Browse Source

All threshold as null in F1 Score.

tags/v0.100.4-load-saved-model
Haiping Chen 2 years ago
parent
commit
32a3e48d19
4 changed files with 6 additions and 6 deletions
  1. +2
    -2
      src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs
  2. +1
    -1
      src/TensorFlowNET.Keras/Metrics/F1Score.cs
  3. +1
    -1
      src/TensorFlowNET.Keras/Metrics/FBetaScore.cs
  4. +2
    -2
      src/TensorFlowNET.Keras/Metrics/MetricsApi.cs

+ 2
- 2
src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs View File

@@ -77,7 +77,7 @@ public interface IMetricsApi
/// <returns></returns> /// <returns></returns>
IMetricFunc F1Score(int num_classes, IMetricFunc F1Score(int num_classes,
string? average = null, string? average = null,
float threshold = -1f,
float? threshold = null,
string name = "f1_score", string name = "f1_score",
TF_DataType dtype = TF_DataType.TF_FLOAT); TF_DataType dtype = TF_DataType.TF_FLOAT);


@@ -88,7 +88,7 @@ public interface IMetricsApi
IMetricFunc FBetaScore(int num_classes, IMetricFunc FBetaScore(int num_classes,
string? average = null, string? average = null,
float beta = 0.1f, float beta = 0.1f,
float threshold = -1f,
float? threshold = null,
string name = "fbeta_score", string name = "fbeta_score",
TF_DataType dtype = TF_DataType.TF_FLOAT); TF_DataType dtype = TF_DataType.TF_FLOAT);


+ 1
- 1
src/TensorFlowNET.Keras/Metrics/F1Score.cs View File

@@ -4,7 +4,7 @@ public class F1Score : FBetaScore
{ {
public F1Score(int num_classes, public F1Score(int num_classes,
string? average = null, string? average = null,
float? threshold = -1f,
float? threshold = null,
string name = "f1_score", string name = "f1_score",
TF_DataType dtype = TF_DataType.TF_FLOAT) TF_DataType dtype = TF_DataType.TF_FLOAT)
: base(num_classes, average: average, threshold: threshold, beta: 1f, name: name, dtype: dtype) : base(num_classes, average: average, threshold: threshold, beta: 1f, name: name, dtype: dtype)


+ 1
- 1
src/TensorFlowNET.Keras/Metrics/FBetaScore.cs View File

@@ -17,7 +17,7 @@ public class FBetaScore : Metric
public FBetaScore(int num_classes, public FBetaScore(int num_classes,
string? average = null, string? average = null,
float beta = 0.1f, float beta = 0.1f,
float? threshold = -1f,
float? threshold = null,
string name = "fbeta_score", string name = "fbeta_score",
TF_DataType dtype = TF_DataType.TF_FLOAT) TF_DataType dtype = TF_DataType.TF_FLOAT)
: base(name: name, dtype: dtype) : base(name: name, dtype: dtype)


+ 2
- 2
src/TensorFlowNET.Keras/Metrics/MetricsApi.cs View File

@@ -86,10 +86,10 @@
public IMetricFunc CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null) public IMetricFunc CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null)
=> new CosineSimilarity(name: name, dtype: dtype, axis: axis ?? -1); => new CosineSimilarity(name: name, dtype: dtype, axis: axis ?? -1);


public IMetricFunc F1Score(int num_classes, string? average = null, float threshold = -1, string name = "f1_score", TF_DataType dtype = TF_DataType.TF_FLOAT)
public IMetricFunc F1Score(int num_classes, string? average = null, float? threshold = null, string name = "f1_score", TF_DataType dtype = TF_DataType.TF_FLOAT)
=> new F1Score(num_classes, average: average, threshold: threshold, name: name, dtype: dtype); => new F1Score(num_classes, average: average, threshold: threshold, name: name, dtype: dtype);


public IMetricFunc FBetaScore(int num_classes, string? average = null, float beta = 0.1F, float threshold = -1, string name = "fbeta_score", TF_DataType dtype = TF_DataType.TF_FLOAT)
public IMetricFunc FBetaScore(int num_classes, string? average = null, float beta = 0.1F, float? threshold = null, string name = "fbeta_score", TF_DataType dtype = TF_DataType.TF_FLOAT)
=> new FBetaScore(num_classes, average: average,beta: beta, threshold: threshold, name: name, dtype: dtype); => new FBetaScore(num_classes, average: average,beta: beta, threshold: threshold, name: name, dtype: dtype);


public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT)


Loading…
Cancel
Save