| @@ -9,7 +9,7 @@ | |||
| [](https://996.icu/#/en_US) | |||
| [](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab) | |||
| *master branch is based on tensorflow 2.3 now, v0.15-tensorflow1.15 is from tensorflow1.15.* | |||
| *master branch is based on tensorflow v2.4, v0.3x branch is based on tensorflow v2.3, v0.15-tensorflow1.15 is from tensorflow1.15.* | |||
|  | |||
| @@ -30,7 +30,8 @@ Go through the online docs [TensorFlow for .NET](https://scisharp.github.io/tens | |||
| | TensorFlow | tf native1.14, cuda 10.0 | tf native 1.15, cuda 10.0 | tf native 2.3, cuda 10.1 | tf native 2.4, cuda 11 | | |||
| | -------------------------- | ------------- | -------------- | ------------- | ------------- | | |||
| | tf.net 0.3x, tf.keras 0.2 | | | x | not compatible | | |||
| | tf.net 0.4x, tf.keras 0.5 | | | | x | | |||
| | tf.net 0.3x, tf.keras 0.4 | | | x | | | |||
| | tf.net 0.2x | | x | x | | | |||
| | tf.net 0.15 | x | x | | | | |||
| | tf.net 0.14 | x | | | | | |||
| @@ -50,10 +51,10 @@ PM> Install-Package TensorFlow.Keras | |||
| ### Install tensorflow binary | |||
| ### For CPU version | |||
| PM> Install-Package SciSharp.TensorFlow.Redist -Version 2.3.1 | |||
| PM> Install-Package SciSharp.TensorFlow.Redist | |||
| ### For GPU version (CUDA and cuDNN are required) | |||
| PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU -Version 2.3.1 | |||
| PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU | |||
| ``` | |||
| Import TF.NET and Keras API in your project. | |||
| @@ -7,7 +7,7 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Binding", "src\T | |||
| EndProject | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Benchmark", "src\TensorFlowNet.Benchmarks\Tensorflow.Benchmark.csproj", "{3A6EB896-604F-4E25-B677-B8103BCF3D2E}" | |||
| EndProject | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.UnitTest", "test\TensorFlowNET.UnitTest\Tensorflow.UnitTest.csproj", "{23C28035-2FCE-41F3-9A12-E73CE8A5AE32}" | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Binding.UnitTest", "test\TensorFlowNET.UnitTest\Tensorflow.Binding.UnitTest.csproj", "{23C28035-2FCE-41F3-9A12-E73CE8A5AE32}" | |||
| EndProject | |||
| Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Console", "src\TensorFlowNET.Console\Tensorflow.Console.csproj", "{03F06299-3F4B-4449-A709-3A647657BC0C}" | |||
| EndProject | |||
| @@ -4,6 +4,8 @@ using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine.DataAdapters; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| using System.Linq; | |||
| using System.Collections.Generic; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -35,13 +37,15 @@ namespace Tensorflow | |||
| public Action<int, int> ConstantString | |||
| => (epoch, iterate) => | |||
| { | |||
| var tensor = tf.constant(new string[] | |||
| var strList = new string[] | |||
| { | |||
| "Biden immigration bill would put millions of illegal immigrants on 8-year fast-track to citizenship", | |||
| "The Associated Press, which also reported that the eight-year path is in the bill.", | |||
| "The bill would also include provisions to stem the flow of migration by addressing root causes of migration from south of the border." | |||
| }); | |||
| var data = tensor.numpy(); | |||
| }; | |||
| var tensor = tf.constant(strList, TF_DataType.TF_STRING); | |||
| var data = tensor.StringData(); | |||
| }; | |||
| public Action<int, int> Variable | |||
| @@ -108,16 +112,18 @@ namespace Tensorflow | |||
| var strides = new[] { 1, 1, 1, 1 }; | |||
| var dilations = new[] { 1, 1, 1, 1 }; | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2D", null, | |||
| null, | |||
| input, filter, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", true, | |||
| "padding", "VALID", | |||
| "explicit_paddings", new int[0], | |||
| "data_format", "NHWC", | |||
| "dilations", dilations); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Conv2D", null, input, filter) | |||
| { | |||
| attrs = ConvertToDict(new | |||
| { | |||
| strides, | |||
| use_cudnn_on_gpu = true, | |||
| padding = "VALID", | |||
| explicit_paddings = new int[0], | |||
| data_format = "NHWC", | |||
| dilations | |||
| }) | |||
| }); | |||
| }; | |||
| public Action<int, int> Conv2DWithVariable | |||
| @@ -128,16 +134,18 @@ namespace Tensorflow | |||
| var strides = new[] { 1, 1, 1, 1 }; | |||
| var dilations = new[] { 1, 1, 1, 1 }; | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2D", null, | |||
| null, | |||
| input, filter, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", true, | |||
| "padding", "VALID", | |||
| "explicit_paddings", new int[0], | |||
| "data_format", "NHWC", | |||
| "dilations", dilations); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Conv2D", null, input, filter) | |||
| { | |||
| attrs = ConvertToDict(new | |||
| { | |||
| strides, | |||
| use_cudnn_on_gpu = true, | |||
| padding = "VALID", | |||
| explicit_paddings = new int[0], | |||
| data_format = "NHWC", | |||
| dilations | |||
| }) | |||
| }); | |||
| }; | |||
| public Action<int, int> Dataset | |||
| @@ -47,7 +47,7 @@ namespace Tensorflow | |||
| // explaination of constant | |||
| mm.Execute(10, 100 * batchSize, basic.Constant2x3); | |||
| mm.Execute(10, 100 * batchSize, basic.ConstantString); | |||
| mm.Execute(10, batchSize, basic.ConstantString); | |||
| // 100K float variable. | |||
| mm.Execute(10, batchSize, basic.Variable); | |||
| @@ -2,7 +2,7 @@ | |||
| <PropertyGroup> | |||
| <OutputType>Exe</OutputType> | |||
| <TargetFramework>netcoreapp3.1</TargetFramework> | |||
| <TargetFramework>net5.0</TargetFramework> | |||
| <RootNamespace>Tensorflow</RootNamespace> | |||
| <AssemblyName>Tensorflow</AssemblyName> | |||
| <Platforms>AnyCPU;x64</Platforms> | |||
| @@ -11,10 +11,11 @@ | |||
| <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'"> | |||
| <DefineConstants>TRACE;DEBUG</DefineConstants> | |||
| <PlatformTarget>x64</PlatformTarget> | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| <PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.3.1" /> | |||
| <PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.4.1" /> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| @@ -13,6 +13,7 @@ | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -37,8 +38,8 @@ namespace Tensorflow | |||
| public Tensor matmul(Tensor a, Tensor b) | |||
| => math_ops.matmul(a, b); | |||
| public Tensor batch_matmul(Tensor x, Tensor y) | |||
| => gen_math_ops.batch_mat_mul(x, y); | |||
| public Tensor batch_matmul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string name = null) | |||
| => math_ops.batch_matmul(x, y, adj_x: adj_x, adj_y: adj_y, name: name); | |||
| } | |||
| public Tensor diag(Tensor diagonal, string name = null) | |||
| @@ -47,7 +48,32 @@ namespace Tensorflow | |||
| public Tensor matmul(Tensor a, Tensor b) | |||
| => math_ops.matmul(a, b); | |||
| public Tensor batch_matmul(Tensor x, Tensor y) | |||
| => gen_math_ops.batch_mat_mul(x, y); | |||
| /// <summary> | |||
| /// Multiply slices of the two matrices "x" and "y". | |||
| /// </summary> | |||
| /// <remarks> | |||
| /// The `BatchMatMul` operation is embedded into the | |||
| /// `MatMul` operation on the DLL side. However the expected | |||
| /// attributes are not the same, hence we need to expose this | |||
| /// method to have the right args list on the `_apply_op_helper` | |||
| /// function. | |||
| /// | |||
| /// For each rank > 2 the first rank - 2 dimensions are considered | |||
| /// as fixed, and have to be consistent across the two matrices. A | |||
| /// common matrix multiplication is then applied over the residual | |||
| /// 2 dimensions. | |||
| /// | |||
| /// e.g. | |||
| /// x is (3, 6, 12); y is (3, 12, 6) | |||
| /// batch_matmul(x, y) ==> (3, 6, 6) | |||
| /// </remarks> | |||
| /// <param name="x"></param> | |||
| /// <param name="y"></param> | |||
| /// <param name="adj_x"></param> | |||
| /// <param name="adj_y"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor batch_matmul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string name = null) | |||
| => math_ops.batch_matmul(x, y, adj_x: adj_x, adj_y: adj_y, name: name); | |||
| } | |||
| } | |||
| @@ -32,6 +32,28 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor erf(Tensor x, string name = null) | |||
| => math_ops.erf(x, name); | |||
| /// <summary> | |||
| /// | |||
| /// </summary> | |||
| /// <param name="arr"></param> | |||
| /// <param name="weights"></param> | |||
| /// <param name="minlength"></param> | |||
| /// <param name="maxlength"></param> | |||
| /// <param name="dtype"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="axis"></param> | |||
| /// <param name="binary_output"></param> | |||
| /// <returns></returns> | |||
| public Tensor bincount(Tensor arr, Tensor weights = null, | |||
| Tensor minlength = null, | |||
| Tensor maxlength = null, | |||
| TF_DataType dtype = TF_DataType.TF_INT32, | |||
| string name = null, | |||
| TensorShape axis = null, | |||
| bool binary_output = false) | |||
| => math_ops.bincount(arr, weights: weights, minlength: minlength, maxlength: maxlength, | |||
| dtype: dtype, name: name, axis: axis, binary_output: binary_output); | |||
| } | |||
| public Tensor abs(Tensor x, string name = null) | |||
| @@ -14,17 +14,18 @@ | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using Tensorflow.Framework; | |||
| namespace Tensorflow | |||
| { | |||
| public partial class tensorflow | |||
| { | |||
| public SparseTensor<T> SparseTensor<T>(long[,] indices, T[] values, long[] dense_shape) | |||
| => new SparseTensor<T>(indices, values, dense_shape); | |||
| public SparseTensor SparseTensor(long[,] indices, Array values, long[] dense_shape) | |||
| => new SparseTensor(indices, values, dense_shape); | |||
| public Tensor sparse_tensor_to_dense<T>(SparseTensor<T> sp_input, | |||
| T default_value = default, | |||
| public Tensor sparse_tensor_to_dense(SparseTensor sp_input, | |||
| Array default_value = default, | |||
| bool validate_indices = true, | |||
| string name = null) | |||
| => gen_sparse_ops.sparse_to_dense(sp_input.indices, | |||
| @@ -14,6 +14,8 @@ | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using Tensorflow.Framework; | |||
| namespace Tensorflow | |||
| { | |||
| public partial class tensorflow | |||
| @@ -24,6 +26,30 @@ namespace Tensorflow | |||
| { | |||
| string_ops ops = new string_ops(); | |||
| /// <summary> | |||
| /// Converts all uppercase characters into their respective lowercase replacements. | |||
| /// </summary> | |||
| /// <param name="input"></param> | |||
| /// <param name="encoding"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor lower(Tensor input, string encoding = "", string name = null) | |||
| => ops.lower(input: input, encoding: encoding, name: name); | |||
| /// <summary> | |||
| /// | |||
| /// </summary> | |||
| /// <param name="input"></param> | |||
| /// <param name="pattern"></param> | |||
| /// <param name="rewrite"></param> | |||
| /// <param name="replace_global"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor regex_replace(Tensor input, string pattern, string rewrite, | |||
| bool replace_global = true, string name = null) | |||
| => ops.regex_replace(input, pattern, rewrite, | |||
| replace_global: replace_global, name: name); | |||
| /// <summary> | |||
| /// Return substrings from `Tensor` of strings. | |||
| /// </summary> | |||
| @@ -40,6 +66,27 @@ namespace Tensorflow | |||
| public Tensor substr(string input, int pos, int len, | |||
| string name = null, string @uint = "BYTE") | |||
| => ops.substr(input, pos, len, @uint: @uint, name: name); | |||
| /// <summary> | |||
| /// String lengths of `input`. | |||
| /// </summary> | |||
| /// <param name="input"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="unit"></param> | |||
| /// <returns></returns> | |||
| public Tensor string_length(Tensor input, string name = null, string unit = "BYTE") | |||
| => ops.string_length(input, name: name, unit: unit); | |||
| public RaggedTensor split(Tensor input, string sep = "", int maxsplit = -1, string name = null) | |||
| => ops.string_split_v2(input, sep: sep, maxsplit : maxsplit, name : name); | |||
| public (RaggedTensor, RaggedTensor) unicode_decode_with_offsets(Tensor input, string input_encoding, | |||
| string errors = "replace", int replacement_char = 0xFFFD, | |||
| bool replace_control_characters = false, string name = null) | |||
| => ops.unicode_decode_with_offsets(input, input_encoding, errors, | |||
| replacement_char: replacement_char, | |||
| replace_control_characters: replace_control_characters, | |||
| name: name); | |||
| } | |||
| } | |||
| } | |||
| @@ -1,90 +0,0 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using Tensorflow.Eager; | |||
| using static Tensorflow.Binding; | |||
| using Google.Protobuf; | |||
| namespace Tensorflow.Contexts | |||
| { | |||
| /// <summary> | |||
| /// Environment in which eager operations execute. | |||
| /// </summary> | |||
| public sealed partial class Context | |||
| { | |||
| // [DebuggerStepThrough] | |||
| public T RunInAutoMode<T>(Func<T> graphAction, Func<T> eagerAction, params object[] args) | |||
| { | |||
| if (tf.Context.has_graph_arg(args)) | |||
| { | |||
| if (executing_eagerly()) | |||
| { | |||
| graph_mode(); | |||
| var result = graphAction(); | |||
| restore_mode(); | |||
| return result; | |||
| } | |||
| else | |||
| { | |||
| return graphAction(); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| return eagerAction(); | |||
| } | |||
| else | |||
| { | |||
| return graphAction(); | |||
| } | |||
| } | |||
| } | |||
| // [DebuggerStepThrough] | |||
| public Tensors RunInAutoMode2(Func<Tensors> graphAction, | |||
| Func<Tensors> eagerAction, | |||
| Action<Operation> recordGradient, | |||
| Tensors tensors) | |||
| { | |||
| if (tf.Context.has_graph_arg(tensors)) | |||
| { | |||
| if (executing_eagerly()) | |||
| { | |||
| graph_mode(); | |||
| var result = graphAction(); | |||
| restore_mode(); | |||
| return result; | |||
| } | |||
| else | |||
| { | |||
| var result = graphAction(); | |||
| if (tf.Runner.MustRecordGradient()) | |||
| recordGradient(result[0].op); | |||
| return result; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| return eagerAction(); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,105 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using Tensorflow.Eager; | |||
| using static Tensorflow.Binding; | |||
| using Google.Protobuf; | |||
| using System.Collections.Generic; | |||
| namespace Tensorflow.Contexts | |||
| { | |||
| /// <summary> | |||
| /// Environment in which eager operations execute. | |||
| /// </summary> | |||
| public sealed partial class Context | |||
| { | |||
| // [DebuggerStepThrough] | |||
| public Tensors ExecuteOp(string OpType, string Name, ExecuteOpArgs args) | |||
| { | |||
| Func<Tensors> graphAction = () => | |||
| { | |||
| var keywords = new Dictionary<string, object>(); | |||
| if(args.OpInputArgs != null) | |||
| { | |||
| foreach (var (i, input) in enumerate(args.OpInputArgs)) | |||
| keywords[$"input_{i}"] = input; | |||
| } | |||
| if(args.OpAttrs != null) | |||
| { | |||
| foreach (var attr in args.OpAttrs) | |||
| keywords[attr.Key] = attr.Value; | |||
| } | |||
| return tf.OpDefLib._apply_op_helper(OpType, Name, keywords).outputs; | |||
| }; | |||
| Func<Tensors> eagerAction = () => | |||
| { | |||
| return tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(OpType, Name, args.OpInputArgs) | |||
| { | |||
| attrs = args.OpAttrs | |||
| }); | |||
| }; | |||
| if (tf.Context.has_graph_arg(args.OpInputArgs)) | |||
| { | |||
| if (executing_eagerly()) | |||
| { | |||
| graph_mode(); | |||
| var result = graphAction(); | |||
| restore_mode(); | |||
| return result; | |||
| } | |||
| else | |||
| { | |||
| var result = graphAction(); | |||
| if (tf.Runner.MustRecordGradient()) | |||
| { | |||
| var op = result[0].op; | |||
| Dictionary<string, object> attrs; | |||
| if (args.GetGradientAttrs == null) | |||
| { | |||
| attrs = new Dictionary<string, object>(); | |||
| attrs["T"] = op.get_attr<TF_DataType>("T"); | |||
| } | |||
| else | |||
| { | |||
| attrs = ConvertToDict(args.GetGradientAttrs(op)); | |||
| } | |||
| var args1 = new object[attrs.Count() * 2]; | |||
| int i = 0; | |||
| foreach (var arg in attrs) | |||
| { | |||
| args1[i] = arg.Key; | |||
| args1[i + 1] = arg.Value; | |||
| i += 2; | |||
| } | |||
| tf.Runner.RecordGradient(OpType, op.inputs, args1, op.outputs); | |||
| } | |||
| return result; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| return eagerAction(); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -136,7 +136,10 @@ namespace Tensorflow.Contexts | |||
| public bool has_graph_arg(params object[] args) | |||
| { | |||
| var flatten_args = nest.flatten<object>(args); | |||
| bool has_graph_arg = false; | |||
| /*if (flatten_args.Count(x => x.GetType().IsValueType) == flatten_args.Count()) | |||
| return tf.Context.executing_eagerly() == false*/ | |||
| bool has_graph_arg = !tf.Context.executing_eagerly(); | |||
| foreach (var el in flatten_args) | |||
| { | |||
| if (el is Tensor tensor && !tensor.IsEagerTensor) | |||
| @@ -0,0 +1,25 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| public class ExecuteOpArgs | |||
| { | |||
| public Func<Operation, object> GetGradientAttrs { get; set; } | |||
| public object[] OpInputArgs { get; set; } | |||
| public Dictionary<string, object> OpAttrs { get; set; } | |||
| public ExecuteOpArgs(params object[] inputArgs) | |||
| { | |||
| OpInputArgs = inputArgs; | |||
| } | |||
| public ExecuteOpArgs SetAttributes(object attrs) | |||
| { | |||
| OpAttrs = ConvertToDict(attrs); | |||
| return this; | |||
| } | |||
| } | |||
| } | |||
| @@ -14,6 +14,7 @@ namespace Tensorflow | |||
| public class DatasetV2 : IDatasetV2 | |||
| { | |||
| protected dataset_ops ops = new dataset_ops(); | |||
| public string[] class_names { get; set; } | |||
| public Tensor variant_tensor { get; set; } | |||
| public TensorSpec[] structure { get; set; } | |||
| @@ -54,7 +55,7 @@ namespace Tensorflow | |||
| public IDatasetV2 optimize(string[] optimizations, string[] optimization_configs) | |||
| => new OptimizeDataset(this, optimizations, optimization_configs: optimization_configs); | |||
| public IDatasetV2 map(Func<Tensor, Tensor> map_func, | |||
| public IDatasetV2 map(Func<Tensors, Tensors> map_func, | |||
| bool use_inter_op_parallelism = true, | |||
| bool preserve_cardinality = true, | |||
| bool use_legacy_function = false) | |||
| @@ -64,9 +65,20 @@ namespace Tensorflow | |||
| preserve_cardinality: preserve_cardinality, | |||
| use_legacy_function: use_legacy_function); | |||
| public IDatasetV2 map(Func<Tensors, Tensors> map_func, int num_parallel_calls = -1) | |||
| public IDatasetV2 map(Func<Tensors, Tensors> map_func, int num_parallel_calls) | |||
| => new ParallelMapDataset(this, map_func, num_parallel_calls: num_parallel_calls); | |||
| public OwnedIterator make_one_shot_iterator() | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| // with ops.colocate_with(self._variant_tensor) | |||
| return new OwnedIterator(this); | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public IDatasetV2 flat_map(Func<Tensor, IDatasetV2> map_func) | |||
| => new FlatMapDataset(this, map_func); | |||
| @@ -104,18 +116,7 @@ namespace Tensorflow | |||
| } | |||
| public Tensor dataset_cardinality(string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DatasetCardinality", name, | |||
| null, | |||
| variant_tensor); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("DatasetCardinality", name, new ExecuteOpArgs(variant_tensor)); | |||
| public override string ToString() | |||
| => $"{GetType().Name} shapes: {string.Join(", ", structure.Select(x => x.shape))}, types: {string.Join(", ", structure.Select(x => "tf." + x.dtype.as_numpy_name()))}"; | |||
| @@ -6,6 +6,8 @@ namespace Tensorflow | |||
| { | |||
| public interface IDatasetV2 : IEnumerable<(Tensor, Tensor)> | |||
| { | |||
| string[] class_names { get; set; } | |||
| Tensor variant_tensor { get; set; } | |||
| TensorShape[] output_shapes { get; } | |||
| @@ -62,13 +64,15 @@ namespace Tensorflow | |||
| IDatasetV2 optimize(string[] optimizations, string[] optimization_configs); | |||
| IDatasetV2 map(Func<Tensor, Tensor> map_func, | |||
| IDatasetV2 map(Func<Tensors, Tensors> map_func, | |||
| bool use_inter_op_parallelism = true, | |||
| bool preserve_cardinality = true, | |||
| bool use_legacy_function = false); | |||
| IDatasetV2 map(Func<Tensors, Tensors> map_func, | |||
| int num_parallel_calls = -1); | |||
| int num_parallel_calls); | |||
| OwnedIterator make_one_shot_iterator(); | |||
| IDatasetV2 flat_map(Func<Tensor, IDatasetV2> map_func); | |||
| @@ -10,16 +10,18 @@ namespace Tensorflow | |||
| public class MapDataset : UnaryDataset | |||
| { | |||
| public MapDataset(IDatasetV2 input_dataset, | |||
| Func<Tensor, Tensor> map_func, | |||
| Func<Tensors, Tensors> map_func, | |||
| bool use_inter_op_parallelism = true, | |||
| bool preserve_cardinality = false, | |||
| bool use_legacy_function = false) : base(input_dataset) | |||
| { | |||
| var func = new ConcreteFunction($"{map_func.Method.Name}_{Guid.NewGuid()}"); | |||
| func.Enter(); | |||
| var input = tf.placeholder(input_dataset.element_spec[0].dtype); | |||
| var output = map_func(input); | |||
| func.ToGraph(input, output); | |||
| var inputs = new Tensors(); | |||
| foreach (var input in input_dataset.element_spec) | |||
| inputs.Add(tf.placeholder(input.dtype, shape: input.shape)); | |||
| var outputs = map_func(inputs); | |||
| func.ToGraph(inputs, outputs); | |||
| func.Exit(); | |||
| structure = func.OutputStructure; | |||
