| @@ -13,6 +13,8 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlowNET.Utility", "sr | |||
| EndProject | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlowNET.Visualization", "TensorFlowNET.Visualization\TensorFlowNET.Visualization.csproj", "{4BB2ABD1-635E-41E4-B534-CB5B6A2D754D}" | |||
| EndProject | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "NumSharp.Core", "..\NumSharp\src\NumSharp.Core\NumSharp.Core.csproj", "{268BF0B6-0AA9-4FD3-A245-7AF336F1E3E9}" | |||
| EndProject | |||
| Global | |||
| GlobalSection(SolutionConfigurationPlatforms) = preSolution | |||
| Debug|Any CPU = Debug|Any CPU | |||
| @@ -39,6 +41,10 @@ Global | |||
| {4BB2ABD1-635E-41E4-B534-CB5B6A2D754D}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
| {4BB2ABD1-635E-41E4-B534-CB5B6A2D754D}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
| {4BB2ABD1-635E-41E4-B534-CB5B6A2D754D}.Release|Any CPU.Build.0 = Release|Any CPU | |||
| {268BF0B6-0AA9-4FD3-A245-7AF336F1E3E9}.Debug|Any CPU.ActiveCfg = Debug|Any CPU | |||
| {268BF0B6-0AA9-4FD3-A245-7AF336F1E3E9}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
| {268BF0B6-0AA9-4FD3-A245-7AF336F1E3E9}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
| {268BF0B6-0AA9-4FD3-A245-7AF336F1E3E9}.Release|Any CPU.Build.0 = Release|Any CPU | |||
| EndGlobalSection | |||
| GlobalSection(SolutionProperties) = preSolution | |||
| HideSolutionNode = FALSE | |||
| @@ -6,6 +6,12 @@ namespace Tensorflow | |||
| { | |||
| public static partial class tf | |||
| { | |||
| public static nn_impl nn => new nn_impl(); | |||
| public static class nn | |||
| { | |||
| public static (Tensor, Tensor) moments(Tensor x, | |||
| int[] axes, | |||
| string name = null, | |||
| bool keep_dims = false) => nn_impl.moments(x, axes, name: name, keep_dims: keep_dims); | |||
| } | |||
| } | |||
| } | |||
| @@ -22,7 +22,7 @@ namespace Tensorflow | |||
| /// <returns> A `Tensor`. Has the same type as `input`.</returns> | |||
| public static Tensor mean(Tensor input, Tensor axis, bool keep_dims= false, string name = null) | |||
| { | |||
| var _op = _op_def_lib._apply_op_helper("Mean", name, args: new { input, axis }); | |||
| var _op = _op_def_lib._apply_op_helper("Mean", name, args: new { input, reduction_indices = axis, keep_dims = keep_dims }); | |||
| return _op.outputs[0]; | |||
| } | |||
| @@ -39,7 +39,7 @@ namespace Tensorflow | |||
| { | |||
| var r = _ReductionDims(input_tensor, new Tensor(axis)); | |||
| var m = gen_math_ops.mean(input_tensor, r); | |||
| return _may_reduce_to_scalar(keepdims, m); | |||
| return _may_reduce_to_scalar(keepdims,axis, m); | |||
| } | |||
| /// <summary> | |||
| /// Returns (x - y)(x - y) element-wise. | |||
| @@ -117,6 +117,12 @@ namespace Tensorflow | |||
| return output; | |||
| } | |||
| private static Tensor _may_reduce_to_scalar(bool keepdims, int[] axos, Tensor output) | |||
| { | |||
| output.shape = new long[0]; | |||
| return output; | |||
| } | |||
| private static Tensor _ReductionDims(Tensor x, Tensor axis) | |||
| { | |||
| if (axis != null) | |||
| @@ -130,6 +136,24 @@ namespace Tensorflow | |||
| } | |||
| } | |||
| private static int[] _ReductionDims(Tensor x, int[] axis) | |||
