| { | |||
| private int _num_examples; | |||
| public int num_examples => _num_examples; | |||
| private int _epochs_completed; | |||
| public int epochs_completed => _epochs_completed; | |||
| private int _index_in_epoch; | |||
| public int index_in_epoch => _index_in_epoch; | |||
| private NDArray _images; | |||
| public NDArray images => _images; | |||
| private NDArray _labels; | |||
| public NDArray labels => _labels; | |||
| public DataSet(NDArray images, NDArray labels, TF_DataType dtype, bool reshape) | |||
| { | |||
| @@ -26,5 +31,33 @@ namespace TensorFlowNET.Examples.Utility | |||
| _epochs_completed = 0; | |||
| _index_in_epoch = 0; | |||
| } | |||
| public (int, int) next_batch(int batch_size, bool fake_data = false, bool shuffle = true) | |||
| { | |||
| var start = _index_in_epoch; | |||
| // Shuffle for the first epoch | |||
| if(_epochs_completed == 0 && start == 0 && shuffle) | |||
| { | |||
| var perm0 = np.arange(_num_examples); | |||
| np.random.shuffle(perm0); | |||
| _images = images[perm0]; | |||
| _labels = labels[perm0]; | |||
| } | |||
| // Go to the next epoch | |||
| if (start + batch_size > _num_examples) | |||
| { | |||
| // Finished epoch | |||
| _epochs_completed += 1; | |||
| throw new NotImplementedException("next_batch"); | |||
| } | |||
| else | |||
| { | |||
| _index_in_epoch += batch_size; | |||
| var end = _index_in_epoch; | |||
| return (_images[np.arange(start, end)], _labels[np.arange(start, end)]); | |||
| } | |||
| } | |||
| } | |||
| } | |||