| @@ -26,6 +26,7 @@ namespace Tensorflow | |||
| dataset = dataset.apply_options(); | |||
| _dataset = dataset; | |||
| _element_spec = dataset.element_spec; | |||
| // _flat_output_types = | |||
| (_iterator_resource, _deleter) = ops.anonymous_iterator_v2(_dataset.output_types, _dataset.output_shapes); | |||
| ops.make_iterator(dataset.variant_tensor, _iterator_resource); | |||
| } | |||
| @@ -15,69 +15,54 @@ namespace Tensorflow.Eager | |||
| /// </summary> | |||
| public partial class EagerRunner | |||
| { | |||
| int kFastPathExecuteInputStartIndex = 0; | |||
| UnorderedMap<Context, SafeOpHandle> thread_local_eager_operation_map = new UnorderedMap<Context, SafeOpHandle>(); | |||
| public Tensor[] TFE_FastPathExecute(Context ctx, | |||
| string device_name, | |||
| string opName, | |||
| string name, | |||
| Action callbacks, | |||
| params object[] args) | |||
| public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) | |||
| { | |||
| if (ctx == null) | |||
| throw new ValueError("This function does not handle the case of the path where " + | |||
| "all inputs are not already EagerTensors."); | |||
| if (op_exec_info.ctx == null) | |||
| op_exec_info.ctx = tf.Context; | |||
| if (string.IsNullOrEmpty(op_exec_info.device_name)) | |||
| op_exec_info.device_name = tf.Context.DeviceName; | |||
| int args_size = args.Length; | |||
| var attr_list_sizes = new Dictionary<string, long>(); | |||
| FastPathOpExecInfo op_exec_info = new FastPathOpExecInfo() | |||
| { | |||
| ctx = ctx, | |||
| args = args, | |||
| device_name = device_name, | |||
| op_name = opName, | |||
| name = name, | |||
| }; | |||
| op_exec_info.run_gradient_callback = HasAccumulatorOrTape(); | |||
| op_exec_info.run_post_exec_callbacks = callbacks != null; | |||
| op_exec_info.run_post_exec_callbacks = op_exec_info.callbacks != null; | |||
| op_exec_info.run_callbacks = op_exec_info.run_gradient_callback || op_exec_info.run_post_exec_callbacks; | |||
| var status = tf.Status; | |||
| using var op = GetOp(ctx, opName, status); | |||
| using var op = GetOp(op_exec_info.ctx, op_exec_info.op_name, status); | |||
| var op_def = tf.get_default_graph().GetOpDef(opName); | |||
| var op_def = tf.get_default_graph().GetOpDef(op_exec_info.op_name); | |||
| var flattened_attrs = new List<object>(op_def.Attr.Count * 2); | |||
| var flattened_inputs = new List<Tensor>(op_def.InputArg.Count); | |||
| // Set non-inferred attrs, including setting defaults if the attr is passed in | |||
| // as None. | |||
| for (int i = kFastPathExecuteInputStartIndex + op_def.InputArg.Count; i < args_size; i += 2) | |||
| if(op_exec_info.attrs != null) | |||
| { | |||
| var attr_name = args[i].ToString(); | |||
| var attr_value = args[i + 1]; | |||
| var attr = op_def.Attr.FirstOrDefault(x => x.Name == attr_name); | |||
| if (attr != null) | |||
| foreach (var attr1 in op_exec_info.attrs) | |||
| { | |||
| flattened_attrs.Add(attr_name); | |||
| flattened_attrs.Add(attr_value); | |||
| var attr = op_def.Attr.FirstOrDefault(x => x.Name == attr1.Key); | |||
| if (attr != null) | |||
| { | |||
| flattened_attrs.Add(attr.Name); | |||
| flattened_attrs.Add(attr1.Value); | |||
| SetOpAttrWithDefaults(ctx, op, attr, attr_name, attr_value, attr_list_sizes, status); | |||
| status.Check(true); | |||
| SetOpAttrWithDefaults(op_exec_info.ctx, op, attr, attr.Name, attr1.Value, attr_list_sizes, status); | |||
| status.Check(true); | |||
| } | |||
| } | |||
| } | |||
| c_api.TFE_OpSetDevice(op, device_name, status.Handle); | |||
| c_api.TFE_OpSetDevice(op, op_exec_info.device_name, status.Handle); | |||
| status.Check(true); | |||
| // Add inferred attrs and inputs. | |||
| for (int i = 0; i < op_def.InputArg.Count; i++) | |||
| { | |||
| var input = args[kFastPathExecuteInputStartIndex + i]; | |||
| var input = op_exec_info.args[i]; | |||
| var input_arg = op_def.InputArg[i]; | |||
| if (!string.IsNullOrEmpty(input_arg.NumberAttr)) | |||
| { | |||
| @@ -92,7 +77,7 @@ namespace Tensorflow.Eager | |||
| if (len > 0) | |||
| { | |||
| var fast_input_array = (object[])args[i]; | |||
| var fast_input_array = (object[])op_exec_info.args[i]; | |||
| // First item adds the type attr. | |||
| if (!AddInputToOp(fast_input_array[i], true, input_arg, flattened_attrs, flattened_inputs, op, status)) | |||
| return null; | |||
| @@ -136,7 +121,7 @@ namespace Tensorflow.Eager | |||
| else | |||
| { | |||
| // The item is a single item. | |||
| AddInputToOp(args[i], true, input_arg, flattened_attrs, flattened_inputs, op, status); | |||
| AddInputToOp(op_exec_info.args[i], true, input_arg, flattened_attrs, flattened_inputs, op, status); | |||
| } | |||
| } | |||
| @@ -164,7 +149,7 @@ namespace Tensorflow.Eager | |||
| if (op_exec_info.run_callbacks) | |||
| { | |||
| RunCallbacks(op_exec_info, | |||
| kFastPathExecuteInputStartIndex + op_def.InputArg.Count(), | |||
| op_def.InputArg.Count(), | |||
| flattened_inputs.ToArray(), flattened_attrs.ToArray(), flat_result); | |||
| } | |||
| @@ -1,6 +1,8 @@ | |||
| using Tensorflow.Contexts; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Contexts; | |||
| namespace Tensorflow.Eager | |||
| namespace Tensorflow | |||
| { | |||
| public class FastPathOpExecInfo | |||
| { | |||
| @@ -9,8 +11,17 @@ namespace Tensorflow.Eager | |||
| public string op_name { get; set; } | |||
| public string name { get; set; } | |||
| public object[] args { get; set; } | |||
| public Dictionary<string, object> attrs { get; set; } | |||
| public bool run_gradient_callback { get; set; } | |||
| public bool run_post_exec_callbacks { get; set; } | |||
| public bool run_callbacks { get; set; } | |||
| public Action callbacks { get; set; } | |||
| public FastPathOpExecInfo(string opName, string name, params object[] inputArgs) | |||
| { | |||
| this.op_name = opName; | |||
| this.name = name; | |||
| this.args = inputArgs; | |||
| } | |||
| } | |||
| } | |||
| @@ -16,12 +16,7 @@ namespace Tensorflow.Eager | |||
| TF_DataType default_dtype = TF_DataType.DtInvalid, | |||
| object[] args = null); | |||
| Tensor[] TFE_FastPathExecute(Context ctx, | |||
| string device_name, | |||
| string opName, | |||
| string name, | |||
| Action callbacks, | |||
| params object[] args); | |||
| Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info); | |||
| Tensor[] TFE_Execute(Context ctx, | |||
| string device_name, | |||
| @@ -15,7 +15,7 @@ namespace Tensorflow.Framework.Models | |||
| if (_shape.ndim == 0) | |||
| throw new ValueError("Unbatching a tensor is only supported for rank >= 1"); | |||
| return new TensorSpec(_shape.dims[1..], _dtype); | |||
| return new TensorSpec(_shape.dims.Skip(1).ToArray(), _dtype); | |||
| } | |||
| public TensorSpec _batch(int dim = -1) | |||
| @@ -1,63 +0,0 @@ | |||
| using System; | |||
| using System.Linq; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Framework | |||
| { | |||
| /// <summary> | |||
| /// Represents a sparse tensor. | |||
| /// </summary> | |||
| public class SparseTensor<T> : CompositeTensor, _TensorLike | |||
| { | |||
| long[,] _indices; | |||
| public Tensor indices; | |||
| T[] _values; | |||
| public Tensor values; | |||
| long[] _dense_shape; | |||
| public Tensor dense_shape; | |||
| TensorShape _shape; | |||
| public TensorShape shape => _shape; | |||
| public TF_DataType dtype => dtypes.as_dtype(typeof(T)); | |||
| public SparseTensor(long[,] indices_, T[] values_, long[] dense_shape_) | |||
| { | |||
| tf_with(ops.name_scope(null, "SparseTensor", new { }), delegate | |||
| { | |||
| indices = ops.convert_to_tensor( | |||
| indices_, name: "indices", dtype: dtypes.int64); | |||
| values = ops.convert_to_tensor(values_, name: "values"); | |||
| dense_shape = ops.convert_to_tensor( | |||
| dense_shape_, name: "dense_shape", dtype: dtypes.int64); | |||
| }); | |||
| _indices = indices_; | |||
| _values = values_; | |||
| _dense_shape = dense_shape_; | |||
| var indices_shape = indices.TensorShape.with_rank(2); | |||
| var values_shape = values.TensorShape.with_rank(1); | |||
| var dense_shape_shape = dense_shape.TensorShape.with_rank(1); | |||
| indices_shape["0"].merge_with(values_shape[0]); | |||
| indices_shape["1"].merge_with(dense_shape_shape[0]); | |||
| _shape = new TensorShape(_dense_shape.Select(x => Convert.ToInt32(x)).ToArray()); | |||
| } | |||
| } | |||
| public interface _TensorLike | |||
| { | |||
| } | |||
| public static class sparse_tensor_extension | |||
| { | |||
| public static bool is_sparse(this _TensorLike x) | |||
| { | |||
| return x.GetType().Name.Contains("SparseTensor"); | |||
| } | |||
| } | |||
| } | |||
| @@ -44,14 +44,14 @@ namespace Tensorflow.Framework | |||
| return true; | |||
| } | |||
| if (other.is_sparse()) | |||
| if (other.IsSparseTensor) | |||
| { | |||
| return self.dtype.is_compatible_with(other.dtype); | |||
| } | |||
| return self.dtype.is_compatible_with(other.dtype) && | |||
| _shape_is_compatible_0dim(self.shape, other.shape) && | |||
| !self.is_sparse(); | |||
| !self.IsSparseTensor; | |||
| } | |||
| public static Dimension dimension_at_index(TensorShape shape, int index) | |||
| @@ -30,7 +30,7 @@ namespace Tensorflow.Gradients | |||
| var shape = new TensorShape(image.shape.Skip(1).Take(2).ToArray()); | |||
| Tensor image_shape = null; | |||
| if (shape.is_fully_defined()) | |||
| image_shape = constant_op.constant(image.shape[1..3]); | |||
| image_shape = constant_op.constant(image.shape.Skip(1).Take(2).ToArray()); | |||
| else | |||
| image_shape = array_ops.shape(image)["1:3"]; | |||
| @@ -291,23 +291,23 @@ namespace Tensorflow.Gradients | |||
| var b = math_ops.conj(op.inputs[1]); | |||
| if (!t_a && !t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(grad, b, adj_y: true); | |||
| grad_b = gen_math_ops.batch_mat_mul(a, grad, adj_x: true); | |||
| grad_a = math_ops.batch_matmul(grad, b, adj_y: true); | |||
| grad_b = math_ops.batch_matmul(a, grad, adj_x: true); | |||
| } | |||
| else if (!t_a && t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(grad, b); | |||
| grad_b = gen_math_ops.batch_mat_mul(grad, a, adj_x: true); | |||
| grad_a = math_ops.batch_matmul(grad, b); | |||
| grad_b = math_ops.batch_matmul(grad, a, adj_x: true); | |||
| } | |||
| else if (t_a && !t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(grad, b); | |||
| grad_b = gen_math_ops.batch_mat_mul(grad, a, adj_x: true); | |||
| grad_a = math_ops.batch_matmul(grad, b); | |||
| grad_b = math_ops.batch_matmul(grad, a, adj_x: true); | |||
| } | |||
| else if (t_a && t_b) | |||
| { | |||
| grad_a = gen_math_ops.batch_mat_mul(b, grad, adj_x: true, adj_y: true); | |||
| grad_b = gen_math_ops.batch_mat_mul(grad, a, adj_x: true, adj_y: true); | |||
| grad_a = math_ops.batch_matmul(b, grad, adj_x: true, adj_y: true); | |||
| grad_b = math_ops.batch_matmul(grad, a, adj_x: true, adj_y: true); | |||
| } | |||
| return new Tensor[] { grad_a, grad_b }; | |||
| @@ -0,0 +1,34 @@ | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class Pooling1DArgs : LayerArgs | |||
| { | |||
| /// <summary> | |||
| /// The pooling function to apply, e.g. `tf.nn.max_pool2d`. | |||
| /// </summary> | |||
| public IPoolFunction PoolFunction { get; set; } | |||
| /// <summary> | |||
| /// specifying the size of the pooling window. | |||
| /// </summary> | |||
| public int PoolSize { get; set; } | |||
| /// <summary> | |||
| /// specifying the strides of the pooling operation. | |||
| /// </summary> | |||
| public int Strides { | |||
| get { return _strides.HasValue ? _strides.Value : PoolSize; } | |||
| set { _strides = value; } | |||
| } | |||
| private int? _strides = null; | |||
| /// <summary> | |||
| /// The padding method, either 'valid' or 'same'. | |||
| /// </summary> | |||
| public string Padding { get; set; } = "valid"; | |||
| /// <summary> | |||
| /// one of `channels_last` (default) or `channels_first`. | |||
| /// </summary> | |||
| public string DataFormat { get; set; } | |||
| } | |||
| } | |||
| @@ -0,0 +1,10 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class PreprocessingLayerArgs : LayerArgs | |||
| { | |||
| } | |||
| } | |||
| @@ -0,0 +1,16 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class TextVectorizationArgs : PreprocessingLayerArgs | |||
| { | |||
| public Func<Tensor, Tensor> Standardize { get; set; } | |||
| public string Split { get; set; } = "standardize"; | |||
| public int MaxTokens { get; set; } = -1; | |||
| public string OutputMode { get; set; } = "int"; | |||
| public int OutputSequenceLength { get; set; } = -1; | |||
| public string[] Vocabulary { get; set; } | |||
| } | |||
| } | |||
| @@ -40,37 +40,16 @@ namespace Tensorflow.Operations | |||
| /// <param name="parameters"></param> | |||
| /// <returns></returns> | |||
| public static Tensor conv2d(Conv2dParams parameters) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2D", parameters.Name, | |||
| null, | |||
| parameters.Input, parameters.Filter, | |||
| "strides", parameters.Strides, | |||
| "use_cudnn_on_gpu", parameters.UseCudnnOnGpu, | |||
| "padding", parameters.Padding, | |||
| "explicit_paddings", parameters.ExplicitPaddings, | |||
| "data_format", parameters.DataFormat, | |||
| "dilations", parameters.Dilations); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Conv2D", name: parameters.Name, args: new | |||
| { | |||
| input = parameters.Input, | |||
| filter = parameters.Filter, | |||
| strides = parameters.Strides, | |||
| padding = parameters.Padding, | |||
| use_cudnn_on_gpu = parameters.UseCudnnOnGpu, | |||
| explicit_paddings = parameters.ExplicitPaddings, | |||
| data_format = parameters.DataFormat, | |||
| dilations = parameters.Dilations | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Conv2D", parameters.Name, new ExecuteOpArgs(parameters.Input, parameters.Filter) | |||
| .SetAttributes(new | |||
| { | |||
| strides = parameters.Strides, | |||
| padding = parameters.Padding, | |||
| use_cudnn_on_gpu = parameters.UseCudnnOnGpu, | |||
| explicit_paddings = parameters.ExplicitPaddings, | |||
| data_format = parameters.DataFormat, | |||
| dilations = parameters.Dilations | |||
| })); | |||
| /// <summary> | |||
| /// Computes the gradients of convolution with respect to the filter. | |||
| @@ -83,43 +62,16 @@ namespace Tensorflow.Operations | |||
| string data_format = "NHWC", | |||
| int[] dilations = null, | |||
| string name = null) | |||
| { | |||
| if (explicit_paddings == null) | |||
| explicit_paddings = new int[0]; | |||
| if (dilations == null) | |||
| dilations = new int[] { 1, 1, 1, 1 }; | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2DBackpropFilter", name, | |||
| null, | |||
| input, filter_sizes, out_backprop, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", use_cudnn_on_gpu, | |||
| "padding", padding, | |||
| "explicit_paddings", explicit_paddings, | |||
| "data_format", data_format, | |||
| "dilations", dilations); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Conv2DBackpropFilter", name: name, args: new | |||
| { | |||
| input, | |||
| filter_sizes, | |||
| out_backprop, | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings, | |||
| data_format, | |||
| dilations | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Conv2DBackpropFilter", name, new ExecuteOpArgs(input, filter_sizes, out_backprop) | |||
| .SetAttributes(new | |||
| { | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings = explicit_paddings ?? new int[0], | |||
| data_format, | |||
| dilations = dilations ?? new int[] { 1, 1, 1, 1 } | |||
| })); | |||
| /// <summary> | |||
| /// Computes the gradients of convolution with respect to the input. | |||
| @@ -132,99 +84,29 @@ namespace Tensorflow.Operations | |||
| string data_format = "NHWC", | |||
| int[] dilations = null, | |||
| string name = null) | |||
| { | |||
| if (explicit_paddings == null) | |||
| explicit_paddings = new int[0]; | |||
| if (dilations == null) | |||
| dilations = new int[] { 1, 1, 1, 1 }; | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Conv2DBackpropInput", name, | |||
| null, | |||
| input_sizes, filter, out_backprop, | |||
| "strides", strides, | |||
| "use_cudnn_on_gpu", use_cudnn_on_gpu, | |||
| "padding", padding, | |||
| "explicit_paddings", explicit_paddings, | |||
| "data_format", data_format, | |||
| "dilations", dilations); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Conv2DBackpropInput", name: name, args: new | |||
| { | |||
| input_sizes, | |||
| filter, | |||
| out_backprop, | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings, | |||
| data_format, | |||
| dilations | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Conv2DBackpropInput", name, new ExecuteOpArgs(input_sizes, filter, out_backprop) | |||
| .SetAttributes(new | |||
| { | |||
| strides, | |||
| padding, | |||
| use_cudnn_on_gpu, | |||
| explicit_paddings = explicit_paddings ?? new int[0], | |||
| data_format, | |||
| dilations = dilations ?? new int[] { 1, 1, 1, 1 } | |||
| })); | |||
| public static Tensor bias_add(Tensor value, | |||
| IVariableV1 bias, | |||
| string data_format = null, | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BiasAdd", name, | |||
| null, | |||
| value, bias, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| if (data_format == null) | |||
| data_format = "NHWC"; | |||
| var _op = tf.OpDefLib._apply_op_helper("BiasAdd", name: name, args: new | |||
| { | |||
| value, | |||
| bias, | |||
| data_format | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("BiasAdd", name, new ExecuteOpArgs(value, bias) | |||
| .SetAttributes(new { data_format = data_format ?? "NHWC" })); | |||
| public static Tensor bias_add_grad(Tensor out_backprop, | |||
| string data_format = "NHWC", | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BiasAddGrad", name, | |||
| null, | |||
| out_backprop, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| if (data_format == null) | |||
| data_format = "NHWC"; | |||
| var _op = tf.OpDefLib._apply_op_helper("BiasAddGrad", name: name, args: new | |||
| { | |||
| out_backprop, | |||
| data_format | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("BiasAddGrad", name, new ExecuteOpArgs(out_backprop) | |||
| .SetAttributes(new { data_format = data_format ?? "NHWC" })); | |||
| /// <summary> | |||
| /// Computes exponential linear: <c>exp(features) - 1</c> if &lt; 0, <c>features</c> otherwise. | |||
| @@ -269,29 +151,19 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor[] fused_batch_norm_grad_v3(FusedBatchNormParams @params) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("FusedBatchNormGradV3", name: @params.Name, | |||
| args: new | |||
| { | |||
| y_backprop = @params.YBackprop, | |||
| x = @params.X, | |||
| scale = @params.Scale, | |||
| reserve_space_1 = @params.ReserveSpace1, | |||
| reserve_space_2 = @params.ReserveSpace2, | |||
| reserve_space_3 = @params.ReserveSpace3, | |||
| epsilon = @params.Epsilon, | |||
| data_format = @params.DataFormat, | |||
| is_training = @params.IsTraining | |||
| }).outputs, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FusedBatchNormGradV3", @params.Name, | |||
| null, | |||
| @params.YBackprop, @params.X, @params.Scale, | |||
| @params.ReserveSpace1, @params.ReserveSpace2, @params.ReserveSpace3, | |||
| "epsilon", @params.Epsilon, | |||
| "data_format", @params.DataFormat, | |||
| "is_training", @params.IsTraining), | |||
| @params.YBackprop); | |||
| => tf.Context.ExecuteOp("FusedBatchNormGradV3", @params.Name, | |||
| new ExecuteOpArgs(@params.YBackprop, | |||
| @params.X, | |||
| @params.Scale, | |||
| @params.ReserveSpace1, | |||
| @params.ReserveSpace2, | |||
| @params.ReserveSpace3) | |||
| .SetAttributes(new | |||
| { | |||
| epsilon = @params.Epsilon, | |||
| data_format = @params.DataFormat, | |||
| is_training = @params.IsTraining | |||
| })); | |||
| public static Tensor[] fused_batch_norm(Tensor x, | |||
| Tensor scale, | |||
| @@ -328,39 +200,8 @@ namespace Tensorflow.Operations | |||
| string data_format = "NHWC", | |||
| bool is_training = true, | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FusedBatchNormV3", name, | |||
| null, | |||
| x, | |||
| scale, | |||
| offset, | |||
| mean, | |||
| variance, | |||
| "epsilon", epsilon, | |||
| "exponential_avg_factor", exponential_avg_factor, | |||
| "data_format", data_format, | |||
| "is_training", is_training); | |||
| return results; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormV3", name: name, args: new | |||
| { | |||
| x, | |||
| scale, | |||
| offset, | |||
| mean, | |||
| variance, | |||
| epsilon, | |||
| data_format, | |||
| is_training | |||
| }); | |||
| return _op.outputs; | |||
| } | |||
| => tf.Context.ExecuteOp("FusedBatchNormV3", name, new ExecuteOpArgs(x, scale, offset, mean, variance) | |||
| .SetAttributes(new { epsilon, data_format, is_training })); | |||
| /// <summary> | |||
| /// Local Response Normalization. | |||
| @@ -388,14 +229,7 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor log_softmax(Tensor logits, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("LogSoftmax", name: name, | |||
| args: new { logits }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "LogSoftmax", name, | |||
| null, | |||
| logits).FirstOrDefault(), | |||
| logits); | |||
| => tf.Context.ExecuteOp("LogSoftmax", name, new ExecuteOpArgs(logits)); | |||
| /// <summary> | |||
| /// Says whether the targets are in the top `K` predictions. | |||
| @@ -418,19 +252,8 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor leaky_relu(Tensor features, float alpha = 0.2f, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("LeakyRelu", name: name, | |||
| args: new | |||
| { | |||
| features, | |||
| alpha | |||
| }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "LeakyRelu", name, | |||