| { | |||
| if (axis != null) | |||
| { | |||
| return axis; | |||
| } | |||
| else | |||
| { | |||
| var rank = array_ops.rank(x); | |||
| if (rank != null) | |||
| { | |||
| // return constant_op.constant(); | |||
| } | |||
| // return range(0, rank, 1); | |||
| throw new NotFiniteNumberException(); | |||
| } | |||
| } | |||
| public static Tensor range(object start, object limit = null, object delta = null, TF_DataType dtype = TF_DataType.DtInvalid, string name = "range" ) | |||
| { | |||
| if(limit == null) | |||
| @@ -14,13 +14,12 @@ namespace Tensorflow | |||
| /// <param name="name"> Name used to scope the operations that compute the moments.</param> | |||
| /// <param name="keep_dims"> Produce moments with the same dimensionality as the input.</param> | |||
| /// <returns> Two `Tensor` objects: `mean` and `variance`.</returns> | |||
| public Tuple<Tensor, Tensor> moments(Tensor x, | |||
| public static (Tensor, Tensor) moments(Tensor x, | |||
| int[] axes, | |||
| string name = null, | |||
| bool keep_dims = false) | |||
| { | |||
| Tuple<Tensor, Tensor> t = null; | |||
| with<ops.name_scope>(new ops.name_scope(name, "moments", new { x, axes }), scope => | |||
| return with<ops.name_scope, (Tensor, Tensor)>(new ops.name_scope(name, "moments", new { x, axes }), scope => | |||
| { | |||
| // The dynamic range of fp16 is too limited to support the collection of | |||
| // sufficient statistics. As a workaround we simply perform the operations | |||
| @@ -40,15 +39,10 @@ namespace Tensorflow | |||
| } | |||
| // TODO: if x.dtype == dtypes.float16: | |||
| if (x.dtype == TF_DataType.TF_FLOAT) | |||
| { | |||
| t = Tuple.Create(math_ops.cast(mean, x.dtype), math_ops.cast(variance, x.dtype)); | |||
| return; | |||
| } | |||
| else { | |||
| t = Tuple.Create(mean, variance); | |||
| } | |||
| return (math_ops.cast(mean, x.dtype), math_ops.cast(variance, x.dtype)); | |||
| else | |||
| return (mean, variance); | |||
| }); | |||
| return t; | |||
| } | |||
| } | |||
| } | |||
| @@ -51,4 +51,8 @@ Docs: https://tensorflownet.readthedocs.io</Description> | |||
| <Content CopyToOutputDirectory="PreserveNewest" Include="./runtimes/win-x64/native/tensorflow.dll" Link="tensorflow.dll" Pack="true" PackagePath="runtimes/win-x64/native/tensorflow.dll" /> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <ProjectReference Include="..\..\..\NumSharp\src\NumSharp.Core\NumSharp.Core.csproj" /> | |||
| </ItemGroup> | |||
| </Project> | |||
| @@ -19,7 +19,6 @@ namespace TensorFlowNET.Examples | |||
| // var X = np.array<float[]>(new float[][] { new float[] { 1.0f, 1.0f}, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); | |||
| var X = np.array<float>(new float[][] { new float[] { 1.0f, 1.0f }, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); | |||
| var y = np.array<int>(0,0,1,1,2,2); | |||
| fit(X, y); | |||
| // Create a regular grid and classify each point | |||
| @@ -28,12 +27,12 @@ namespace TensorFlowNET.Examples | |||
| public void fit(NDArray X, NDArray y) | |||
| { | |||
| NDArray unique_y = y.unique<long>(); | |||
| Dictionary<long, List<NDArray>> dic = new Dictionary<long, List<NDArray>>(); | |||
