Browse Source

fix: fix ci error

tags/v0.110.4-Transformer-Model
“Wanglongzhi2001” 2 years ago
parent
commit
3273cbc7f2
1 changed files with 21 additions and 10 deletions
  1. +21
    -10
      test/TensorFlowNET.Graph.UnitTest/ImageTest.cs

+ 21
- 10
test/TensorFlowNET.Graph.UnitTest/ImageTest.cs View File

@@ -28,9 +28,14 @@ namespace TensorFlowNET.UnitTest
{ {
var input = np.array(0f, 1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f); var input = np.array(0f, 1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f);
var image = tf.reshape(input, new int[] { 3, 3, 1 }); var image = tf.reshape(input, new int[] { 3, 3, 1 });
var img = tf.image.adjust_contrast(image, 2.0f);

var init = tf.global_variables_initializer();
var sess = tf.Session();
sess.run(init);
var adjust_contrast = tf.image.adjust_contrast(image, 2.0f);
var result = sess.run(adjust_contrast);
var res = np.array(-4f, -2f, 0f, 2f, 4f, 6f, 8f, 10f, 12f).reshape((3,3,1)); var res = np.array(-4f, -2f, 0f, 2f, 4f, 6f, 8f, 10f, 12f).reshape((3,3,1));
Assert.AreEqual(img.numpy(), res);
Assert.AreEqual(result.numpy(), res);
} }


[Ignore] [Ignore]
@@ -48,25 +53,31 @@ namespace TensorFlowNET.UnitTest
[TestMethod] [TestMethod]
public void combined_non_max_suppression() public void combined_non_max_suppression()
{ {
var boxesX = tf.constant(new float[,] { { 200, 100, 150, 100 }, { 220, 120, 150, 100 }, { 190, 110, 150, 100 },{ 210, 112, 150, 100 } });
var boxesX = tf.constant(new float[,] { { 200, 100, 150, 100 }, { 220, 120, 150, 100 }, { 190, 110, 150, 100 }, { 210, 112, 150, 100 } });
var boxes1 = tf.reshape(boxesX, (1, 4, 1, 4)); var boxes1 = tf.reshape(boxesX, (1, 4, 1, 4));
var scoresX = tf.constant(new float[,] { { 0.2f, 0.7f, 0.1f },{ 0.1f, 0.8f, 0.1f },{ 0.3f, 0.6f, 0.1f },{ 0.05f, 0.9f, 0.05f } });
var scoresX = tf.constant(new float[,] { { 0.2f, 0.7f, 0.1f }, { 0.1f, 0.8f, 0.1f }, { 0.3f, 0.6f, 0.1f }, { 0.05f, 0.9f, 0.05f } });
var scores1 = tf.reshape(scoresX, (1, 4, 3)); var scores1 = tf.reshape(scoresX, (1, 4, 3));
var (boxes, scores, classes, valid_detections) = tf.image.combined_non_max_suppression(boxes1, scores1, 10, 10, 0.5f, 0.2f, clip_boxes:false);

var init = tf.global_variables_initializer();
var sess = tf.Session();
sess.run(init);

var (boxes, scores, classes, valid_detections) = tf.image.combined_non_max_suppression(boxes1, scores1, 10, 10, 0.5f, 0.2f, clip_boxes: false);
var result = sess.run((boxes, scores, classes, valid_detections));


var boxes_gt = tf.constant(new float[,] { { 210f, 112f, 150f, 100f }, { 200f, 100f, 150f, 100f }, { 190f, 110f, 150f, 100f }, var boxes_gt = tf.constant(new float[,] { { 210f, 112f, 150f, 100f }, { 200f, 100f, 150f, 100f }, { 190f, 110f, 150f, 100f },
{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f , 0f},{ 0f, 0f, 0f, 0f},{ 0f , 0f, 0f, 0f},{ 0f, 0f, 0f, 0f} }); { 0f, 0f, 0f, 0f},{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f , 0f},{ 0f, 0f, 0f, 0f},{ 0f , 0f, 0f, 0f},{ 0f, 0f, 0f, 0f} });
boxes_gt = tf.reshape(boxes_gt,(1, 10, 4));
Assert.AreEqual(boxes.numpy(), boxes_gt.numpy());
boxes_gt = tf.reshape(boxes_gt, (1, 10, 4));
Assert.AreEqual(result.Item1.numpy(), boxes_gt.numpy());
var scores_gt = tf.constant(new float[,] { { 0.9f, 0.7f, 0.3f, 0f, 0f, 0f, 0f, 0f, 0f, 0f } }); var scores_gt = tf.constant(new float[,] { { 0.9f, 0.7f, 0.3f, 0f, 0f, 0f, 0f, 0f, 0f, 0f } });
scores_gt = tf.reshape(scores_gt, (1, 10)); scores_gt = tf.reshape(scores_gt, (1, 10));
Assert.AreEqual(scores.numpy(), scores_gt.numpy());
Assert.AreEqual(result.Item2.numpy(), scores_gt.numpy());
var classes_gt = tf.constant(new float[,] { { 1f, 1f, 0f, 0f, 0f, 0f, 0f, 0f, 0f, 0f } }); var classes_gt = tf.constant(new float[,] { { 1f, 1f, 0f, 0f, 0f, 0f, 0f, 0f, 0f, 0f } });
classes_gt = tf.reshape(classes_gt, (1, 10)); classes_gt = tf.reshape(classes_gt, (1, 10));
Assert.AreEqual(classes.numpy(), classes_gt.numpy());
Assert.AreEqual(result.Item3.numpy(), classes_gt.numpy());
var valid_detections_gt = tf.constant(new int[,] { { 3 } }); var valid_detections_gt = tf.constant(new int[,] { { 3 } });
valid_detections_gt = tf.reshape(valid_detections_gt, (1)); valid_detections_gt = tf.reshape(valid_detections_gt, (1));
Assert.AreEqual(valid_detections.numpy(), valid_detections_gt.numpy());
Assert.AreEqual(result.Item4.numpy(), valid_detections_gt.numpy());
} }


[TestMethod] [TestMethod]


Loading…
Cancel
Save