| null, | |||
| features, | |||
| "alpha", alpha).FirstOrDefault(), | |||
| features); | |||
| => tf.Context.ExecuteOp("LeakyRelu", name, | |||
| new ExecuteOpArgs(features).SetAttributes(new { alpha })); | |||
| public static Tensor max_pool(Tensor input, | |||
| int[] ksize, | |||
| @@ -438,63 +261,25 @@ namespace Tensorflow.Operations | |||
| string padding, | |||
| string data_format = "NHWC", | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MaxPool", name, | |||
| null, | |||
| input, | |||
| "ksize", ksize, | |||
| "strides", strides, | |||
| "padding", padding, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("MaxPool", name: name, args: new | |||
| { | |||
| input, | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format, | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("MaxPool", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new | |||
| { | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format | |||
| })); | |||
| public static Tensor max_pool_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, | |||
| string data_format = "NHWC", string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MaxPoolGrad", name, | |||
| null, | |||
| orig_input, orig_output, grad, | |||
| "ksize", ksize, | |||
| "strides", strides, | |||
| "padding", padding, | |||
| "data_format", data_format); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("MaxPoolGrad", name: name, args: new | |||
| { | |||
| orig_input, | |||
| orig_output, | |||
| grad, | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("MaxPoolGrad", name, new ExecuteOpArgs(orig_input, orig_output, grad) | |||
| .SetAttributes(new | |||
| { | |||
| ksize, | |||
| strides, | |||
| padding, | |||
| data_format | |||
| })); | |||
| public static Tensor[] top_kv2(Tensor input, int k, bool sorted = true, string name = null) | |||
| { | |||
| @@ -509,68 +294,14 @@ namespace Tensorflow.Operations | |||
| } | |||
| public static Tensor relu_grad(Tensor gradients, Tensor features, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ReluGrad", name, | |||
| null, | |||
| gradients, features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ReluGrad", name: name, args: new | |||
| { | |||
| gradients, | |||
| features | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ReluGrad", name, new ExecuteOpArgs(gradients, features)); | |||
| public static Tensor leaky_relu_grad(Tensor gradients, Tensor features, float alpha = 0.2f, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "LeakyReluGrad", name, | |||
| null, | |||
| gradients, features, | |||
| "alpha", alpha); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("LeakyReluGrad", name: name, args: new | |||
| { | |||
| gradients, | |||
| features, | |||
| alpha | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("LeakyReluGrad", name, new ExecuteOpArgs(gradients, features) | |||
| .SetAttributes(new { alpha })); | |||
| public static Tensor softmax(Tensor logits, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Softmax", name, | |||
| null, | |||
| logits); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Softmax", name: name, args: new | |||
| { | |||
| logits | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Softmax", name, new ExecuteOpArgs(logits)); | |||
| /// <summary> | |||
| /// Computes softmax cross entropy cost and gradients to backpropagate. | |||
| @@ -581,23 +312,9 @@ namespace Tensorflow.Operations | |||
| /// <returns></returns> | |||
| public static (Tensor, Tensor) softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SoftmaxCrossEntropyWithLogits", name, | |||
| null, | |||
| features, labels); | |||
| return (results[0], results[1]); | |||
| } | |||
| var results = tf.Context.ExecuteOp("SoftmaxCrossEntropyWithLogits", name, new ExecuteOpArgs(features, labels)); | |||
| var _op = tf.OpDefLib._apply_op_helper("SoftmaxCrossEntropyWithLogits", name: name, args: new | |||
| { | |||
| features, | |||
| labels | |||
| }); | |||
| return (_op.outputs[0], _op.outputs[1]); | |||
| return (results[0], results[1]); | |||
| } | |||
| /// <summary> | |||
| @@ -629,21 +346,9 @@ namespace Tensorflow.Operations | |||
| /// </remarks> | |||
| public static (Tensor loss, Tensor backprop) sparse_softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string name = "SparseSoftmaxCrossEntropyWithLogits") | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SparseSoftmaxCrossEntropyWithLogits", name, | |||
| null, | |||
| features, labels); | |||
| return (results[0], results[1]); | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("SparseSoftmaxCrossEntropyWithLogits", name: name, args: new { features, labels }); | |||
| int _idx = 0; | |||
| var loss = op.outputs[_idx++]; | |||
| var backprop = op.outputs[_idx++]; | |||
| return (loss, backprop); | |||
| var results = tf.Context.ExecuteOp("SparseSoftmaxCrossEntropyWithLogits", name, new ExecuteOpArgs(features, labels)); | |||
| return (results[0], results[1]); | |||
| } | |||
| /// <summary> | |||
| @@ -653,35 +358,9 @@ namespace Tensorflow.Operations | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>A `Tensor`. Has the same type as `features`.</returns> | |||
| public static Tensor relu(Tensor features, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Relu", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Relu", name: name, args: new { features }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)); | |||
| public static Tensor tanh(Tensor x, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tanh", name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Tanh", name: name, args: new { x }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(x)); | |||
| } | |||
| } | |||
| @@ -68,10 +68,10 @@ namespace Tensorflow | |||
| string _scope_name = scope; | |||
| // Perform input type inference | |||
| foreach (var input_arg in op_def.InputArg) | |||
| foreach (var (i, input_arg) in enumerate(op_def.InputArg)) | |||
| { | |||
| var input_name = input_arg.Name; | |||
| if (keywords.ContainsKey(input_name)) | |||
| values = keywords[input_name]; | |||
| else if (keywords.ContainsKey(input_name + "_")) | |||
| @@ -79,6 +79,10 @@ namespace Tensorflow | |||
| input_name += "_"; | |||
| values = keywords[input_name]; | |||
| } | |||
| else if (keywords.ContainsKey($"input_{i}")) | |||
| { | |||
| values = keywords[$"input_{i}"]; | |||
| } | |||
| else | |||
| throw new TypeError("No argument for input " + input_name); | |||
| @@ -57,20 +57,8 @@ namespace Tensorflow | |||
| /// gradients in some corner cases. | |||
| /// </remarks> | |||
| public static Tensor prevent_gradient(Tensor input, string message = "", string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "PreventGradient", name, | |||
| null, | |||
| input, | |||
| "message", message); | |||
| return results[0]; | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("PreventGradient", name: name, args: new { input, message }); | |||
| return op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("PreventGradient", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { message })); | |||
| internal static Tensor constant(object value, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| @@ -737,44 +725,27 @@ namespace Tensorflow | |||
| public static Tensor strided_slice_grad(Tensor shape, Tensor begin, Tensor end, Tensor strides, Tensor dy, | |||
| long begin_mask = 0, long end_mask = 0, long ellipsis_mask = 0, long new_axis_mask = 0, | |||
| long shrink_axis_mask = 0, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("StridedSliceGrad", name, new | |||
| => tf.Context.ExecuteOp("StridedSliceGrad", name, | |||
| new ExecuteOpArgs(shape, begin, end, strides, dy) | |||
| { | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| Index = op.get_attr<TF_DataType>("Index"), | |||
| begin_mask = op.get_attr<long>("begin_mask"), | |||
| end_mask = op.get_attr<long>("end_mask"), | |||
| ellipsis_mask = op.get_attr<long>("ellipsis_mask"), | |||
| new_axis_mask = op.get_attr<long>("new_axis_mask"), | |||
| shrink_axis_mask = op.get_attr<long>("shrink_axis_mask") | |||
| } | |||
| }.SetAttributes(new | |||
| { | |||
| shape, | |||
| begin, | |||
| end, | |||
| strides, | |||
| dy, | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "StridedSliceGrad", name, | |||
| null, | |||
| shape, begin, end, strides, dy, | |||
| "begin_mask", begin_mask, | |||
| "end_mask", end_mask, | |||
| "ellipsis_mask", ellipsis_mask, | |||
| "new_axis_mask", new_axis_mask, | |||
| "shrink_axis_mask", shrink_axis_mask).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T"), | |||
| "Index", op.get_attr<TF_DataType>("Index"), | |||
| "begin_mask", op.get_attr<long>("begin_mask"), | |||
| "end_mask", op.get_attr<long>("end_mask"), | |||
| "ellipsis_mask", op.get_attr<long>("ellipsis_mask"), | |||
| "new_axis_mask", op.get_attr<long>("new_axis_mask"), | |||
| "shrink_axis_mask", op.get_attr<long>("shrink_axis_mask") | |||
| }; | |||
| tf.Runner.RecordGradient("StridedSliceGrad", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(shape, begin, end, strides, dy)); | |||
| })); | |||
| /// <summary> | |||
| /// Removes dimensions of size 1 from the shape of a tensor. | |||
| @@ -809,38 +780,17 @@ namespace Tensorflow | |||
| int num_cols = -1, | |||
| float padding_value = 0, | |||
| string align = "RIGHT_LEFT") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MatrixDiagV3", name, | |||
| null, | |||
| diagonal, k, num_rows, num_cols, padding_value, | |||
| "align", align); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("MatrixDiagV3", name, | |||
| new ExecuteOpArgs(diagonal, k, num_rows, num_cols, padding_value) | |||
| .SetAttributes(new { align })); | |||
| public static Tensor matrix_set_diag(Tensor input, | |||
| Tensor diagonal, | |||
| string name = "set_diag", | |||
| int k = 0, | |||
| string align = "RIGHT_LEFT") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MatrixSetDiagV3", name, | |||
| null, | |||
| input, diagonal, k, | |||
| "align", align); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("MatrixSetDiagV3", name, new ExecuteOpArgs(input, diagonal, k) | |||
| .SetAttributes(new { align })); | |||
| /// <summary> | |||
| /// Computes the shape of a broadcast given symbolic shapes. | |||
| @@ -969,27 +919,14 @@ namespace Tensorflow | |||
| => gen_array_ops.slice(input, begin, size, name: name); | |||
| public static Tensor slice(Tensor input, Tensor begin, Tensor size, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Slice", name, new | |||
| { | |||
| input, | |||
| begin, | |||
| size | |||
| }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Slice", name, | |||
| null, | |||
| input, begin, size).FirstOrDefault(), | |||
| (op) => | |||
| => tf.Context.ExecuteOp("Slice", name, new ExecuteOpArgs(input, begin, size) | |||
| { | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T"), | |||
| "Index", op.get_attr<int>("Index") | |||
| }; | |||
| tf.Runner.RecordGradient("Slice", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(input, begin, size)); | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| Index = op.get_attr<int>("Index") | |||
| } | |||
| }); | |||
| public static Tensor stack(object values, int axis = 0, string name = "stack") | |||
| { | |||
| @@ -94,20 +94,7 @@ namespace Tensorflow.Operations | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| Tensor unary_op(Tensor x, string opName, string name) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| opName, name, | |||
| null, | |||
| x); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper(opName, name, args: new { x }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp(opName, name, new ExecuteOpArgs(x)); | |||
| /// <summary> | |||
| /// Helper method to invoke binary operator with specified name. | |||
| @@ -118,21 +105,7 @@ namespace Tensorflow.Operations | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| Tensor binary_op(Tensor x, Tensor y, string opName, string name) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| opName, name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper(opName, name, args: new { x, y }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp(opName, name, new ExecuteOpArgs(x, y)); | |||
| #endregion | |||
| } | |||
| } | |||
| @@ -8,26 +8,10 @@ namespace Tensorflow | |||
| public class dataset_ops | |||
| { | |||
| public Tensor tensor_dataset(Tensor[] components, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("TensorDataset", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TensorDataset", name, | |||
| null, | |||
| new object[] | |||
| { | |||
| components, | |||
| "output_shapes", output_shapes | |||
| }); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TensorDataset", | |||
| name: name, | |||
| args: new { components, output_shapes }); | |||
| return _op.output; | |||
| } | |||
| OpInputArgs = new object[] { components } | |||
| }.SetAttributes(new { output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset that emits each dim-0 slice of `components` once. | |||
| @@ -37,192 +21,62 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor tensor_slice_dataset(Tensor[] components, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("TensorSliceDataset", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TensorSliceDataset", name, | |||
| null, | |||
| new object[] | |||
| { | |||
| components, | |||
| "output_shapes", output_shapes | |||
| }); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TensorSliceDataset", | |||
| name: name, | |||
| args: new { components, output_shapes }); | |||
| return _op.outputs[0]; | |||
| } | |||
| OpInputArgs = new object[] { components } | |||
| }.SetAttributes(new { output_shapes })); | |||
| public Tensor range_dataset(Tensor start, Tensor stop, Tensor step, TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RangeDataset", name, | |||
| null, | |||
| start, stop, step, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("RangeDataset", name, new ExecuteOpArgs(start, stop, step) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor repeat_dataset(Tensor input_dataset, Tensor count, TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RepeatDataset", name, | |||
| null, | |||
| input_dataset, count, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("RepeatDataset", name, new ExecuteOpArgs(input_dataset, count) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor shard_dataset(Tensor input_dataset, Tensor num_shards, Tensor index, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool require_non_empty = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ShardDataset", name, | |||
| null, | |||
| input_dataset, num_shards, index, | |||
| "require_non_empty", require_non_empty, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ShardDataset", name, new ExecuteOpArgs(input_dataset, num_shards, index) | |||
| .SetAttributes(new { require_non_empty, output_types, output_shapes })); | |||
| public Tensor zip_dataset(Tensor[] input_datasets, | |||
| TF_DataType[] output_types, | |||
| TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ZipDataset", name, | |||
| null, | |||
| new object[] | |||
| { | |||
| input_datasets, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes | |||
| }); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ZipDataset", name, new ExecuteOpArgs() | |||
| { | |||
| OpInputArgs = new object[] { input_datasets } | |||
| }.SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor shuffle_dataset_v3(Tensor input_dataset, Tensor buffer_size, | |||
| Tensor seed, Tensor seed2, Tensor seed_generator, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool reshuffle_each_iteration = true, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ShuffleDatasetV3", name, | |||
| null, | |||
| input_dataset, buffer_size, | |||
| seed, seed2, seed_generator, | |||
| "reshuffle_each_iteration", reshuffle_each_iteration, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ShuffleDatasetV3", name, new ExecuteOpArgs(input_dataset, buffer_size, seed, seed2, seed_generator) | |||
| .SetAttributes(new { reshuffle_each_iteration, output_types, output_shapes })); | |||
| public Tensor skip_dataset(Tensor input_dataset, Tensor count, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SkipDataset", name, | |||
| null, | |||
| input_dataset, count, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("SkipDataset", name, new ExecuteOpArgs(input_dataset, count) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor dummy_seed_generator(string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DummySeedGenerator", name, | |||
| null); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("DummySeedGenerator", name, new ExecuteOpArgs()); | |||
| public Tensor concatenate_dataset(Tensor input_dataset, Tensor another_dataset, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ConcatenateDataset", name, | |||
| null, | |||
| input_dataset, another_dataset, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ConcatenateDataset", | |||
| name: name, | |||
| args: new { input_dataset, another_dataset, output_types, output_shapes }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ConcatenateDataset", name, new ExecuteOpArgs(input_dataset, another_dataset) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| public Tensor cache_dataset_v2(Tensor input_dataset, Tensor filename, Tensor cache, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "CacheDatasetV2", name, | |||
| null, | |||
| input_dataset, filename, cache, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("CacheDatasetV2", name, new ExecuteOpArgs(input_dataset, filename, cache) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset that batches `batch_size` elements from `input_dataset`. | |||
| @@ -240,21 +94,9 @@ namespace Tensorflow | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool parallel_copy = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BatchDatasetV2", name, | |||
| null, | |||
| input_dataset, buffer_size, drop_remainder, | |||
| "parallel_copy", parallel_copy, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("BatchDatasetV2", name, | |||
| new ExecuteOpArgs(input_dataset, buffer_size, drop_remainder) | |||
| .SetAttributes(new { parallel_copy, output_types, output_shapes })); | |||
| /// <summary> | |||
| /// | |||
| @@ -262,17 +104,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor dummy_memory_cache(string name = "") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DummyMemoryCache", name, | |||
| null); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("DummyMemoryCache", name, new ExecuteOpArgs()); | |||
| /// <summary> | |||
| /// Creates a dataset that asynchronously prefetches elements from `input_dataset`. | |||
| @@ -290,22 +122,14 @@ namespace Tensorflow | |||
| int? slack_period = 0, | |||
| bool legacy_autotune = true, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "PrefetchDataset", name, | |||
| null, | |||
| input_dataset, buffer_size, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "slack_period", slack_period, | |||
| "legacy_autotune", legacy_autotune); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("PrefetchDataset", name, new ExecuteOpArgs(input_dataset, buffer_size) | |||
| .SetAttributes(new | |||
| { | |||
| output_types, | |||
| output_shapes, | |||
| slack_period, | |||
| legacy_autotune | |||
| })); | |||
| /// <summary> | |||
| /// Creates a dataset that contains `count` elements from the `input_dataset`. | |||
| @@ -319,20 +143,8 @@ namespace Tensorflow | |||
| public Tensor take_dataset(Tensor input_dataset, Tensor count, | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TakeDataset", name, | |||
| null, | |||
| input_dataset, count, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("TakeDataset", name, new ExecuteOpArgs(input_dataset, count) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset by applying optimizations to `input_dataset`. | |||
| @@ -348,24 +160,13 @@ namespace Tensorflow | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string[] optimization_configs = null, | |||
| string name = null) | |||
| { | |||
| if (optimization_configs == null) | |||
| optimization_configs = new string[0]; | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "OptimizeDataset", name, | |||
| null, | |||
| input_dataset, optimizations, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "optimization_configs", optimization_configs); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("OptimizeDataset", name, new ExecuteOpArgs(input_dataset, optimizations) | |||
| .SetAttributes(new | |||
| { | |||
| output_types, | |||
| output_shapes, | |||
| optimization_configs = optimization_configs ?? new string[0] | |||
| })); | |||
| /// <summary> | |||
| /// Identity transformation that models performance. | |||
| @@ -381,22 +182,14 @@ namespace Tensorflow | |||
| TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| AutotuneAlgorithm algorithm, long cpu_budget, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ModelDataset", name, | |||
| null, | |||
| input_dataset, | |||
| "algorithm", algorithm, | |||
| "cpu_budget", cpu_budget, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ModelDataset", name, new ExecuteOpArgs(input_dataset) | |||
| .SetAttributes(new | |||
| { | |||
| algorithm, | |||
| cpu_budget, | |||
| output_types, | |||
| output_shapes | |||
| })); | |||
| /// <summary> | |||
| /// A container for an iterator resource. | |||
| @@ -407,17 +200,9 @@ namespace Tensorflow | |||
| /// <returns>A tuple of `Tensor` objects (handle, deleter).</returns> | |||