| Dictionary<long, List<List<float>>> dic = new Dictionary<long, List<List<float>>>(); | |||
| // Init uy in dic | |||
| foreach (int uy in unique_y.Data<int>()) | |||
| { | |||
| dic.Add(uy, new List<NDArray>()); | |||
| dic.Add(uy, new List<List<float>>()); | |||
| } | |||
| // Separate training points by class | |||
| // Shape : nb_classes * nb_samples * nb_features | |||
| @@ -41,28 +40,35 @@ namespace TensorFlowNET.Examples | |||
| for (int i = 0; i < y.size; i++) | |||
| { | |||
| long curClass = (long)y[i]; | |||
| List<NDArray> l = dic[curClass]; | |||
| l.Add(X[i] as NDArray); | |||
| List<List<float>> l = dic[curClass]; | |||
| List<float> pair = new List<float>(); | |||
| pair.Add((float)X[i,0]); | |||
| pair.Add((float)X[i, 1]); | |||
| l.Add(pair); | |||
| if (l.Count > maxCount) | |||
| { | |||
| maxCount = l.Count; | |||
| } | |||
| dic[curClass] = l; | |||
| } | |||
| NDArray points_by_class = np.zeros(new int[] { dic.Count, maxCount, X.shape[1] }); | |||
| foreach (KeyValuePair<long, List<NDArray>> kv in dic) | |||
| float[,,] points = new float[dic.Count, maxCount, X.shape[1]]; | |||
| foreach (KeyValuePair<long, List<List<float>>> kv in dic) | |||
| { | |||
| var cls = kv.Value.ToArray(); | |||
| for (int i = 0; i < dic.Count; i++) | |||
| int j = (int) kv.Key; | |||
| for (int i = 0; i < maxCount; i++) | |||
| { | |||
| points_by_class[i] = dic[i]; | |||
| for (int k = 0; k < X.shape[1]; k++) | |||
| { | |||
| points[j, i, k] = kv.Value[i][k]; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| NDArray points_by_class = np.array<float>(points); | |||
| // estimate mean and variance for each class / feature | |||
| // shape : nb_classes * nb_features | |||
| var cons = tf.constant(points_by_class); | |||
| Tuple<Tensor, Tensor> tup = tf.nn.moments(cons, new int[]{1}); | |||
| var tup = tf.nn.moments(cons, new int[]{1}); | |||
| var mean = tup.Item1; | |||
| var variance = tup.Item2; | |||
| // Create a 3x2 univariate normal distribution with the | |||
| @@ -1,4 +1,4 @@ | |||
| <Project Sdk="Microsoft.NET.Sdk"> | |||
| <Project Sdk="Microsoft.NET.Sdk"> | |||
| <PropertyGroup> | |||
| <OutputType>Exe</OutputType> | |||
| @@ -6,11 +6,7 @@ | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| <PackageReference Include="NumSharp" Version="0.7.3" /> | |||
| <PackageReference Include="TensorFlow.NET" Version="0.3.0" /> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <ProjectReference Include="..\..\..\NumSharp\src\NumSharp.Core\NumSharp.Core.csproj" /> | |||
| <ProjectReference Include="..\..\src\TensorFlowNET.Core\TensorFlowNET.Core.csproj" /> | |||
| <ProjectReference Include="..\..\src\TensorFlowNET.Utility\TensorFlowNET.Utility.csproj" /> | |||
| </ItemGroup> | |||
| @@ -19,6 +15,9 @@ | |||
| <Reference Include="Newtonsoft.Json"> | |||
| <HintPath>C:\Program Files\dotnet\sdk\NuGetFallbackFolder\newtonsoft.json\9.0.1\lib\netstandard1.0\Newtonsoft.Json.dll</HintPath> | |||
| </Reference> | |||
| <Reference Include="NumSharp.Core"> | |||
| <HintPath>C:\Users\bpeng\Desktop\BoloReborn\NumSharp\src\NumSharp.Core\bin\Debug\netstandard2.0\NumSharp.Core.dll</HintPath> | |||
| </Reference> | |||
| </ItemGroup> | |||
| </Project> | |||