| public (Tensor, Tensor) anonymous_iterator_v2(TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AnonymousIteratorV2", name, | |||
| null, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return (results[0], results[1]); | |||
| } | |||
| throw new NotImplementedException(""); | |||
| var results = tf.Context.ExecuteOp("AnonymousIteratorV2", name, | |||
| new ExecuteOpArgs().SetAttributes(new { output_types, output_shapes })); | |||
| return (results[0], results[1]); | |||
| } | |||
| /// <summary> | |||
| @@ -427,19 +212,8 @@ namespace Tensorflow | |||
| /// <param name="iterator"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The created Operation.</returns> | |||
| public ITensorOrOperation make_iterator(Tensor dataset, Tensor iterator, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MakeIterator", name, | |||
| null, | |||
| dataset, iterator); | |||
| return null; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public void make_iterator(Tensor dataset, Tensor iterator, string name = null) | |||
| => tf.Context.ExecuteOp("MakeIterator", name, new ExecuteOpArgs(dataset, iterator)); | |||
| /// <summary> | |||
| /// | |||
| @@ -450,23 +224,15 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor map_dataset(Tensor dataset, ConcreteFunction f, TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| bool use_inter_op_parallelism = true, bool preserve_cardinality = false, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "MapDataset", name, | |||
| null, | |||
| dataset, new Tensor[0], | |||
| "f", f, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "use_inter_op_parallelism", use_inter_op_parallelism, | |||
| "preserve_cardinality", preserve_cardinality); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("MapDataset", name, new ExecuteOpArgs(dataset, new Tensor[0]) | |||
| .SetAttributes(new | |||
| { | |||
| f, | |||
| output_types, | |||
| output_shapes, | |||
| use_inter_op_parallelism, | |||
| preserve_cardinality | |||
| })); | |||
| /// <summary> | |||
| /// Creates a dataset that applies `f` to the outputs of `input_dataset`. | |||
| @@ -479,21 +245,8 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor flat_map_dataset(Tensor dataset, ConcreteFunction f, TF_DataType[] output_types, TensorShape[] output_shapes, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "FlatMapDataset", name, | |||
| null, | |||
| dataset, new Tensor[0], | |||
| "f", f, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("FlatMapDataset", name, new ExecuteOpArgs(dataset, new Tensor[0]) | |||
| .SetAttributes(new { f, output_types, output_shapes })); | |||
| /// <summary> | |||
| /// Creates a dataset that applies `f` to the outputs of `input_dataset`. | |||
| @@ -512,24 +265,17 @@ namespace Tensorflow | |||
| string deterministic = "default", | |||
| bool preserve_cardinality = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ParallelMapDatasetV2", name, | |||
| null, | |||
| dataset, new Tensor[0], num_parallel_calls, | |||
| "f", f, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes, | |||
| "use_inter_op_parallelism", use_inter_op_parallelism, | |||
| "deterministic", deterministic, | |||
| "preserve_cardinality", preserve_cardinality); | |||
| return results[0]; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ParallelMapDatasetV2", name, | |||
| new ExecuteOpArgs(dataset, new Tensor[0], num_parallel_calls) | |||
| .SetAttributes(new | |||
| { | |||
| f, | |||
| output_types, | |||
| output_shapes, | |||
| use_inter_op_parallelism, | |||
| deterministic, | |||
| preserve_cardinality | |||
| })); | |||
| /// <summary> | |||
| /// A container for an iterator resource. | |||
| @@ -538,19 +284,8 @@ namespace Tensorflow | |||
| /// <param name="deleter"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns>The created Operation.</returns> | |||
| public ITensorOrOperation delete_iterator(Tensor handle, Tensor deleter, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DeleteIterator", name, | |||
| null, | |||
| handle, deleter); | |||
| return null; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| public void delete_iterator(Tensor handle, Tensor deleter, string name = null) | |||
| => tf.Context.ExecuteOp("DeleteIterator", name, new ExecuteOpArgs(handle, deleter)); | |||
| /// <summary> | |||
| /// Gets the next output from the given iterator . | |||
| @@ -561,19 +296,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public Tensor[] iterator_get_next(Tensor iterator, TF_DataType[] output_types, TensorShape[] output_shapes, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "IteratorGetNext", name, | |||
| null, | |||
| iterator, | |||
| "output_types", output_types, | |||
| "output_shapes", output_shapes); | |||
| return results; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("IteratorGetNext", name, new ExecuteOpArgs(iterator) | |||
| .SetAttributes(new { output_types, output_shapes })); | |||
| } | |||
| } | |||
| @@ -45,20 +45,7 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor concat_v2<T, Ta>(T[] values, Ta axis, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ConcatV2", name, | |||
| null, | |||
| values, axis); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ConcatV2", name: name, args: new { values, axis }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); | |||
| public static Tensor concat_v2(Tensor[] values, Tensor axis, string name = null) | |||
| { | |||
| @@ -72,14 +59,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor concat_v2(Tensor[] values, int axis, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("ConcatV2", name: name, | |||
| args: new { values, axis }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ConcatV2", name, | |||
| null, | |||
| values, axis).FirstOrDefault(), | |||
| values); | |||
| => tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); | |||
| private static Tensor concat_v2_eager_fallback<T1, T2>(T1[] values, T2 axis, string name, Context ctx) | |||
| { | |||
| @@ -131,38 +111,11 @@ namespace Tensorflow | |||
| /// </code> | |||
| /// </remarks> | |||
| public static Tensor diag(Tensor diagonal, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Diag", name, | |||
| null, | |||
| diagonal); | |||
| return results[0]; | |||
| } | |||
| var op = tf.OpDefLib._apply_op_helper("Diag", name: name, args: new { diagonal }); | |||
| return op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Diag", name, new ExecuteOpArgs(diagonal)); | |||
| public static Tensor expand_dims(Tensor input, int axis, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ExpandDims", name, | |||
| null, | |||
| input, tf.convert_to_tensor(axis)); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ExpandDims", name: name, args: new { input, dim = axis }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ExpandDims", name, new ExecuteOpArgs(input, axis) | |||
| .SetAttributes(new { dim = axis })); | |||
| public static Tensor gather_v2<T1, T2>(T1 @params, T2 indices, int axis, string name = null) | |||
| { | |||
| @@ -202,14 +155,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor pack(Tensor[] values, int axis = 0, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Pack", name, new { values, axis }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Pack", name, | |||
| null, | |||
| values, | |||
| "axis", axis).FirstOrDefault(), | |||
| values, axis); | |||
| => tf.Context.ExecuteOp("Pack", name, new ExecuteOpArgs() | |||
| { | |||
| OpInputArgs = new object[] { values } | |||
| }.SetAttributes(new { axis })); | |||
| /// <summary> | |||
| /// Return a tensor with the same shape and contents as the input tensor or value. | |||
| @@ -217,29 +166,7 @@ namespace Tensorflow | |||
| /// <param name="input"></param> | |||
| /// <param name="name"></param> | |||
| public static Tensor identity(Tensor input, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Identity", name, | |||
| null, | |||
| input); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Identity", name, new { input }); | |||
| if (tf.Runner.MustRecordGradient()) | |||
| { | |||
| tf.Runner.RecordGradient("Identity", _op.inputs, new object[] | |||
| { | |||
| "T", _op.get_attr<TF_DataType>("T") | |||
| }, _op.outputs); | |||
| } | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Identity", name, new ExecuteOpArgs(input)); | |||
| public static Tensor invert_permutation(Tensor x, string name = null) | |||
| { | |||
| @@ -256,21 +183,7 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor rank(Tensor input, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Rank", name, | |||
| null, | |||
| input); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Rank", name: name, args: new { input }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Rank", name, new ExecuteOpArgs(input)); | |||
| /// <summary> | |||
| /// Creates a tensor filled with a scalar value. | |||
| @@ -280,20 +193,7 @@ namespace Tensorflow | |||
| /// <param name="name">A name for the operation (optional).</param> | |||
| /// <returns>A `Tensor`. Has the same type as `value`.</returns> | |||
| public static Tensor fill<T>(Tensor dims, T value, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Fill", name, | |||
| null, | |||
| dims, value); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Fill", name, new { dims, value }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("Fill", name, new ExecuteOpArgs(dims, value)); | |||
| /// <summary> | |||
| /// Return the reduction indices for computing gradients of s0 op s1 with broadcast. | |||
| @@ -304,19 +204,8 @@ namespace Tensorflow | |||
| /// <returns>A tuple of `Tensor` objects (r0, r1).</returns> | |||
| public static (Tensor, Tensor) broadcast_gradient_args(Tensor s0, Tensor s1, string name = "") | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BroadcastGradientArgs", name, | |||
| null, | |||
| s0, s1); | |||
| return (results[0], results[1]); | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("BroadcastGradientArgs", name, new { s0, s1 }); | |||
| return (_op.outputs[0], _op.outputs[1]); | |||
| var results = tf.Context.ExecuteOp("BroadcastGradientArgs", name, new ExecuteOpArgs(s0, s1)); | |||
| return (results[0], results[1]); | |||
| } | |||
| public static Tensor reverse<T>(Tensor tensor, T axis, string name = null) | |||
| @@ -326,31 +215,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor reshape<T>(Tensor tensor, T shape, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Reshape", name, new { tensor, shape }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Reshape", name, | |||
| null, | |||
| tensor, shape).FirstOrDefault(), | |||
| tensor, shape); | |||
| => tf.Context.ExecuteOp("Reshape", name, new ExecuteOpArgs(tensor, shape)); | |||
| public static Tensor reshape(Tensor tensor, object[] shape, string name = null) | |||
| { | |||
| try | |||
| { | |||
| return tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Reshape", name, new { tensor, shape }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Reshape", name, | |||
| null, | |||
| tensor, shape).FirstOrDefault(), | |||
| tensor, shape); | |||
| } | |||
| catch (InvalidArgumentError ex) | |||
| { | |||
| return reshape_eager_fallback(tensor, shape, name, tf.Context); | |||
| } | |||
| } | |||
| => tf.Context.ExecuteOp("Reshape", name, new ExecuteOpArgs(tensor, shape)); | |||
| private static Tensor reshape_eager_fallback(Tensor tensor, object[] shape, string name, Context ctx) | |||
| { | |||
| @@ -400,21 +268,8 @@ namespace Tensorflow | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int axis = -1, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "OneHot", name, | |||
| null, | |||
| indices, depth, on_value, off_value, | |||
| "axis", axis); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("OneHot", name, new { indices, depth, on_value, off_value, axis }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("OneHot", name, new ExecuteOpArgs(indices, depth, on_value, off_value) | |||
| .SetAttributes(new { axis })); | |||
| /// <summary> | |||
| /// A placeholder op that passes through `input` when its output is not fed. | |||
| @@ -430,35 +285,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor select<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Select", name, | |||
| null, | |||
| condition, x, y); | |||
| return results[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Select", name, new ExecuteOpArgs(condition, x, y)); | |||
| var _op = tf.OpDefLib._apply_op_helper("Select", name, new { condition, t = x, e = y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| public static Tensor select_v2<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SelectV2", name, | |||
| null, | |||
| condition, x, y); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("SelectV2", name, new { condition, t = x, e = y }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("SelectV2", name, new ExecuteOpArgs(condition, x, y)); | |||
| public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null) | |||
| { | |||
| @@ -467,15 +297,8 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Shape", name, | |||
| new { input, out_type }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Shape", name, | |||
| null, | |||
| input, | |||
| "out_type", out_type).FirstOrDefault(), | |||
| input); | |||
| => tf.Context.ExecuteOp("Shape", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { out_type })); | |||
| /// <summary> | |||
| /// Returns shape of tensors. | |||
| @@ -485,21 +308,10 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor[] shape_n(Tensor[] input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| => tf.Context.ExecuteOp("ShapeN", name, new ExecuteOpArgs() | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ShapeN", name, | |||
| null, | |||
| input, | |||
| "out_type", out_type); | |||
| return results; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ShapeN", name, new { input, out_type }); | |||
| return _op.outputs; | |||
| } | |||
| OpInputArgs = new object[] { input } | |||
| }.SetAttributes(new { out_type })); | |||
| public static Tensor size(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
| { | |||
| @@ -542,72 +354,23 @@ namespace Tensorflow | |||
| public static Tensor[] split_v(Tensor value, Tensor size_splits, | |||
| int axis, int num_split, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "SplitV", name, | |||
| null, | |||
| value, size_splits, axis, | |||
| "num_split", num_split); | |||
| return results; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("SplitV", name, new { split_dim = axis, value, num_split }); | |||
| return _op.outputs; | |||
| } | |||
| => tf.Context.ExecuteOp("SplitV", name, new ExecuteOpArgs(value, size_splits, axis) | |||
| .SetAttributes(new { num_split })); | |||
| public static Tensor tile(Tensor input, Tensor multiples, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Tile", name, new { input, multiples }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tile", name, | |||
| null, | |||
| input, multiples).FirstOrDefault(), | |||
| input, multiples); | |||
| => tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples)); | |||
| public static Tensor tile(Tensor input, object[] multiples, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("Tile", name, new { input, multiples }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tile", name, | |||
| null, | |||
| input, multiples).FirstOrDefault(), | |||
| input, multiples); | |||
| => tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples)); | |||
| public static Tensor transpose<T1>(Tensor x, T1 perm, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Transpose", name, | |||
| null, | |||
| x, perm); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Transpose", name, new { x, perm }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Transpose", name, new ExecuteOpArgs(x, perm)); | |||
| public static Tensor ones_like(Tensor x, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("OnesLike", name, new { x }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "OnesLike", name, | |||
| null, | |||
| x).FirstOrDefault(), | |||
| x); | |||
| => tf.Context.ExecuteOp("OnesLike", name, new ExecuteOpArgs(x)); | |||
| public static Tensor zeros_like(Tensor x, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("ZerosLike", name, new { x }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ZerosLike", name, | |||
| null, | |||
| x).FirstOrDefault(), | |||
| x); | |||
| => tf.Context.ExecuteOp("ZerosLike", name, new ExecuteOpArgs(x)); | |||
| public static Tensor stop_gradient(Tensor x, string name = null) | |||
| { | |||
| @@ -623,53 +386,32 @@ namespace Tensorflow | |||
| long new_axis_mask = 0, | |||
| long shrink_axis_mask = 0, | |||
| string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("StridedSlice", name, new | |||
| { | |||
| input, | |||
| begin, | |||
| end, | |||
| strides, | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "StridedSlice", name, | |||
| null, | |||
| input, begin, end, strides, | |||
| "begin_mask", begin_mask, | |||
| "end_mask", end_mask, | |||
| "ellipsis_mask", ellipsis_mask, | |||
| "new_axis_mask", new_axis_mask, | |||
| "shrink_axis_mask", shrink_axis_mask).FirstOrDefault(), | |||
| input, begin, end, strides); | |||
| public static Operation resource_strided_slice_assign(Tensor input, Tensor begin, Tensor end, Tensor strides, Tensor value, | |||
| => tf.Context.ExecuteOp("StridedSlice", name, new ExecuteOpArgs(input, begin, end, strides) | |||
| .SetAttributes(new | |||
| { | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| })); | |||
| public static Tensor resource_strided_slice_assign(Tensor input, Tensor begin, Tensor end, Tensor strides, Tensor value, | |||
| int begin_mask = 0, | |||
| int end_mask = 0, | |||
| int ellipsis_mask = 0, | |||
| int new_axis_mask = 0, | |||
| int shrink_axis_mask = 0, | |||
| string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("ResourceStridedSliceAssign", name, new | |||
| { | |||
| input, begin, end, strides, value, | |||
| begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask | |||
| }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResourceStridedSliceAssign", name, | |||
| null, | |||
| input, begin, end, strides, value, | |||
| "begin_mask", begin_mask, | |||
| "end_mask", end_mask, | |||
| "ellipsis_mask", ellipsis_mask, | |||
| "new_axis_mask", new_axis_mask, | |||
| "shrink_axis_mask", shrink_axis_mask).FirstOrDefault(), | |||
| input, begin, end, strides, value); | |||
| => tf.Context.ExecuteOp("ResourceStridedSliceAssign", name, new ExecuteOpArgs(input, begin, end, strides, value) | |||
| .SetAttributes(new | |||
| { | |||
| begin_mask, | |||
| end_mask, | |||
| ellipsis_mask, | |||
| new_axis_mask, | |||
| shrink_axis_mask | |||
| })); | |||
| public static Tensor strided_slice<T>(Tensor input, T[] begin, T[] end, T[] strides, | |||
| int begin_mask = 0, | |||
| @@ -707,23 +449,8 @@ namespace Tensorflow | |||
| /// <param name="name"> A name for the operation (optional).</param> | |||
| /// <returns> A `Tensor`. Has the same type as `input`.</returns> | |||
| public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Squeeze", name, | |||
| null, | |||
| input, | |||
| "squeeze_dims", axis); | |||
| return results[0]; | |||
| } | |||
| if (axis == null) axis = new int[0]; | |||
| var _op = tf.OpDefLib._apply_op_helper("Squeeze", name, args: new { input, squeeze_dims = axis }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Squeeze", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { squeeze_dims = axis })); | |||
| /// <summary> | |||
| /// Return the shape of s0 op s1 with broadcast. | |||
| @@ -749,20 +476,6 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor broadcast_to<T>(Tensor input, T shape, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "BroadcastTo", name, | |||
| null, | |||
| input, shape); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("BroadcastTo", name, args: new { input, shape, name }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("BroadcastTo", name, new ExecuteOpArgs(input, shape)); | |||
| } | |||
| } | |||
| @@ -70,38 +70,17 @@ namespace Tensorflow | |||
| float acceptable_fraction = 1, | |||
| string dct_method = "", | |||
| string name = null) | |||
| { | |||
| // Add nodes to the TensorFlow graph. | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DecodeJpeg", name, | |||
| null, | |||
| contents, | |||
| "channels", channels, | |||
| "ratio", ratio, | |||
| "fancy_upscaling", fancy_upscaling, | |||
| "try_recover_truncated", try_recover_truncated, | |||
| "acceptable_fraction", acceptable_fraction, | |||
| "dct_method", dct_method); | |||
| return results[0]; | |||
| } | |||
| else | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("DecodeJpeg", name: name, args: new | |||
| { | |||
| contents, | |||
| channels, | |||
| ratio, | |||
| fancy_upscaling, | |||
| try_recover_truncated, | |||
| acceptable_fraction, | |||
| dct_method | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| } | |||
| => tf.Context.ExecuteOp("DecodeJpeg", name, | |||
| new ExecuteOpArgs(contents).SetAttributes( | |||
| new | |||
| { | |||
| channels, | |||
| ratio, | |||
| fancy_upscaling, | |||
| try_recover_truncated, | |||
| acceptable_fraction, | |||
| dct_method | |||
| })); | |||
| public static Tensor decode_gif(Tensor contents, | |||
| string name = null) | |||
| @@ -171,99 +150,36 @@ namespace Tensorflow | |||
| bool align_corners = false, | |||
| bool half_pixel_centers = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResizeBilinear", name, | |||
| null, | |||
| images, size, | |||
| "align_corners", align_corners, | |||
| "half_pixel_centers", half_pixel_centers); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ResizeBilinear", name: name, args: new | |||
| { | |||
| images, | |||
| size, | |||
| align_corners | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ResizeBilinear", name, | |||
| new ExecuteOpArgs(images, size).SetAttributes(new | |||
| { | |||
| align_corners, | |||
| half_pixel_centers | |||
| })); | |||
| public static Tensor resize_bicubic(Tensor images, | |||
| Tensor size, | |||
| bool align_corners = false, | |||
| bool half_pixel_centers = false, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResizeBicubic", name, | |||
| null, | |||
| images, size, | |||
| "align_corners", align_corners, | |||
| "half_pixel_centers", half_pixel_centers); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ResizeBicubic", name: name, args: new | |||
| { | |||
| images, | |||
| size, | |||
| align_corners | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ResizeBicubic", name, | |||
| new ExecuteOpArgs(images, size).SetAttributes(new { align_corners, half_pixel_centers })); | |||
| public static Tensor resize_nearest_neighbor<Tsize>(Tensor images, Tsize size, bool align_corners = false, | |||
| bool half_pixel_centers = false, string name = null) | |||
| => tf.Context.RunInAutoMode(() | |||
| => tf.OpDefLib._apply_op_helper("ResizeNearestNeighbor", name: name, args: new | |||
| { | |||
| images, | |||
| size, | |||
| align_corners, | |||
| half_pixel_centers | |||
| }).output, () | |||
| => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResizeNearestNeighbor", name, | |||
| null, | |||
| images, size, | |||
| "align_corners", align_corners, | |||
| "half_pixel_centers", half_pixel_centers).FirstOrDefault(), | |||
| images); | |||
| => tf.Context.ExecuteOp("ResizeNearestNeighbor", name, | |||
| new ExecuteOpArgs(images, size).SetAttributes(new { align_corners, half_pixel_centers })); | |||
| public static Tensor resize_nearest_neighbor_grad(Tensor grads, Tensor size, bool align_corners = false, | |||
| bool half_pixel_centers = false, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("ResizeNearestNeighborGrad", name, new | |||
| => tf.Context.ExecuteOp("ResizeNearestNeighborGrad", name, new ExecuteOpArgs(grads, size) | |||
| { | |||
| grads, | |||
| size, | |||
| align_corners, | |||
| half_pixel_centers | |||
| }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResizeNearestNeighborGrad", name, | |||
| null, | |||
| grads, size, | |||
| "align_corners", align_corners, | |||
| "half_pixel_centers", half_pixel_centers).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| GetGradientAttrs = (op) => new | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T"), | |||
| "align_corners", op.get_attr<bool>("align_corners"), | |||
| "half_pixel_centers", op.get_attr<bool>("half_pixel_centers") | |||
| }; | |||
| tf.Runner.RecordGradient("ResizeNearestNeighborGrad", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(grads, size)); | |||
| T = op.get_attr<TF_DataType>("T"), | |||
| align_corners = op.get_attr<bool>("align_corners"), | |||
| half_pixel_centers = op.get_attr<bool>("half_pixel_centers") | |||
| } | |||
| }.SetAttributes(new { align_corners, half_pixel_centers })); | |||
| } | |||
| } | |||
| @@ -25,10 +25,9 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( | |||
| "Assert", name, | |||
| null, | |||
| new object[] { condition, data, summarize }); | |||
| new object[] { condition, data, summarize })); | |||
| return results[0]; | |||
| } | |||
| @@ -6,13 +6,6 @@ namespace Tensorflow | |||
| public static partial class gen_math_ops | |||
| { | |||
| public static Tensor mul(IntPtr x, IntPtr y, string name = null) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Mul", name, | |||
| null, | |||
| x, y); | |||
| return results[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); | |||
| } | |||
| } | |||
| @@ -29,31 +29,8 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor random_standard_normal(Tensor shape, TF_DataType dtype = TF_DataType.DtInvalid, int? seed = null, int? seed2 = null, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RandomStandardNormal", name, | |||
| null, | |||
| shape, | |||
| "seed", seed, | |||
| "seed2", seed2, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| if (!seed.HasValue) | |||
| seed = 0; | |||
| if (!seed2.HasValue) | |||
| seed2 = 0; | |||
| var _op = tf.OpDefLib._apply_op_helper("RandomStandardNormal", | |||
| name: name, | |||
| args: new { shape, dtype, seed, seed2 }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("RandomStandardNormal", name, new ExecuteOpArgs(shape) | |||
| .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
| /// <summary> | |||
| /// Outputs random integers from a uniform distribution. | |||
| @@ -89,31 +66,8 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor random_uniform(Tensor shape, TF_DataType dtype, int? seed = 0, int? seed2 = 0, string name = null) | |||
| { | |||
| if (!seed.HasValue) | |||
| seed = 0; | |||
| if (!seed2.HasValue) | |||
| seed2 = 0; | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RandomUniform", name, | |||
| null, | |||
| shape, | |||
| "seed", seed, | |||
| "seed2", seed2, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("RandomUniform", | |||
| name: name, | |||
| args: new { shape, dtype, seed, seed2 }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("RandomUniform", name, new ExecuteOpArgs(shape) | |||
| .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
| /// <summary> | |||
| /// | |||
| @@ -125,25 +79,7 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static Tensor random_shuffle(Tensor value, int seed = 0, int seed2 = 0, | |||
| string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "RandomShuffle", name, | |||
| null, | |||
| value, | |||
| "seed", seed, | |||
| "seed2", seed2); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("RandomShuffle", | |||
| name: name, | |||
| args: new { value, seed, seed2 }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("RandomShuffle", name, new ExecuteOpArgs(value, seed, seed2)); | |||
| /// <summary> | |||
| /// Outputs random values from a truncated normal distribution. | |||
| @@ -156,31 +92,8 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public static Tensor truncated_normal(Tensor shape, TF_DataType dtype, int? seed = 0, | |||
| int? seed2 = 0, string name = null) | |||
| { | |||
| if (!seed.HasValue) | |||
| seed = 0; | |||
| if (!seed2.HasValue) | |||
| seed2 = 0; | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "TruncatedNormal", name, | |||
| null, | |||
| shape, | |||
| "seed", seed, | |||
| "seed2", seed2, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("TruncatedNormal", | |||
| name: name, | |||
| args: new { shape, dtype, seed, seed2 }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("TruncatedNormal", name, new ExecuteOpArgs(shape) | |||
| .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
| public static Tensor multinomial(Tensor logits, int num_samples, int? seed = 0, | |||
| int? seed2 = 0, TF_DataType output_dtype = TF_DataType.TF_INT64, string name = null) | |||
| @@ -24,10 +24,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AssignSubVariableOp", name, | |||
| null, | |||
| resource, value); | |||
| tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( | |||
| "AssignSubVariableOp", name, resource, value)); | |||
| return null; | |||
| } | |||
| @@ -46,10 +44,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AssignAddVariableOp", name, | |||
| null, | |||
| resource, value); | |||
| tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AssignAddVariableOp", name, | |||
| resource, value)); | |||
| return null; | |||
| } | |||
| @@ -63,10 +59,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AssignVariableOp", name, | |||
| null, | |||
| resource, value); | |||
| tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AssignVariableOp", name, | |||
| resource, value)); | |||
| return null; | |||
| } | |||
| @@ -80,10 +74,8 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "VarIsInitializedOp", name, | |||
| null, | |||
| resource); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("VarIsInitializedOp", name, | |||
| resource)); | |||
| return results[0]; | |||
| } | |||
| @@ -107,14 +99,17 @@ namespace Tensorflow | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "VarHandleOp", name, | |||
| null, | |||
| "container", container, | |||
| "shared_name", shared_name, | |||
| "dtype", dtype, | |||
| "shape", shape.dims, | |||
| "allowed_devices", new string[0]); | |||
| var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("VarHandleOp", name) | |||
| { | |||
| attrs = ConvertToDict(new | |||
| { | |||
| dtype, | |||
| shape = shape.dims, | |||
| container, | |||
| shared_name, | |||
| allowed_devices = new string[0] | |||
| }) | |||
| }); | |||
| return results[0]; | |||
| } | |||
| @@ -131,26 +126,8 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor destroy_resource_op(Tensor resource, bool ignore_lookup_error = true, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "DestroyResourceOp", name, | |||
| null, | |||
| resource, | |||
| "ignore_lookup_error", ignore_lookup_error); | |||
| return results.Length == 0 ? null : results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("DestroyResourceOp", name, new | |||
| { | |||
| resource, | |||
| ignore_lookup_error | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("DestroyResourceOp", name, | |||
| new ExecuteOpArgs(resource).SetAttributes(new { ignore_lookup_error })); | |||
| /// <summary> | |||
| /// Reads the value of a variable. | |||
| @@ -160,26 +137,8 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor read_variable_op(Tensor resource, TF_DataType dtype, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ReadVariableOp", name, | |||
| null, | |||
| resource, | |||
| "dtype", dtype); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ReadVariableOp", name, new | |||
| { | |||
| resource, | |||
| dtype | |||
| }); | |||
| return _op.output; | |||
| } | |||
| => tf.Context.ExecuteOp("ReadVariableOp", name, new ExecuteOpArgs(resource) | |||
| .SetAttributes(new { dtype })); | |||
| public static Tensor resource_gather(Tensor resource, Tensor indices, TF_DataType dtype, | |||
| int batch_dims = 0, bool validate_indices = true, string name = null) | |||
| @@ -45,21 +45,7 @@ namespace Tensorflow | |||
| => gen_math_ops.add(x, y, name); | |||
| public static Tensor add_v2(Tensor x, Tensor y, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("AddV2", name, new { x, y }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "AddV2", name, | |||
| null, | |||
| x, y).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T") | |||
| }; | |||
| tf.Runner.RecordGradient("AddV2", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(x, y)); | |||
| => tf.Context.ExecuteOp("AddV2", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor add_v2<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.add_v2(x, y, name); | |||
| @@ -182,15 +168,12 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor cumsum<T>(Tensor x, T axis = default, bool exclusive = false, bool reverse = false, string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "Cumsum", new { x }), scope => | |||
| { | |||
| name = scope; | |||
| x = ops.convert_to_tensor(x, name: "x"); | |||
| return gen_math_ops.cumsum(x, axis: axis, exclusive: exclusive, reverse: reverse, name: name); | |||
| }); | |||
| } | |||
| => tf_with(ops.name_scope(name, "Cumsum", new { x }), scope => | |||
| { | |||
| name = scope; | |||
| return tf.Context.ExecuteOp("Cumsum", name, new ExecuteOpArgs(x, axis) | |||
| .SetAttributes(new { exclusive, reverse })); | |||
| }); | |||
| /// <summary> | |||
| /// Computes Psi, the derivative of Lgamma (the log of the absolute value of | |||
| @@ -272,41 +255,13 @@ namespace Tensorflow | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public static Tensor erf(Tensor x, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Erf", name, new { x }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Erf", name, | |||
| null, | |||
| x).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T") | |||
| }; | |||
| tf.Runner.RecordGradient("Erf", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(x)); | |||
| => tf.Context.ExecuteOp("Erf", name, new ExecuteOpArgs(x)); | |||
| public static Tensor sqrt(Tensor x, string name = null) | |||
| => gen_math_ops.sqrt(x, name: name); | |||
| public static Tensor multiply(Tensor x, Tensor y, string name = null) | |||
| => tf.Context.RunInAutoMode2( | |||
| () => tf.OpDefLib._apply_op_helper("Mul", name, new { x, y }).output, | |||
| () => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Mul", name, | |||
| null, | |||
| x, y).FirstOrDefault(), | |||
| (op) => | |||
| { | |||
| var attrs = new object[] | |||
| { | |||
| "T", op.get_attr<TF_DataType>("T") | |||
| }; | |||
| tf.Runner.RecordGradient("Mul", op.inputs, attrs, op.outputs); | |||
| }, | |||
| new Tensors(x, y)); | |||
| => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); | |||
| public static Tensor multiply<Tx, Ty>(Tx x, Ty y, string name = null) | |||
| => gen_math_ops.mul(x, y, name: name); | |||
| @@ -753,23 +708,10 @@ namespace Tensorflow | |||
| => tf_with(ops.name_scope(name, "Pow", new { x, y }), scope => | |||
| { | |||
| name = scope; | |||
| var x_tensor = ops.convert_to_tensor(x, name: "x"); | |||
| var y_tensor = ops.convert_to_tensor(y, name: "y", dtype: x_tensor.dtype.as_base_dtype()); | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var x_tensor = ops.convert_to_tensor(x, name: "x"); | |||
| var y_tensor = ops.convert_to_tensor(y, name: "y", dtype: x_tensor.dtype.as_base_dtype()); | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Pow", name, | |||
| null, | |||
| x_tensor, y_tensor); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Pow", name, args: new { x, y }); | |||
| return _op.output; | |||
| return tf.Context.ExecuteOp("Pow", name, new ExecuteOpArgs(x_tensor, y_tensor)); | |||
| }); | |||
| public static Tensor range(object start, object limit = null, object delta = null, TF_DataType dtype = TF_DataType.DtInvalid, string name = "range") | |||
| @@ -851,21 +793,41 @@ namespace Tensorflow | |||
| public static Tensor batch_matmul(Tensor x, Tensor y, | |||
| bool adj_x = false, bool adj_y = false, | |||
| string name = null) | |||
| { | |||
| Tensor result = null; | |||
| tf_with(ops.name_scope(name, "MatMul", new Tensor[] { x, y }), scope => | |||
| => tf_with(ops.name_scope(name, "MatMul", new Tensor[] { x, y }), scope => | |||
| { | |||
| name = scope; | |||
| x = ops.convert_to_tensor(x, name: "a"); | |||
| y = ops.convert_to_tensor(y, name: "b"); | |||
| result = gen_math_ops.batch_mat_mul(x, y, adj_x, adj_y, name); | |||
| return tf.Context.ExecuteOp("BatchMatMul", name, new ExecuteOpArgs(x, y) | |||
| .SetAttributes(new { adj_x, adj_y })); | |||
| }); | |||
| return result; | |||
| } | |||
| public static Tensor bincount(Tensor arr, Tensor weights = null, | |||
| Tensor minlength = null, | |||
| Tensor maxlength = null, | |||
| TF_DataType dtype = TF_DataType.TF_INT32, | |||
| string name = null, | |||
| TensorShape axis = null, | |||
| bool binary_output = false) | |||
| => tf_with(ops.name_scope(name, "bincount"), scope => | |||
| { | |||
| name = scope; | |||
| if(!binary_output && axis == null) | |||
| { | |||
| var array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr)) > 0; | |||
| var output_size = math_ops.cast(array_is_nonempty, dtypes.int32) * (math_ops.reduce_max(arr) + 1); | |||
| if (minlength != null) | |||
| output_size = math_ops.maximum(minlength, output_size); | |||
| if (maxlength != null) | |||
| output_size = math_ops.minimum(maxlength, output_size); | |||
| var weights = constant_op.constant(new long[0], dtype: dtype); | |||
| return tf.Context.ExecuteOp("Bincount", name, new ExecuteOpArgs(arr, output_size, weights)); | |||
| } | |||
| throw new NotImplementedException(""); | |||
| }); | |||
| /// <summary> | |||
| /// Returns the complex conjugate of a complex number. | |||
| @@ -14,12 +14,22 @@ | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using Tensorflow.Framework; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| public class string_ops | |||
| { | |||
| public Tensor lower(Tensor input, string encoding = "", string name = null) | |||
| => tf.Context.ExecuteOp("StringLower", name, new ExecuteOpArgs(input, encoding)); | |||
| public Tensor regex_replace(Tensor input, string pattern, string rewrite, | |||
| bool replace_global = true, string name = null) | |||
| => tf.Context.ExecuteOp("StaticRegexReplace", name, new ExecuteOpArgs(input) | |||
| .SetAttributes(new { pattern, rewrite, replace_global })); | |||
| /// <summary> | |||
| /// Return substrings from `Tensor` of strings. | |||
| /// </summary> | |||
| @@ -31,28 +41,93 @@ namespace Tensorflow | |||
| /// <returns></returns> | |||
| public Tensor substr<T>(T input, int pos, int len, | |||
| string @uint = "BYTE", string name = null) | |||
| => tf.Context.ExecuteOp("Substr", name, new ExecuteOpArgs(input, pos, len) | |||
| .SetAttributes(new { unit = @uint })); | |||
| /// <summary> | |||
| /// Computes the length of each string given in the input tensor. | |||
| /// </summary> | |||
| /// <param name="input"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="unit"></param> | |||
| /// <returns></returns> | |||
| public Tensor string_length(Tensor input, string name = null, string unit = "BYTE") | |||
| => tf.Context.ExecuteOp("StringLength", name, new ExecuteOpArgs(input) | |||
| { | |||
| GetGradientAttrs = op => new | |||
| { | |||
| unit = op.get_attr<string>("unit") | |||
| } | |||
| }.SetAttributes(new { unit })); | |||
| public RaggedTensor string_split_v2(Tensor input, string sep = "", int maxsplit = -1, string name = null) | |||
| { | |||
| if (tf.Context.executing_eagerly()) | |||
| return tf_with(ops.name_scope(name, "StringSplit"), scope => | |||
| { | |||
| var input_tensor = tf.constant(input); | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Substr", name, | |||
| null, | |||
| input, pos, len, | |||
| "unit", @uint); | |||
| return results[0]; | |||
| } | |||
| var sep_tensor = ops.convert_to_tensor(sep, dtype: TF_DataType.TF_STRING); | |||
| var result = tf.Context.ExecuteOp("StringSplitV2", name, | |||
| new ExecuteOpArgs(input, sep) | |||
| { | |||
| GetGradientAttrs = op => new | |||
| { | |||
| maxsplit = op.get_attr<int>("maxsplit") | |||
| } | |||
| }.SetAttributes(new { maxsplit })); | |||
| var (indices, values, shape) = (result[0], result[1], result[2]); | |||
| indices.set_shape(new TensorShape(-1, 2)); | |||
| values.set_shape(new TensorShape(-1)); | |||
| shape.set_shape(new TensorShape(2)); | |||
| var _op = tf.OpDefLib._apply_op_helper("Substr", name: name, args: new | |||
| var sparse_result = new SparseTensor(indices, values, shape); | |||
| return RaggedTensor.from_value_rowids(sparse_result.values, | |||
| value_rowids: sparse_result.indices[Slice.All, 0], | |||
| nrows: sparse_result.dense_shape[0], | |||
| validate: false); | |||
| }); | |||
| } | |||
| public (RaggedTensor, RaggedTensor) unicode_decode_with_offsets(Tensor input, string input_encoding, string errors, | |||
| int replacement_char = 0xFFFD, bool replace_control_characters = false, string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "UnicodeDecodeWithOffsets"), scope => | |||
| { | |||
| input, | |||
| pos, | |||
| len, | |||
| unit = @uint | |||
| var (codepoints, byte_start_offsets) = _unicode_decode(input, input_encoding, errors, | |||
| replacement_char, replace_control_characters, | |||
| with_offsets: true, name: name); | |||
| return (codepoints, byte_start_offsets); | |||
| }); | |||
| } | |||
| (RaggedTensor, RaggedTensor) _unicode_decode(Tensor input, string input_encoding, string errors, int replacement_char, | |||
| bool replace_control_characters, bool with_offsets, string name = null) | |||
| { | |||
| if (with_offsets) | |||
| { | |||
| var flat_result = tf.Context.ExecuteOp("UnicodeDecodeWithOffsets", name, new ExecuteOpArgs(input) | |||
| { | |||
| GetGradientAttrs = op => new | |||
| { | |||
| input_encoding = op.get_attr<string>("input_encoding"), | |||
| errors = op.get_attr<string>("errors"), | |||
| replacement_char = op.get_attr<int>("replacement_char"), | |||
| replace_control_characters = op.get_attr<bool>("replace_control_characters"), | |||
| Tsplits = op.get_attr<TF_DataType>("Tsplits") | |||
| } | |||
| }.SetAttributes(new | |||
| { | |||
| input_encoding, | |||
| errors, | |||
| replacement_char, | |||
| replace_control_characters | |||
| })); | |||
| var codepoints = RaggedTensor.from_row_splits(flat_result[1], flat_result[0], validate: false); | |||
| var offsets = RaggedTensor.from_row_splits(flat_result[2], flat_result[0], validate: false); | |||
| return (codepoints, offsets); | |||
| } | |||
| return _op.output; | |||
| return (null, null); | |||
| } | |||
| } | |||
| } | |||
| @@ -5,7 +5,7 @@ | |||
| <AssemblyName>TensorFlow.NET</AssemblyName> | |||
| <RootNamespace>Tensorflow</RootNamespace> | |||
| <TargetTensorFlow>2.2.0</TargetTensorFlow> | |||
| <Version>0.33.0</Version> | |||
| <Version>0.40.0</Version> | |||
| <LangVersion>8.0</LangVersion> | |||
| <Authors>Haiping Chen, Meinrad Recheis, Eli Belash</Authors> | |||
| <Company>SciSharp STACK</Company> | |||
| @@ -19,7 +19,7 @@ | |||
| <Description>Google's TensorFlow full binding in .NET Standard. | |||
| Building, training and infering deep learning models. | |||
| https://tensorflownet.readthedocs.io</Description> | |||
| <AssemblyVersion>0.33.0.0</AssemblyVersion> | |||
| <AssemblyVersion>0.40.0.0</AssemblyVersion> | |||
| <PackageReleaseNotes>tf.net 0.20.x and above are based on tensorflow native 2.x. | |||
| * Eager Mode is added finally. | |||
| @@ -29,8 +29,10 @@ https://tensorflownet.readthedocs.io</Description> | |||
| * Improve memory usage. | |||
| TensorFlow .NET v0.3x is focused on making more Keras API works. | |||
| Keras API is a separate package released as TensorFlow.Keras.</PackageReleaseNotes> | |||
| <FileVersion>0.33.0.0</FileVersion> | |||
| Keras API is a separate package released as TensorFlow.Keras. | |||
| tf.net 0.4x.x aligns with TensorFlow v2.4.1 native library.</PackageReleaseNotes> | |||
| <FileVersion>0.40.0.0</FileVersion> | |||
| <PackageLicenseFile>LICENSE</PackageLicenseFile> | |||
| <PackageRequireLicenseAcceptance>true</PackageRequireLicenseAcceptance> | |||
| <SignAssembly>true</SignAssembly> | |||
| @@ -48,6 +50,7 @@ Keras API is a separate package released as TensorFlow.Keras.</PackageReleaseNot | |||
| <AllowUnsafeBlocks>true</AllowUnsafeBlocks> | |||
| <DefineConstants>TRACE;DEBUG</DefineConstants> | |||
| <PlatformTarget>x64</PlatformTarget> | |||
| <DocumentationFile>TensorFlow.NET.xml</DocumentationFile> | |||
| </PropertyGroup> | |||
| <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|AnyCPU'"> | |||
| @@ -84,7 +87,7 @@ Keras API is a separate package released as TensorFlow.Keras.</PackageReleaseNot | |||
| <ItemGroup> | |||
| <PackageReference Include="MethodBoundaryAspect.Fody" Version="2.0.138" /> | |||
| <PackageReference Include="Microsoft.Extensions.DependencyInjection" Version="5.0.1" /> | |||
| <PackageReference Include="NumSharp.Lite" Version="0.1.12" /> | |||
| <PackageReference Include="NumSharp" Version="0.30.0" /> | |||
| <PackageReference Include="Protobuf.Text" Version="0.5.0" /> | |||
| <PackageReference Include="Serilog.Sinks.Console" Version="3.1.1" /> | |||
| </ItemGroup> | |||
| @@ -7,7 +7,7 @@ using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| public class EagerTensorV2 : DisposableObject, ITensor | |||
| public class EagerTensorV2 : DisposableObject | |||
| { | |||
| SafeTensorHandleHandle EagerTensorHandle; | |||
| public string Device | |||
| @@ -1,7 +0,0 @@ | |||
| namespace Tensorflow | |||
| { | |||
| public interface ITensor | |||
| { | |||
| } | |||
| } | |||
| @@ -0,0 +1,147 @@ | |||
| /***************************************************************************** | |||
| Copyright 2021 Haiping Chen. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using System.Linq; | |||
| using Tensorflow.Framework; | |||
| using static Tensorflow.Binding; | |||
| using NumSharp; | |||
| namespace Tensorflow | |||
| { | |||
| /// <summary> | |||
| /// Represents a ragged tensor. | |||
| /// </summary> | |||
| public class RaggedTensor : CompositeTensor | |||
| { | |||
| Tensor _values; | |||
| RowPartition _row_partition; | |||
| Tensor _row_splits => _row_partition.row_splits; | |||
| public TF_DataType dtype => _values.dtype; | |||
| public TensorShape shape | |||
| { | |||
| get | |||
| { | |||
| var nrows = _row_partition.static_nrows; | |||
| var ncols = _row_partition.static_uniform_row_length; | |||
| return new TensorShape(nrows, ncols); | |||
| } | |||
| } | |||
| public RaggedTensor this[params Slice[] slices] | |||
| { | |||
| get | |||
| { | |||
| var row_key = slices[0]; | |||
| var inner_keys = slices.Skip(1).ToArray(); | |||
| var args = tensor_util.ParseSlices(slices); | |||
| return tf_with(ops.name_scope(null, "RaggedGetItem", args), scope => | |||
| { | |||
| string name = scope; | |||
| return _ragged_getitem_inner_dimensions(this, inner_keys); | |||
| }); | |||
| } | |||
| } | |||
| RaggedTensor _ragged_getitem_inner_dimensions(RaggedTensor input, Slice[] slices) | |||
| { | |||
| return input; | |||
| } | |||
| public RaggedTensor(Tensor values, | |||
| bool @internal = true, | |||
| RowPartition row_partition = null) | |||
| { | |||
| _values = values; | |||
| _row_partition = row_partition; | |||
| } | |||
| public static RaggedTensor from_row_partition(Tensor values, RowPartition row_partition, bool validate = true) | |||
| { | |||
| return new RaggedTensor(values, @internal: true, row_partition: row_partition); | |||
| } | |||
| /// <summary> | |||
| /// Creates a `RaggedTensor` with rows partitioned by `value_rowids`. | |||
| /// </summary> | |||
| /// <param name="values"></param> | |||
| /// <param name="value_rowids"></param> | |||
| /// <param name="nrows"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="validate"></param> | |||
| /// <returns></returns> | |||
| public static RaggedTensor from_value_rowids(Tensor values, Tensor value_rowids, | |||
| Tensor nrows = null, string name = null, bool validate = true) | |||
| { | |||
| return tf_with(ops.name_scope(name, "RaggedFromValueRowIds"), scope => | |||
| { | |||
| var row_partition = RowPartition.from_value_rowids(value_rowids, | |||
| nrows: nrows, | |||
| validate: validate); | |||
| return from_row_partition(values, row_partition, validate: validate); | |||
| }); | |||
| } | |||
| public static RaggedTensor from_row_splits(Tensor values, Tensor row_splits, | |||
| string name = null, bool validate = true) | |||
| { | |||
| return tf_with(ops.name_scope(name, "RaggedFromRowSplits"), scope => | |||
| { | |||
| var row_partition = RowPartition.from_row_splits(row_splits, | |||
| validate: validate); | |||
| return from_row_partition(values, row_partition, validate: validate); | |||
| }); | |||
| } | |||
| Tensor _to_variant(bool batched_input = false, string name = null) | |||
| => tf_with(ops.name_scope(name, "RaggedToVariant"), scope => | |||
| { | |||
| return tf.Context.ExecuteOp("RaggedTensorToVariant", name, | |||
| new ExecuteOpArgs(nested_row_splits, flat_values) | |||
| { | |||
| GetGradientAttrs = op => new | |||
| { | |||
| RAGGED_RANK = op.get_attr<int>("RAGGED_RANK"), | |||
| Tvalues = op.get_attr<TF_DataType>("Tvalues"), | |||
| Tsplits = op.get_attr<TF_DataType>("Tsplits"), | |||
| batched_input = op.get_attr<bool>("batched_input") | |||
| } | |||
| }.SetAttributes(new { batched_input })); | |||
| }); | |||
| Tensor flat_values | |||
| => _values; | |||
| Tensor[] nested_row_splits | |||
| => new[] { _row_splits }; | |||
| public override string ToString() | |||
| => $"tf.RaggedTensor: shape={shape} [{string.Join(", ", _values.StringData().Take(10))}]"; | |||
| public static implicit operator Tensor(RaggedTensor indexedSlices) | |||
| => indexedSlices._to_variant(); | |||
| public static implicit operator RaggedTensor(Tensor tensor) | |||
| { | |||
| return tensor.Tag as RaggedTensor; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,103 @@ | |||
| /***************************************************************************** | |||
| Copyright 2021 Haiping Chen. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Framework; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| /// <summary> | |||
| /// Partitioning of a sequence of values into contiguous subsequences ("rows"). | |||
| /// </summary> | |||
| public class RowPartition : CompositeTensor | |||
| { | |||
| Tensor _row_splits; | |||
| public Tensor row_splits => _row_splits; | |||
| Tensor _row_lengths; | |||
| Tensor _value_rowids; | |||
| Tensor _nrows; | |||
| public int static_nrows | |||
| { | |||
| get | |||
| { | |||
| return _row_splits.shape[0] - 1; | |||
| } | |||
| } | |||
| public int static_uniform_row_length | |||
| { | |||
| get | |||
| { | |||
| return -1; | |||
| } | |||
| } | |||
| public RowPartition(Tensor row_splits, | |||
| Tensor row_lengths = null, Tensor value_rowids = null, Tensor nrows = null, | |||
| Tensor uniform_row_length = null) | |||
| { | |||
| _row_splits = row_splits; | |||
| _row_lengths = row_lengths; | |||
| _value_rowids = value_rowids; | |||
| _nrows = nrows; | |||
| } | |||
| /// <summary> | |||
| /// Creates a `RowPartition` with rows partitioned by `value_rowids`. | |||
| /// </summary> | |||
| /// <param name="value_rowids"></param> | |||
| /// <param name="nrows"></param> | |||
| /// <param name="validate"></param> | |||
| /// <param name="preferred_dtype"></param> | |||
| /// <returns></returns> | |||
| public static RowPartition from_value_rowids(Tensor value_rowids, | |||
| Tensor nrows = null, bool validate = true, TF_DataType preferred_dtype = TF_DataType.DtInvalid) | |||
| { | |||
| return tf_with(ops.name_scope(null, "RowPartitionFromValueRowIds"), scope => | |||
| { | |||
| var value_rowids_int32 = math_ops.cast(value_rowids, dtypes.int32); | |||
| var nrows_int32 = math_ops.cast(nrows, dtypes.int32); | |||
| var row_lengths = tf.math.bincount(value_rowids_int32, | |||
| minlength: nrows_int32, | |||
| maxlength: nrows_int32, | |||
| dtype: value_rowids.dtype); | |||
| var row_splits = array_ops.concat(new object[] | |||
| { | |||
| ops.convert_to_tensor(new long[] { 0 }), | |||
| tf.cumsum(row_lengths) | |||
| }, axis: 0); | |||
| return new RowPartition(row_splits, | |||
| row_lengths: row_lengths, | |||
| value_rowids: value_rowids, | |||
| nrows: nrows); | |||
| }); | |||
| } | |||
| public static RowPartition from_row_splits(Tensor row_splits, | |||
| bool validate = true, TF_DataType preferred_dtype = TF_DataType.DtInvalid) | |||
| { | |||
| return tf_with(ops.name_scope(null, "RowPartitionFromRowSplits"), scope => | |||
| { | |||
| return new RowPartition(row_splits); | |||
| }); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,76 @@ | |||
| /***************************************************************************** | |||
| Copyright 2021 Haiping Chen. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System; | |||
| using System.Linq; | |||
| using Tensorflow.Framework; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| { | |||
| /// <summary> | |||
| /// Represents a sparse tensor. | |||
| /// </summary> | |||
| public class SparseTensor : CompositeTensor | |||
| { | |||
| public Tensor indices; | |||
| public Tensor values; | |||
| public Tensor dense_shape; | |||
| public SparseTensor(Tensor indices, Tensor values, Tensor dense_shape) | |||
| { | |||
| this.indices = indices; | |||
| this.values = values; | |||
| this.dense_shape = dense_shape; | |||
| _init(); | |||
| } | |||
| public SparseTensor(long[,] indices_, Array values_, long[] dense_shape_) | |||
| { | |||
| tf_with(ops.name_scope(null, "SparseTensor", new { }), delegate | |||
| { | |||
| indices = ops.convert_to_tensor( | |||
| indices_, name: "indices", dtype: dtypes.int64); | |||
| values = ops.convert_to_tensor(values_, name: "values"); | |||
| dense_shape = ops.convert_to_tensor( | |||
| dense_shape_, name: "dense_shape", dtype: dtypes.int64); | |||
| }); | |||
| _init(); | |||
| } | |||
| void _init() | |||
| { | |||
| var indices_shape = indices.TensorShape.with_rank(2); | |||
| var values_shape = values.TensorShape.with_rank(1); | |||
| var dense_shape_shape = dense_shape.TensorShape.with_rank(1); | |||
| indices_shape["0"].merge_with(values_shape[0]); | |||
| indices_shape["1"].merge_with(dense_shape_shape[0]); | |||
| } | |||
| public static implicit operator Tensor(SparseTensor indexedSlices) | |||
| { | |||
| return indexedSlices.values; | |||
| } | |||
| public static implicit operator SparseTensor(Tensor tensor) | |||
| { | |||
| return tensor.Tag as SparseTensor; | |||
| } | |||
| } | |||
| } | |||
| @@ -60,13 +60,9 @@ namespace Tensorflow | |||
| } | |||
| } | |||
| public Tensor this[Range slices] | |||
| => throw new NotImplementedException(""); | |||
| public Tensor this[params string[] slices] | |||
| => this[slices.Select(x => new Slice(x)).ToArray()]; | |||
| public Tensor slice(Slice slice) | |||
| { | |||
| var slice_spec = new int[] { slice.Start.Value }; | |||
| @@ -8,27 +8,7 @@ namespace Tensorflow | |||
| { | |||
| public partial class Tensor | |||
| { | |||
| const ulong TF_TSRING_SIZE = 24; | |||
| public IntPtr StringTensor25(string[] strings, TensorShape shape) | |||
| { | |||
| var handle = c_api.TF_AllocateTensor(TF_DataType.TF_STRING, | |||
| shape.dims.Select(x => (long)x).ToArray(), | |||
| shape.ndim, | |||
| (ulong)shape.size * TF_TSRING_SIZE); | |||
| var data = c_api.TF_TensorData(handle); | |||
| var tstr = c_api.TF_StringInit(handle); | |||
| // AllocationHandle = tstr; | |||
| // AllocationType = AllocationType.Tensorflow; | |||
| for (int i = 0; i< strings.Length; i++) | |||
| { | |||
| c_api.TF_StringCopy(tstr, strings[i], strings[i].Length); | |||
| tstr += (int)TF_TSRING_SIZE; | |||
| } | |||
| // c_api.TF_StringDealloc(tstr); | |||
| return handle; | |||
| } | |||
| const int TF_TSRING_SIZE = 24; | |||
| public IntPtr StringTensor(string[] strings, TensorShape shape) | |||
| { | |||
| @@ -40,69 +20,28 @@ namespace Tensorflow | |||
| return StringTensor(buffer, shape); | |||
| } | |||
| public unsafe IntPtr StringTensor(byte[][] buffer, TensorShape shape) | |||
| public IntPtr StringTensor(byte[][] buffer, TensorShape shape) | |||
| { | |||
| ulong size = 0; | |||
| foreach (var b in buffer) | |||
| size += c_api.TF_StringEncodedSize((ulong)b.Length); | |||
| var src_size = size + (ulong)buffer.Length * sizeof(ulong); | |||
| var handle = c_api.TF_AllocateTensor(TF_DataType.TF_STRING, | |||
| shape.dims.Select(x => (long)x).ToArray(), | |||
| shape.ndim == 0 ? null : shape.dims.Select(x => (long)x).ToArray(), | |||
| shape.ndim, | |||
| src_size); | |||
| AllocationType = AllocationType.Tensorflow; | |||
| (ulong)shape.size * TF_TSRING_SIZE); | |||
| IntPtr data_start = c_api.TF_TensorData(handle); | |||
| IntPtr string_start = data_start + buffer.Length * sizeof(ulong); | |||
| IntPtr limit = data_start + (int)src_size; | |||
| ulong offset = 0; | |||
| var tstr = c_api.TF_TensorData(handle); | |||
| #if TRACK_TENSOR_LIFE | |||
| print($"New TString 0x{handle.ToString("x16")} {AllocationType} Data: 0x{tstr.ToString("x16")}"); | |||
| #endif | |||
| for (int i = 0; i < buffer.Length; i++) | |||
| { | |||
| Marshal.WriteInt64(data_start, i * sizeof(ulong), (long)offset); | |||
| if (buffer[i].Length == 0) | |||
| { | |||
| Marshal.WriteByte(string_start, 0); | |||
| break; | |||
| } | |||
| fixed (byte* src = &buffer[i][0]) | |||
| { | |||
| /*Marshal.WriteByte(string_start, Convert.ToByte(buffer[i].Length)); | |||
| tf.memcpy((string_start + 1).ToPointer(), src, (ulong)buffer[i].Length); | |||
| string_start += buffer[i].Length + 1; | |||
| offset += buffer[i].Length + 1;*/ | |||
| var written = c_api.TF_StringEncode(src, (ulong)buffer[i].Length, (byte*)string_start, (ulong)(limit.ToInt64() - string_start.ToInt64()), tf.Status.Handle); | |||
| tf.Status.Check(true); | |||
| string_start += (int)written; | |||
| offset += written; | |||
| } | |||
| c_api.TF_StringInit(tstr); | |||
| c_api.TF_StringCopy(tstr, buffer[i], buffer[i].Length); | |||
| var data = c_api.TF_StringGetDataPointer(tstr); | |||
| tstr += TF_TSRING_SIZE; | |||
| } | |||
| return handle; | |||
| } | |||
| public string[] StringData25() | |||
| { | |||
| string[] strings = new string[c_api.TF_Dim(_handle, 0)]; | |||
| var tstrings = TensorDataPointer; | |||
| for (int i = 0; i< strings.Length; i++) | |||
| { | |||
| var tstringData = c_api.TF_StringGetDataPointer(tstrings); | |||
| /*var size = c_api.TF_StringGetSize(tstrings); | |||
| var capacity = c_api.TF_StringGetCapacity(tstrings); | |||
| var type = c_api.TF_StringGetType(tstrings);*/ | |||
| strings[i] = c_api.StringPiece(tstringData); | |||
| tstrings += (int)TF_TSRING_SIZE; | |||
| } | |||
| return strings; | |||
| } | |||
| /// <summary> | |||
| /// Extracts string array from current Tensor. | |||
| /// </summary> | |||
| /// <exception cref="InvalidOperationException">When <see cref="dtype"/> != TF_DataType.TF_STRING</exception> | |||
| public string[] StringData() | |||
| { | |||
| var buffer = StringBytes(); | |||
| @@ -114,7 +53,7 @@ namespace Tensorflow | |||
| return _str; | |||
| } | |||
| public unsafe byte[][] StringBytes() | |||
| public byte[][] StringBytes() | |||
| { | |||
| if (dtype != TF_DataType.TF_STRING) | |||
| throw new InvalidOperationException($"Unable to call StringData when dtype != TF_DataType.TF_STRING (dtype is {dtype})"); | |||
| @@ -123,24 +62,22 @@ namespace Tensorflow | |||
| // TF_STRING tensors are encoded with a table of 8-byte offsets followed by TF_StringEncode-encoded bytes. | |||
| // [offset1, offset2,...,offsetn, s1size, s1bytes, s2size, s2bytes,...,snsize,snbytes] | |||
| // | |||
| long size = 1; | |||
| int size = 1; | |||
| foreach (var s in TensorShape.dims) | |||
| size *= s; | |||
| var buffer = new byte[size][]; | |||
| var data_start = c_api.TF_TensorData(_handle); | |||
| data_start += (int)(size * sizeof(ulong)); | |||
| var tstrings = TensorDataPointer; | |||
| for (int i = 0; i < buffer.Length; i++) | |||
| { | |||
| IntPtr dst = IntPtr.Zero; | |||
| ulong dstLen = 0; | |||
| var read = c_api.TF_StringDecode((byte*)data_start, bytesize, (byte**)&dst, ref dstLen, tf.Status.Handle); | |||
| tf.Status.Check(true); | |||
| buffer[i] = new byte[(int)dstLen]; | |||
| Marshal.Copy(dst, buffer[i], 0, buffer[i].Length); | |||
| data_start += (int)read; | |||
| var data = c_api.TF_StringGetDataPointer(tstrings); | |||
| var len = c_api.TF_StringGetSize(tstrings); | |||
| buffer[i] = new byte[len]; | |||
| // var capacity = c_api.TF_StringGetCapacity(tstrings); | |||
| // var type = c_api.TF_StringGetType(tstrings); | |||
| Marshal.Copy(data, buffer[i], 0, Convert.ToInt32(len)); | |||
| tstrings += TF_TSRING_SIZE; | |||
| } | |||
| return buffer; | |||
| } | |||
| } | |||
| @@ -15,7 +15,6 @@ | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using NumSharp.Backends.Unmanaged; | |||
| using System; | |||
| using System.Diagnostics.CodeAnalysis; | |||
| using System.Globalization; | |||
| @@ -24,7 +23,6 @@ using System.Runtime.InteropServices; | |||
| using Tensorflow.Eager; | |||
| using Tensorflow.Framework; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Variables; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| @@ -35,9 +33,7 @@ namespace Tensorflow | |||
| /// </summary> | |||
| [SuppressMessage("ReSharper", "ConvertToAutoProperty")] | |||
| public partial class Tensor : DisposableObject, | |||
| ITensor, | |||
| ITensorOrOperation, | |||
| _TensorLike, | |||
| ITensorOrTensorArray, | |||
| IPackable<Tensor>, | |||
| ICanBeFlattened | |||
| @@ -99,6 +95,7 @@ namespace Tensorflow | |||
| public SafeTensorHandleHandle EagerTensorHandle { get; set; } | |||
| public bool IsEagerTensor => this is EagerTensor; | |||
| public bool IsSparseTensor => this is SparseTensor; | |||
| /// <summary> | |||
| /// Returns the shape of a tensor. | |||
| @@ -287,6 +284,22 @@ namespace Tensorflow | |||
| throw new InvalidOperationException($"Tensor.AllocationHandle is not null ({AllocationHandle}) but AllocationType is not matched to a C# allocation type ({AllocationType})."); | |||
| } | |||
| if (dtype == TF_DataType.TF_STRING) | |||
| { | |||
| int size = 1; | |||
| foreach (var s in TensorShape.dims) | |||
| size *= s; | |||
| var tstr = TensorDataPointer; | |||
| #if TRACK_TENSOR_LIFE | |||
| print($"Delete TString 0x{handle.ToString("x16")} {AllocationType} Data: 0x{tstrings.ToString("x16")}"); | |||
| #endif | |||
| for (int i = 0; i < size; i++) | |||
| { | |||
| c_api.TF_StringDealloc(tstr); | |||
| tstr += TF_TSRING_SIZE; | |||
| } | |||
| } | |||
| c_api.TF_DeleteTensor(handle); | |||
| } | |||
| @@ -182,7 +182,10 @@ namespace Tensorflow | |||
| public static extern unsafe ulong TF_StringEncode(byte* src, ulong src_len, byte* dst, ulong dst_len, SafeStatusHandle status); | |||
| [DllImport(TensorFlowLibName)] | |||
| public static extern IntPtr TF_StringInit(IntPtr t); | |||
| public static extern void TF_StringInit(IntPtr t); | |||
| [DllImport(TensorFlowLibName)] | |||
| public static extern void TF_StringCopy(IntPtr dst, byte[] text, long size); | |||
| [DllImport(TensorFlowLibName)] | |||
| public static extern void TF_StringCopy(IntPtr dst, string text, long size); | |||
| @@ -21,46 +21,19 @@ namespace Tensorflow | |||
| { | |||
| public class gen_training_ops | |||
| { | |||
| public static Operation resource_apply_adam(Tensor var, Tensor m, Tensor v, Tensor beta1_power, Tensor beta2_power, | |||
| public static Tensor resource_apply_adam(Tensor var, Tensor m, Tensor v, Tensor beta1_power, Tensor beta2_power, | |||
| Tensor lr, Tensor beta1, Tensor beta2, Tensor epsilon, Tensor grad, | |||
| bool use_locking = false, bool use_nesterov = false, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var result = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResourceApplyAdam", name, | |||
| null, | |||
| var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, | |||
| "use_locking", use_locking, | |||
| "use_nesterov", use_nesterov); | |||
| return null; | |||
| } | |||
| throw new NotImplementedException(""); | |||
| } | |||
| => tf.Context.ExecuteOp("ResourceApplyAdam", name, | |||
| new ExecuteOpArgs(var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad) | |||
| .SetAttributes(new { use_locking, use_nesterov })); | |||
| public static Tensor apply_adam(Tensor var, Tensor m, Tensor v, Tensor beta1_power, Tensor beta2_power, | |||
| Tensor lr, Tensor beta1, Tensor beta2, Tensor epsilon, Tensor grad, | |||
| bool use_locking = false, bool use_nesterov = false, string name = null) | |||
| { | |||
| var _op = tf.OpDefLib._apply_op_helper("ApplyAdam", name, new | |||
| { | |||
| var, | |||
| m, | |||
| v, | |||
| beta1_power, | |||
| beta2_power, | |||
| lr, | |||
| beta1, | |||
| beta2, | |||
| epsilon, | |||
| grad, | |||
| use_locking, | |||
| use_nesterov | |||
| }); | |||
| return _op.outputs[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("ApplyAdam", name, | |||
| new ExecuteOpArgs(var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad) | |||
| .SetAttributes(new { use_locking, use_nesterov })); | |||
| public static Tensor apply_gradient_descent(IVariableV1 var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
| { | |||
| @@ -75,27 +48,8 @@ namespace Tensorflow | |||
| return _op.output; | |||
| } | |||
| public static Operation resource_apply_gradient_descent(Tensor var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var result = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "ResourceApplyGradientDescent", name, | |||
| null, | |||
| var, alpha, delta, | |||
| "use_locking", use_locking); | |||
| return null; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("ResourceApplyGradientDescent", name, new | |||
| { | |||
| var, | |||
| alpha, | |||
| delta, | |||
| use_locking | |||
| }); | |||
| return _op; | |||
| } | |||
| public static Tensor resource_apply_gradient_descent(Tensor var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
| => tf.Context.ExecuteOp("ResourceApplyGradientDescent", name, | |||
| new ExecuteOpArgs(var, alpha, delta).SetAttributes(new { use_locking })); | |||
| } | |||
| } | |||
| @@ -59,31 +59,8 @@ namespace Tensorflow | |||
| bool validate_shape = true, | |||
| bool use_locking = true, | |||
| string name = null) | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Assign", name, | |||
| null, | |||
| @ref, value, | |||
| "validate_shape", validate_shape, | |||
| "use_locking", use_locking); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Assign", name: name, args: new { @ref, value, validate_shape, use_locking }); | |||
| var _result = _op.outputs; | |||
| var _inputs_flat = _op.inputs; | |||
| var _attrs = new Dictionary<string, object>(); | |||
| _attrs["T"] = _op.get_attr("T"); | |||
| _attrs["validate_shape"] = _op.get_attr("validate_shape"); | |||
| _attrs["use_locking"] = _op.get_attr("use_locking"); | |||
| return _result[0]; | |||
| } | |||
| => tf.Context.ExecuteOp("Assign", name, new ExecuteOpArgs(@ref, value) | |||
| .SetAttributes(new { validate_shape, use_locking })); | |||
| public static Tensor assign_add<T>(IVariableV1 @ref, T value, bool use_locking = false, string name = null) | |||
| { | |||
| @@ -4,21 +4,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| public partial class Activations | |||
| { | |||
| public Activation Relu = (features, name) => | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Relu", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Relu", name: name, args: new { features }); | |||
| return _op.output; | |||
| }; | |||
| public Activation Relu = (features, name) | |||
| => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)); | |||
| } | |||
| } | |||
| @@ -5,21 +5,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| public partial class Activations | |||
| { | |||
| public Activation Sigmoid = (features, name) => | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Sigmoid", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Sigmoid", name: name, args: new { x = features }); | |||
| return _op.output; | |||
| }; | |||
| public Activation Sigmoid = (features, name) | |||
| => tf.Context.ExecuteOp("Sigmoid", name, new ExecuteOpArgs(features)); | |||
| } | |||
| } | |||
| @@ -5,21 +5,7 @@ namespace Tensorflow.Keras | |||
| { | |||
| public partial class Activations | |||
| { | |||
| public Activation Tanh = (features, name) => | |||
| { | |||
| if (tf.executing_eagerly()) | |||
| { | |||
| var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
| "Tanh", name, | |||
| null, | |||
| features); | |||
| return results[0]; | |||
| } | |||
| var _op = tf.OpDefLib._apply_op_helper("Tanh", name: name, args: new { x = features }); | |||
| return _op.output; | |||
| }; | |||
| public Activation Tanh = (features, name) | |||
| => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(features)); | |||
| } | |||
| } | |||
| @@ -45,8 +45,8 @@ namespace Tensorflow.Keras.Datasets | |||
| (NDArray, NDArray) LoadX(byte[] bytes) | |||
| { | |||
| var y = np.Load_Npz<byte[,,]>(bytes); | |||
| return (y["x_train.npy"], y["x_test.npy"]); | |||
| var x = np.Load_Npz<byte[,,]>(bytes); | |||
| return (x["x_train.npy"], x["x_test.npy"]); | |||
| } | |||
| (NDArray, NDArray) LoadY(byte[] bytes) | |||
| @@ -0,0 +1,30 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| public class CombinerPreprocessingLayer : Layer | |||
| { | |||
| PreprocessingLayerArgs args; | |||
| protected ICombiner combiner; | |||
| protected bool _previously_updated; | |||
| public CombinerPreprocessingLayer(PreprocessingLayerArgs args) | |||
| : base(args) | |||
| { | |||
| _previously_updated = false; | |||
| } | |||
| public virtual void adapt(IDatasetV2 data, bool reset_state = true) | |||
| { | |||
| IAccumulator accumulator; | |||
| if (!reset_state) | |||
| accumulator = combiner.Restore(); | |||
| var next_data = data.make_one_shot_iterator(); | |||
| var data_element = next_data.next(); | |||
| } | |||
| } | |||
| } | |||
| @@ -39,7 +39,7 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| dataset = slice_inputs(indices_dataset, inputs); | |||
| } | |||
| Tensor permutation(Tensor tensor) | |||
| Tensors permutation(Tensors tensor) | |||
| { | |||
| var indices = math_ops.range(num_samples, dtype: dtypes.int64); | |||
| if (args.Shuffle) | |||
| @@ -82,7 +82,7 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| .Select(x => gen_array_ops.gather_v2(x, indices, 0)) | |||
| .ToArray(); | |||
| return new Tensors(results); | |||
| }); | |||
| }, -1); | |||
| return dataset.with_options(new DatasetOptions { }); | |||
| } | |||
| @@ -0,0 +1,10 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| public interface IAccumulator | |||
| { | |||
| } | |||
| } | |||
| @@ -0,0 +1,19 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| /// <summary> | |||
| /// Functional object that defines a shardable computation. | |||
| /// </summary> | |||
| public interface ICombiner | |||
| { | |||
| void Compute(Tensor values, IAccumulator accumulator = null); | |||
| void Merge(); | |||
| void Extract(); | |||
| IAccumulator Restore(); | |||
| void Serialize(); | |||
| void Deserialize(); | |||
| } | |||
| } | |||
| @@ -62,8 +62,8 @@ namespace Tensorflow.Keras.Engine | |||
| { | |||
| var y_t_rank = y_t.rank; | |||
| var y_p_rank = y_p.rank; | |||
| var y_t_last_dim = y_t.shape[^1]; | |||
| var y_p_last_dim = y_p.shape[^1]; | |||
| var y_t_last_dim = y_t.shape[y_t.shape.Length - 1]; | |||
| var y_p_last_dim = y_p.shape[y_p.shape.Length - 1]; | |||
| bool is_binary = y_p_last_dim == 1; | |||
| bool is_sparse_categorical = (y_t_rank < y_p_rank || y_t_last_dim == 1) && y_p_last_dim > 1; | |||
| @@ -14,6 +14,7 @@ | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using System.Linq; | |||
| using System.Collections.Generic; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Layers; | |||
| @@ -103,7 +104,7 @@ namespace Tensorflow.Keras.Engine | |||
| if (set_inputs) | |||
| { | |||
| // If an input layer (placeholder) is available. | |||
| outputs = layer.InboundNodes[^1].Outputs; | |||
| outputs = layer.InboundNodes.Last().Outputs; | |||
| inputs = layer_utils.get_source_inputs(outputs[0]); | |||
| built = true; | |||
| _has_explicit_input_shape = true; | |||
| @@ -11,6 +11,7 @@ using Tensorflow.Keras.Metrics; | |||
| using Tensorflow.Keras.Models; | |||
| using Tensorflow.Keras.Optimizers; | |||
| using Tensorflow.Keras.Saving; | |||
| using Tensorflow.Keras.Utils; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| @@ -27,6 +28,7 @@ namespace Tensorflow.Keras | |||
| public OptimizerApi optimizers { get; } = new OptimizerApi(); | |||
| public MetricsApi metrics { get; } = new MetricsApi(); | |||
| public ModelsApi models { get; } = new ModelsApi(); | |||
| public KerasUtils utils { get; } = new KerasUtils(); | |||
| public Sequential Sequential(List<ILayer> layers = null, | |||
| string name = null) | |||
| @@ -73,7 +75,7 @@ namespace Tensorflow.Keras | |||
| Tensor tensor = null) | |||
| { | |||
| if (batch_input_shape != null) | |||
| shape = batch_input_shape.dims[1..]; | |||
| shape = batch_input_shape.dims.Skip(1).ToArray(); | |||
| var args = new InputLayerArgs | |||
| { | |||
| @@ -42,7 +42,7 @@ namespace Tensorflow.Keras.Layers | |||
| if (BatchInputShape != null) | |||
| { | |||
| args.BatchSize = BatchInputShape.dims[0]; | |||
| args.InputShape = BatchInputShape.dims[1..]; | |||
| args.InputShape = BatchInputShape.dims.Skip(1).ToArray(); | |||
| } | |||
| // moved to base class | |||
| @@ -9,6 +9,8 @@ namespace Tensorflow.Keras.Layers | |||
| { | |||
| public partial class LayersApi | |||
| { | |||
| public Preprocessing preprocessing { get; } = new Preprocessing(); | |||
| /// <summary> | |||
| /// Functional interface for the batch normalization layer. | |||
| /// http://arxiv.org/abs/1502.03167 | |||
| @@ -323,6 +325,16 @@ namespace Tensorflow.Keras.Layers | |||
| return input_layer.InboundNodes[0].Outputs; | |||
| } | |||
| public MaxPooling1D MaxPooling1D(int? pool_size = null, | |||
| int? strides = null, | |||
| string padding = "valid") | |||
| => new MaxPooling1D(new Pooling1DArgs | |||
| { | |||
| PoolSize = pool_size ?? 2, | |||
| Strides = strides ?? (pool_size ?? 2), | |||
| Padding = padding | |||
| }); | |||
| public MaxPooling2D MaxPooling2D(TensorShape pool_size = null, | |||
| TensorShape strides = null, | |||
| string padding = "valid") | |||
| @@ -446,6 +458,20 @@ namespace Tensorflow.Keras.Layers | |||
| public GlobalAveragePooling2D GlobalAveragePooling2D() | |||
| => new GlobalAveragePooling2D(new Pooling2DArgs { }); | |||
| public GlobalAveragePooling1D GlobalAveragePooling1D(string data_format = "channels_last") | |||
| => new GlobalAveragePooling1D(new Pooling1DArgs { DataFormat = data_format }); | |||
| public GlobalAveragePooling2D GlobalAveragePooling2D(string data_format = "channels_last") | |||
| => new GlobalAveragePooling2D(new Pooling2DArgs { DataFormat = data_format }); | |||
| public GlobalMaxPooling1D GlobalMaxPooling1D(string data_format = "channels_last") | |||
| => new GlobalMaxPooling1D(new Pooling1DArgs { DataFormat = data_format }); | |||
| public GlobalMaxPooling2D GlobalMaxPooling2D(string data_format = "channels_last") | |||
| => new GlobalMaxPooling2D(new Pooling2DArgs { DataFormat = data_format }); | |||
| Activation GetActivationByName(string name) | |||
| => name switch | |||
| { | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class GlobalAveragePooling1D : GlobalPooling1D | |||
| { | |||
| public GlobalAveragePooling1D(Pooling1DArgs args) | |||
| : base(args) | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_mean(inputs, new int[] { 1 }, false); | |||
| else | |||
| return math_ops.reduce_mean(inputs, new int[] { 2 }, false); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class GlobalMaxPooling1D : GlobalPooling1D | |||
| { | |||
| public GlobalMaxPooling1D(Pooling1DArgs args) | |||
| : base(args) | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_max(inputs, new int[] { 1 }, false); | |||
| else | |||
| return math_ops.reduce_max(inputs, new int[] { 2 }, false); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class GlobalMaxPooling2D : GlobalPooling2D | |||
| { | |||
| public GlobalMaxPooling2D(Pooling2DArgs args) | |||
| : base(args) | |||
| { | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| if (data_format == "channels_last") | |||
| return math_ops.reduce_max(inputs, new int[] { 1, 2 }, false); | |||
| else | |||
| return math_ops.reduce_max(inputs, new int[] { 2, 3 }, false); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Utils; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public abstract class GlobalPooling1D : Layer | |||
| { | |||
| Pooling1DArgs args; | |||
| protected string data_format => args.DataFormat; | |||
| protected InputSpec input_spec; | |||
| public GlobalPooling1D(Pooling1DArgs args) : base(args) | |||
| { | |||
| this.args = args; | |||
| args.DataFormat = conv_utils.normalize_data_format(data_format); | |||
| input_spec = new InputSpec(ndim: 3); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,14 @@ | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Operations; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class MaxPooling1D : Pooling1D | |||
| { | |||
| public MaxPooling1D(Pooling1DArgs args) | |||
| : base(args) | |||
| { | |||
| args.PoolFunction = new MaxPoolFunction(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,62 @@ | |||
| /***************************************************************************** | |||
| Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| ******************************************************************************/ | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Utils; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class Pooling1D : Layer | |||
| { | |||
| Pooling1DArgs args; | |||
| InputSpec input_spec; | |||
| public Pooling1D(Pooling1DArgs args) | |||
| : base(args) | |||
| { | |||
| this.args = args; | |||
| args.Padding = conv_utils.normalize_padding(args.Padding); | |||
| args.DataFormat = conv_utils.normalize_data_format(args.DataFormat); | |||
| input_spec = new InputSpec(ndim: 3); | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
| { | |||
| int[] pool_shape; | |||
| int[] strides; | |||
| if (args.DataFormat == "channels_last") | |||
| { | |||
| pool_shape = new int[] { 1, args.PoolSize, 1 }; | |||
| strides = new int[] { 1, args.Strides, 1 }; | |||
| } | |||
| else | |||
| { | |||
| pool_shape = new int[] { 1, 1, args.PoolSize }; | |||
| strides = new int[] { 1, 1, args.Strides }; | |||
| } | |||
| var outputs = args.PoolFunction.Apply( | |||
| inputs, | |||
| ksize: pool_shape, | |||
| strides: strides, | |||
| padding: args.Padding.ToUpper(), | |||
| data_format: conv_utils.convert_data_format(args.DataFormat, 3)); | |||
| return outputs; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,30 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class IndexLookup : CombinerPreprocessingLayer | |||
| { | |||
| public IndexLookup(int max_tokens = -1, | |||
| int num_oov_indices = 1, | |||
| string mask_token = "", | |||
| string oov_token = "[UNK]", | |||
| string encoding = "utf-8", | |||
| bool invert = false) : base(new PreprocessingLayerArgs()) | |||
| { | |||
| var num_mask_tokens = mask_token == null ? 0 : 1; | |||
| var vocab_size = max_tokens - (num_oov_indices + num_mask_tokens); | |||
| combiner = new IndexLookupCombiner(vocab_size, mask_token); | |||
| } | |||
| public override void adapt(IDatasetV2 data, bool reset_state = true) | |||
| { | |||
| if (!reset_state) | |||
| throw new ValueError("IndexLookup does not support streaming adapts."); | |||
| base.adapt(data, reset_state); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,16 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class IndexLookupAccumulator : IAccumulator | |||
| { | |||
| public Dictionary<string, int> CountDict { get; set; } | |||
| public IndexLookupAccumulator() | |||
| { | |||
| CountDict = new Dictionary<string, int>(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,55 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| /// <summary> | |||
| /// Combiner for the IndexLookup preprocessing layer. | |||
| /// </summary> | |||
| public class IndexLookupCombiner : ICombiner | |||
| { | |||
| int _vocab_size; | |||
| string _mask_value; | |||
| public IndexLookupCombiner(int vocab_size = -1, string mask_value = null) | |||
| { | |||
| _vocab_size = vocab_size; | |||
| _mask_value = mask_value; | |||
| } | |||
| public void Compute(Tensor values, IAccumulator accumulator = null) | |||
| { | |||
| if(accumulator == null) | |||
| { | |||
| accumulator = new IndexLookupAccumulator(); | |||
| } | |||
| } | |||
| public void Deserialize() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public void Extract() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public void Merge() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public IAccumulator Restore() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| public void Serialize() | |||
| { | |||
| throw new NotImplementedException(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,23 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| /// <summary> | |||
| /// Maps strings from a vocabulary to integer indices. | |||
| /// </summary> | |||
| class StringLookup : IndexLookup | |||
| { | |||
| public StringLookup(int max_tokens = -1, | |||
| int num_oov_indices = 1, | |||
| string mask_token = "", | |||
| string[] vocabulary = null, | |||
| string oov_token = "[UNK]", | |||
| string encoding = "utf-8", | |||
| bool invert = false) | |||
| { | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,63 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class TextVectorization : CombinerPreprocessingLayer | |||
| { | |||
| TextVectorizationArgs args; | |||
| IndexLookup _index_lookup_layer; | |||
| public TextVectorization(TextVectorizationArgs args) | |||
| : base(args) | |||
| { | |||
| this.args = args; | |||
| args.DType = TF_DataType.TF_STRING; | |||
| // string standardize = "lower_and_strip_punctuation", | |||
| var mask_token = args.OutputMode == "int" ? "" : null; | |||
| _index_lookup_layer = new StringLookup(max_tokens: args.MaxTokens, | |||
| mask_token: mask_token, | |||
| vocabulary: args.Vocabulary); | |||
| } | |||
| /// <summary> | |||
| /// Fits the state of the preprocessing layer to the dataset. | |||
| /// </summary> | |||
| /// <param name="data"></param> | |||
| /// <param name="reset_state"></param> | |||
| public override void adapt(IDatasetV2 data, bool reset_state = true) | |||
| { | |||
| var shape = data.output_shapes[0]; | |||
| if (shape.rank == 1) | |||
| data = data.map(tensor => array_ops.expand_dims(tensor, -1)); | |||
| build(data.variant_tensor); | |||
| var preprocessed_inputs = data.map(_preprocess); | |||
| _index_lookup_layer.adapt(preprocessed_inputs); | |||
| } | |||
| protected override void build(Tensors inputs) | |||
| { | |||
| base.build(inputs); | |||
| } | |||
| Tensors _preprocess(Tensors inputs) | |||
| { | |||
| Tensor input_tensor = null; | |||
| if (args.Standardize != null) | |||
| input_tensor = args.Standardize(inputs); | |||
| if (!string.IsNullOrEmpty(args.Split)) | |||
| { | |||
| if (inputs.shape.ndim > 1) | |||
| input_tensor = array_ops.squeeze(inputs, axis: new[] { -1 }); | |||
| if (args.Split == "whitespace") | |||
| input_tensor = tf.strings.split(input_tensor); | |||
| } | |||
| return input_tensor; | |||
| } | |||
| } | |||
| } | |||
| @@ -1,4 +1,5 @@ | |||
| using System; | |||
| using System.Linq; | |||
| using Tensorflow.Framework; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| @@ -45,7 +46,7 @@ namespace Tensorflow.Keras.Layers | |||
| return array_ops.reshape(inputs, new[] { batch_dim, -1 }); | |||
| } | |||
| var non_batch_dims = ((int[])input_shape)[1..]; | |||
| var non_batch_dims = ((int[])input_shape).Skip(1).ToArray(); | |||
| var num = 1; | |||
| if (non_batch_dims.Length > 0) | |||
| { | |||
| @@ -37,7 +37,7 @@ namespace Tensorflow.Keras.Layers | |||
| public override TensorShape ComputeOutputShape(TensorShape input_shape) | |||
| { | |||
| if (input_shape.dims[1..].Contains(-1)) | |||
| if (input_shape.dims.Skip(1).Contains(-1)) | |||
| { | |||
| throw new NotImplementedException(""); | |||
| } | |||
| @@ -1,4 +1,5 @@ | |||
| using System; | |||
| using System.Linq; | |||
| namespace Tensorflow.Keras.Preprocessings | |||
| { | |||
| @@ -17,18 +18,21 @@ namespace Tensorflow.Keras.Preprocessings | |||
| float validation_split, | |||
| string subset) | |||
| { | |||
| if (string.IsNullOrEmpty(subset)) | |||
| return (samples, labels); | |||
| var num_val_samples = Convert.ToInt32(samples.Length * validation_split); | |||
| if (subset == "training") | |||
| { | |||
| Console.WriteLine($"Using {samples.Length - num_val_samples} files for training."); | |||
| samples = samples[..^num_val_samples]; | |||
| labels = labels[..^num_val_samples]; | |||
| samples = samples.Take(samples.Length - num_val_samples).ToArray(); | |||
| labels = labels.Take(labels.Length - num_val_samples).ToArray(); | |||
| } | |||
| else if (subset == "validation") | |||
| { | |||
| Console.WriteLine($"Using {num_val_samples} files for validation."); | |||
| samples = samples[(samples.Length - num_val_samples)..]; | |||
| labels = labels[(labels.Length - num_val_samples)..]; | |||
| samples = samples.Skip(samples.Length - num_val_samples).ToArray(); | |||
| labels = labels.Skip(labels.Length - num_val_samples).ToArray(); | |||
| } | |||
| else | |||
| throw new NotImplementedException(""); | |||
| @@ -1,4 +1,5 @@ | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.IO; | |||
| using System.Linq; | |||
| @@ -21,44 +22,46 @@ namespace Tensorflow.Keras.Preprocessings | |||
| /// file_paths, labels, class_names | |||
| /// </returns> | |||
| public (string[], int[], string[]) index_directory(string directory, | |||
| string labels, | |||
| string[] formats = null, | |||
| string[] class_names = null, | |||
| bool shuffle = true, | |||
| int? seed = null, | |||
| bool follow_links = false) | |||
| { | |||
| var labels = new List<int>(); | |||
| var label_list = new List<int>(); | |||
| var file_paths = new List<string>(); | |||
| var class_dirs = Directory.GetDirectories(directory); | |||
| class_names = class_dirs.Select(x => x.Split(Path.DirectorySeparatorChar)[^1]).ToArray(); | |||
| class_names = class_dirs.Select(x => x.Split(Path.DirectorySeparatorChar).Last()).ToArray(); | |||
| for (var label = 0; label < class_dirs.Length; label++) | |||
| { | |||
| var files = Directory.GetFiles(class_dirs[label]); | |||
| file_paths.AddRange(files); | |||
| labels.AddRange(Enumerable.Range(0, files.Length).Select(x => label)); | |||
| label_list.AddRange(Enumerable.Range(0, files.Length).Select(x => label)); | |||
| } | |||
| var return_labels = labels.Select(x => x).ToArray(); | |||
| var return_labels = label_list.Select(x => x).ToArray(); | |||
| var return_file_paths = file_paths.Select(x => x).ToArray(); | |||
| if (shuffle) | |||
| { | |||
| if (!seed.HasValue) | |||
| seed = np.random.randint((long)1e6); | |||
| var random_index = np.arange(labels.Count); | |||
| var random_index = np.arange(label_list.Count); | |||
| var rng = np.random.RandomState(seed.Value); | |||
| rng.shuffle(random_index); | |||
| var index = random_index.ToArray<int>(); | |||
| for (int i = 0; i < labels.Count; i++) | |||
| for (int i = 0; i < label_list.Count; i++) | |||
| { | |||
| return_labels[i] = labels[index[i]]; | |||
| return_labels[i] = label_list[index[i]]; | |||
| return_file_paths[i] = file_paths[index[i]]; | |||
| } | |||
| } | |||
| Console.WriteLine($"Found {return_file_paths.Length} files belonging to {class_names.Length} classes."); | |||
| return (return_file_paths, return_labels, class_names); | |||
| } | |||
| } | |||
| @@ -1,4 +1,7 @@ | |||
| using Tensorflow.Keras.Preprocessings; | |||
| using System; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Layers; | |||
| using Tensorflow.Keras.Preprocessings; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| @@ -6,5 +9,22 @@ namespace Tensorflow.Keras | |||
| { | |||
| public Sequence sequence => new Sequence(); | |||
| public DatasetUtils dataset_utils => new DatasetUtils(); | |||
| public TextApi text => _text; | |||
| private static TextApi _text = new TextApi(); | |||
| public TextVectorization TextVectorization(Func<Tensor, Tensor> standardize = null, | |||
| string split = "whitespace", | |||
| int max_tokens = -1, | |||
| string output_mode = "int", | |||
| int output_sequence_length = -1) => new TextVectorization(new TextVectorizationArgs | |||
| { | |||
| Standardize = standardize, | |||
| Split = split, | |||
| MaxTokens = max_tokens, | |||
| OutputMode = output_mode, | |||
| OutputSequenceLength = output_sequence_length | |||
| }); | |||
| } | |||
| } | |||
| @@ -43,6 +43,7 @@ namespace Tensorflow.Keras | |||
| num_channels = 3; | |||
| var (image_paths, label_list, class_name_list) = keras.preprocessing.dataset_utils.index_directory(directory, | |||
| labels, | |||
| formats: WHITELIST_FORMATS, | |||
| class_names: class_names, | |||
| shuffle: shuffle, | |||
| @@ -64,13 +65,30 @@ namespace Tensorflow.Keras | |||
| string[] class_names = null, | |||
| int batch_size = 32, | |||
| bool shuffle = true, | |||
| int max_length = -1, | |||
| int? seed = null, | |||
| float validation_split = 0.2f, | |||
| string subset = null) | |||
| string subset = null, | |||
| bool follow_links = false) | |||
| { | |||
| var (file_paths, label_list, class_name_list) = dataset_utils.index_directory( | |||
| directory, | |||
| labels, | |||
| formats: new[] { ".txt" }, | |||
| class_names: class_names, | |||
| shuffle: shuffle, | |||
| seed: seed, | |||
| follow_links: follow_links); | |||
| return null; | |||
| (file_paths, label_list) = dataset_utils.get_training_or_validation_split( | |||
| file_paths, label_list, validation_split, subset); | |||
| var dataset = paths_and_labels_to_dataset(file_paths, label_list, label_mode, class_name_list.Length); | |||
| if (shuffle) | |||
| dataset = dataset.shuffle(batch_size * 8, seed: seed); | |||
| dataset = dataset.batch(batch_size); | |||
| dataset.class_names = class_name_list; | |||
| return dataset; | |||
| } | |||
| } | |||
| } | |||
| @@ -1,4 +1,5 @@ | |||
| using System; | |||
| using System.IO; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras | |||
| @@ -34,5 +35,31 @@ namespace Tensorflow.Keras | |||
| // img.set_shape((image_size[0], image_size[1], num_channels)); | |||
| return img; | |||
| } | |||
| public IDatasetV2 paths_and_labels_to_dataset(string[] image_paths, | |||
| int[] labels, | |||
| string label_mode, | |||
| int num_classes, | |||
| int max_length = -1) | |||
| { | |||
| var path_ds = tf.data.Dataset.from_tensor_slices(image_paths); | |||
| var string_ds = path_ds.map(x => path_to_string_content(x, max_length)); | |||
| if (label_mode == "int") | |||
| { | |||
| var label_ds = dataset_utils.labels_to_dataset(labels, label_mode, num_classes); | |||
| string_ds = tf.data.Dataset.zip(string_ds, label_ds); | |||
| } | |||
| return string_ds; | |||
| } | |||
| Tensor path_to_string_content(Tensor path, int max_length) | |||
| { | |||
| var txt = tf.io.read_file(path); | |||
| if (max_length > -1) | |||
| txt = tf.strings.substr(txt, 0, max_length); | |||
| return txt; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,444 @@ | |||
| using NumSharp; | |||
| using Serilog.Debugging; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Collections.Specialized; | |||
| using System.Data.SqlTypes; | |||
| using System.Linq; | |||
| using System.Net.Sockets; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Text | |||
| { | |||
| /// <summary> | |||
| /// Text tokenization API. | |||
| /// This class allows to vectorize a text corpus, by turning each text into either a sequence of integers | |||
| /// (each integer being the index of a token in a dictionary) or into a vector where the coefficient for | |||
| /// each token could be binary, based on word count, based on tf-idf... | |||
| /// </summary> | |||
| /// <remarks> | |||
| /// This code is a fairly straight port of the Python code for Keras text preprocessing found at: | |||
| /// https://github.com/keras-team/keras-preprocessing/blob/master/keras_preprocessing/text.py | |||
| /// </remarks> | |||
| public class Tokenizer | |||
| { | |||
| private readonly int num_words; | |||
| private readonly string filters; | |||
| private readonly bool lower; | |||
| private readonly char split; | |||
| private readonly bool char_level; | |||
| private readonly string oov_token; | |||
| private readonly Func<string, IEnumerable<string>> analyzer; | |||
| private int document_count = 0; | |||
| private Dictionary<string, int> word_docs = new Dictionary<string, int>(); | |||
| private Dictionary<string, int> word_counts = new Dictionary<string, int>(); | |||
| public Dictionary<string, int> word_index = null; | |||
| public Dictionary<int, string> index_word = null; | |||
| private Dictionary<int, int> index_docs = null; | |||
| public Tokenizer( | |||
| int num_words = -1, | |||
| string filters = "!\"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n", | |||
| bool lower = true, | |||
| char split = ' ', | |||
| bool char_level = false, | |||
| string oov_token = null, | |||
| Func<string, IEnumerable<string>> analyzer = null) | |||
| { | |||
| this.num_words = num_words; | |||
| this.filters = filters; | |||
| this.lower = lower; | |||
| this.split = split; | |||
| this.char_level = char_level; | |||
| this.oov_token = oov_token; | |||
| this.analyzer = analyzer != null ? analyzer : (text) => TextApi.text_to_word_sequence(text, filters, lower, split); | |||
| } | |||
| /// <summary> | |||
| /// Updates internal vocabulary based on a list of texts. | |||
| /// </summary> | |||
| /// <param name="texts">A list of strings, each containing one or more tokens.</param> | |||
| /// <remarks>Required before using texts_to_sequences or texts_to_matrix.</remarks> | |||
| public void fit_on_texts(IEnumerable<string> texts) | |||
| { | |||
| foreach (var text in texts) | |||
| { | |||
| IEnumerable<string> seq = null; | |||
| document_count += 1; | |||
| if (char_level) | |||
| { | |||
| throw new NotImplementedException("char_level == true"); | |||
| } | |||
| else | |||
| { | |||
| seq = analyzer(lower ? text.ToLower() : text); | |||
| } | |||
| foreach (var w in seq) | |||
| { | |||
| var count = 0; | |||
| word_counts.TryGetValue(w, out count); | |||
| word_counts[w] = count + 1; | |||
| } | |||
| foreach (var w in new HashSet<string>(seq)) | |||
| { | |||
| var count = 0; | |||
| word_docs.TryGetValue(w, out count); | |||
| word_docs[w] = count + 1; | |||
| } | |||
| } | |||
| var wcounts = word_counts.AsEnumerable().ToList(); | |||
| wcounts.Sort((kv1, kv2) => -kv1.Value.CompareTo(kv2.Value)); // Note: '-' gives us descending order. | |||
| var sorted_voc = (oov_token == null) ? new List<string>() : new List<string>() { oov_token }; | |||
| sorted_voc.AddRange(word_counts.Select(kv => kv.Key)); | |||
| if (num_words > 0 - 1) | |||
| { | |||
| sorted_voc = sorted_voc.Take<string>((oov_token == null) ? num_words : num_words + 1).ToList(); | |||
| } | |||
| word_index = new Dictionary<string, int>(sorted_voc.Count); | |||
| index_word = new Dictionary<int, string>(sorted_voc.Count); | |||
| index_docs = new Dictionary<int, int>(word_docs.Count); | |||
| for (int i = 0; i < sorted_voc.Count; i++) | |||
| { | |||
| word_index.Add(sorted_voc[i], i + 1); | |||
| index_word.Add(i + 1, sorted_voc[i]); | |||
| } | |||
| foreach (var kv in word_docs) | |||
| { | |||
| var idx = -1; | |||
| if (word_index.TryGetValue(kv.Key, out idx)) | |||
| { | |||
| index_docs.Add(idx, kv.Value); | |||
| } | |||
| } | |||
| } | |||
| /// <summary> | |||
| /// Updates internal vocabulary based on a list of texts. | |||
| /// </summary> | |||
| /// <param name="texts">A list of list of strings, each containing one token.</param> | |||
| /// <remarks>Required before using texts_to_sequences or texts_to_matrix.</remarks> | |||
| public void fit_on_texts(IEnumerable<IEnumerable<string>> texts) | |||
| { | |||
| foreach (var seq in texts) | |||
| { | |||
| foreach (var w in seq.Select(s => lower ? s.ToLower() : s)) | |||
| { | |||
| var count = 0; | |||
| word_counts.TryGetValue(w, out count); | |||
| word_counts[w] = count + 1; | |||
| } | |||
| foreach (var w in new HashSet<string>(word_counts.Keys)) | |||
| { | |||
| var count = 0; | |||
| word_docs.TryGetValue(w, out count); | |||
| word_docs[w] = count + 1; | |||
| } | |||
| } | |||
| var wcounts = word_counts.AsEnumerable().ToList(); | |||
| wcounts.Sort((kv1, kv2) => -kv1.Value.CompareTo(kv2.Value)); | |||
| var sorted_voc = (oov_token == null) ? new List<string>() : new List<string>() { oov_token }; | |||
| sorted_voc.AddRange(word_counts.Select(kv => kv.Key)); | |||
| if (num_words > 0 - 1) | |||
| { | |||
| sorted_voc = sorted_voc.Take<string>((oov_token == null) ? num_words : num_words + 1).ToList(); | |||
| } | |||
| word_index = new Dictionary<string, int>(sorted_voc.Count); | |||
| index_word = new Dictionary<int, string>(sorted_voc.Count); | |||
| index_docs = new Dictionary<int, int>(word_docs.Count); | |||
| for (int i = 0; i < sorted_voc.Count; i++) | |||
| { | |||
| word_index.Add(sorted_voc[i], i + 1); | |||
| index_word.Add(i + 1, sorted_voc[i]); | |||
| } | |||
| foreach (var kv in word_docs) | |||
| { | |||
| var idx = -1; | |||
| if (word_index.TryGetValue(kv.Key, out idx)) | |||
| { | |||
| index_docs.Add(idx, kv.Value); | |||
| } | |||
| } | |||
| } | |||
| /// <summary> | |||
| /// Updates internal vocabulary based on a list of sequences. | |||
| /// </summary> | |||
| /// <param name="sequences"></param> | |||
| /// <remarks>Required before using sequences_to_matrix (if fit_on_texts was never called).</remarks> | |||
| public void fit_on_sequences(IEnumerable<int[]> sequences) | |||
| { | |||
| throw new NotImplementedException("fit_on_sequences"); | |||
| } | |||
| /// <summary> | |||
| /// Transforms each string in texts to a sequence of integers. | |||
| /// </summary> | |||
| /// <param name="texts"></param> | |||
| /// <returns></returns> | |||
| /// <remarks>Only top num_words-1 most frequent words will be taken into account.Only words known by the tokenizer will be taken into account.</remarks> | |||
| public IList<int[]> texts_to_sequences(IEnumerable<string> texts) | |||
| { | |||
| return texts_to_sequences_generator(texts).ToArray(); | |||
| } | |||
| /// <summary> | |||
| /// Transforms each token in texts to a sequence of integers. | |||
| /// </summary> | |||
| /// <param name="texts"></param> | |||
| /// <returns></returns> | |||
| /// <remarks>Only top num_words-1 most frequent words will be taken into account.Only words known by the tokenizer will be taken into account.</remarks> | |||
| public IList<int[]> texts_to_sequences(IEnumerable<IEnumerable<string>> texts) | |||
| { | |||
| return texts_to_sequences_generator(texts).ToArray(); | |||
| } | |||
| public IEnumerable<int[]> texts_to_sequences_generator(IEnumerable<string> texts) | |||
| { | |||
| int oov_index = -1; | |||
| var _ = (oov_token != null) && word_index.TryGetValue(oov_token, out oov_index); | |||
| return texts.Select(text => | |||
| { | |||
| IEnumerable<string> seq = null; | |||
| if (char_level) | |||
| { | |||
| throw new NotImplementedException("char_level == true"); | |||
| } | |||
| else | |||
| { | |||
| seq = analyzer(lower ? text.ToLower() : text); | |||
| } | |||
| return ConvertToSequence(oov_index, seq).ToArray(); | |||
| }); | |||
| } | |||
| public IEnumerable<int[]> texts_to_sequences_generator(IEnumerable<IEnumerable<string>> texts) | |||
| { | |||
| int oov_index = -1; | |||
| var _ = (oov_token != null) && word_index.TryGetValue(oov_token, out oov_index); | |||
| return texts.Select(seq => ConvertToSequence(oov_index, seq).ToArray()); | |||
| } | |||
| private List<int> ConvertToSequence(int oov_index, IEnumerable<string> seq) | |||
| { | |||
| var vect = new List<int>(); | |||
| foreach (var w in seq.Select(s => lower ? s.ToLower() : s)) | |||
| { | |||
| var i = -1; | |||
| if (word_index.TryGetValue(w, out i)) | |||
| { | |||
| if (num_words != -1 && i >= num_words) | |||
| { | |||
| if (oov_index != -1) | |||
| { | |||
| vect.Add(oov_index); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| vect.Add(i); | |||
| } | |||
| } | |||
| else if (oov_index != -1) | |||
| { | |||
| vect.Add(oov_index); | |||
| } | |||
| } | |||
| return vect; | |||
| } | |||
| /// <summary> | |||
| /// Transforms each sequence into a list of text. | |||
| /// </summary> | |||
| /// <param name="sequences"></param> | |||
| /// <returns>A list of texts(strings)</returns> | |||
| /// <remarks>Only top num_words-1 most frequent words will be taken into account.Only words known by the tokenizer will be taken into account.</remarks> | |||
| public IList<string> sequences_to_texts(IEnumerable<int[]> sequences) | |||
| { | |||
| return sequences_to_texts_generator(sequences).ToArray(); | |||
| } | |||
| public IEnumerable<string> sequences_to_texts_generator(IEnumerable<IList<int>> sequences) | |||
| { | |||
| int oov_index = -1; | |||
| var _ = (oov_token != null) && word_index.TryGetValue(oov_token, out oov_index); | |||
| return sequences.Select(seq => | |||
| { | |||
| var bldr = new StringBuilder(); | |||
| for (var i = 0; i < seq.Count; i++) | |||
| { | |||
| if (i > 0) bldr.Append(' '); | |||
| string word = null; | |||
| if (index_word.TryGetValue(seq[i], out word)) | |||
| { | |||
| if (num_words != -1 && i >= num_words) | |||
| { | |||
| if (oov_index != -1) | |||
| { | |||
| bldr.Append(oov_token); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| bldr.Append(word); | |||
| } | |||
| } | |||
| else if (oov_index != -1) | |||
| { | |||
| bldr.Append(oov_token); | |||
| } | |||
| } | |||
| return bldr.ToString(); | |||
| }); | |||
| } | |||
| /// <summary> | |||
| /// Convert a list of texts to a Numpy matrix. | |||
| /// </summary> | |||
| /// <param name="texts">A sequence of strings containing one or more tokens.</param> | |||
| /// <param name="mode">One of "binary", "count", "tfidf", "freq".</param> | |||
| /// <returns></returns> | |||
| public NDArray texts_to_matrix(IEnumerable<string> texts, string mode = "binary") | |||
| { | |||
| return sequences_to_matrix(texts_to_sequences(texts), mode); | |||
| } | |||
| /// <summary> | |||
| /// Convert a list of texts to a Numpy matrix. | |||
| /// </summary> | |||
| /// <param name="texts">A sequence of lists of strings, each containing one token.</param> | |||
| /// <param name="mode">One of "binary", "count", "tfidf", "freq".</param> | |||
| /// <returns></returns> | |||
| public NDArray texts_to_matrix(IEnumerable<IList<string>> texts, string mode = "binary") | |||
| { | |||
| return sequences_to_matrix(texts_to_sequences(texts), mode); | |||
| } | |||
| /// <summary> | |||
| /// Converts a list of sequences into a Numpy matrix. | |||
| /// </summary> | |||
| /// <param name="sequences">A sequence of lists of integers, encoding tokens.</param> | |||
| /// <param name="mode">One of "binary", "count", "tfidf", "freq".</param> | |||
| /// <returns></returns> | |||
| public NDArray sequences_to_matrix(IEnumerable<IList<int>> sequences, string mode = "binary") | |||
| { | |||
| if (!modes.Contains(mode)) throw new InvalidArgumentError($"Unknown vectorization mode: {mode}"); | |||
| var word_count = 0; | |||
| if (num_words == -1) | |||
| { | |||
| if (word_index != null) | |||
| { | |||
| word_count = word_index.Count + 1; | |||
| } | |||
| else | |||
| { | |||
| throw new InvalidOperationException("Specifya dimension ('num_words' arugment), or fit on some text data first."); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| word_count = num_words; | |||
| } | |||
| if (mode == "tfidf" && this.document_count == 0) | |||
| { | |||
| throw new InvalidOperationException("Fit the Tokenizer on some text data before using the 'tfidf' mode."); | |||
| } | |||
| var x = np.zeros(sequences.Count(), word_count); | |||
| for (int i = 0; i < sequences.Count(); i++) | |||
| { | |||
| var seq = sequences.ElementAt(i); | |||
| if (seq == null || seq.Count == 0) | |||
| continue; | |||
| var counts = new Dictionary<int, int>(); | |||
| var seq_length = seq.Count; | |||
| foreach (var j in seq) | |||
| { | |||
| if (j >= word_count) | |||
| continue; | |||
| var count = 0; | |||
| counts.TryGetValue(j, out count); | |||
| counts[j] = count + 1; | |||
| } | |||
| if (mode == "count") | |||
| { | |||
| foreach (var kv in counts) | |||
| { | |||
| var j = kv.Key; | |||
| var c = kv.Value; | |||
| x[i, j] = c; | |||
| } | |||
| } | |||
| else if (mode == "freq") | |||
| { | |||
| foreach (var kv in counts) | |||
| { | |||
| var j = kv.Key; | |||
| var c = kv.Value; | |||
| x[i, j] = ((double)c) / seq_length; | |||
| } | |||
| } | |||
| else if (mode == "binary") | |||
| { | |||
| foreach (var kv in counts) | |||
| { | |||
| var j = kv.Key; | |||
| var c = kv.Value; | |||
| x[i, j] = 1; | |||
| } | |||
| } | |||
| else if (mode == "tfidf") | |||
| { | |||
| foreach (var kv in counts) | |||
| { | |||
| var j = kv.Key; | |||
| var c = kv.Value; | |||
| var id = 0; | |||
| var _ = index_docs.TryGetValue(j, out id); | |||
| var tf = 1 + np.log(c); | |||
| var idf = np.log(1 + document_count / (1 + id)); | |||
| x[i, j] = tf * idf; | |||
| } | |||
| } | |||
| } | |||
| return x; | |||
| } | |||
| private string[] modes = new string[] { "binary", "count", "tfidf", "freq" }; | |||
| } | |||
| } | |||
| @@ -15,7 +15,9 @@ | |||
| ******************************************************************************/ | |||
| using NumSharp; | |||
| using NumSharp.Utilities; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| namespace Tensorflow.Keras | |||
| @@ -34,14 +36,18 @@ namespace Tensorflow.Keras | |||
| /// <param name="truncating">String, 'pre' or 'post'</param> | |||
| /// <param name="value">Float or String, padding value.</param> | |||
| /// <returns></returns> | |||
| public NDArray pad_sequences(NDArray sequences, | |||
| public NDArray pad_sequences(IEnumerable<int[]> sequences, | |||
| int? maxlen = null, | |||
| string dtype = "int32", | |||
| string padding = "pre", | |||
| string truncating = "pre", | |||
| object value = null) | |||
| { | |||
| int[] length = new int[sequences.size]; | |||
| if (value != null) throw new NotImplementedException("padding with a specific value."); | |||
| if (padding != "pre" && padding != "post") throw new InvalidArgumentError("padding must be 'pre' or 'post'."); | |||
| if (truncating != "pre" && truncating != "post") throw new InvalidArgumentError("truncating must be 'pre' or 'post'."); | |||
| var length = sequences.Select(s => s.Length); | |||
| if (maxlen == null) | |||
| maxlen = length.Max(); | |||
| @@ -49,19 +55,26 @@ namespace Tensorflow.Keras | |||
| if (value == null) | |||
| value = 0f; | |||
| var nd = new NDArray(np.int32, new Shape(sequences.size, maxlen.Value)); | |||
| #pragma warning disable CS0162 // Unreachable code detected | |||
| var type = getNPType(dtype); | |||
| var nd = new NDArray(type, new Shape(length.Count(), maxlen.Value), true); | |||
| for (int i = 0; i < nd.shape[0]; i++) | |||
| #pragma warning restore CS0162 // Unreachable code detected | |||
| { | |||
| switch (sequences[i]) | |||
| var s = sequences.ElementAt(i); | |||
| if (s.Length > maxlen.Value) | |||
| { | |||
| default: | |||
| throw new NotImplementedException("pad_sequences"); | |||
| s = (truncating == "pre") ? s.Slice(s.Length - maxlen.Value, s.Length) : s.Slice(0, maxlen.Value); | |||
| } | |||
| var sliceString = (padding == "pre") ? $"{i},{maxlen - s.Length}:" : $"{i},:{s.Length}"; | |||
| nd[sliceString] = np.array(s); | |||
| } | |||
| return nd; | |||
| } | |||
| private Type getNPType(string typeName) | |||
| { | |||
| return System.Type.GetType("NumSharp.np,NumSharp").GetField(typeName).GetValue(null) as Type; | |||
| } | |||
| } | |||
| } | |||
| @@ -6,7 +6,7 @@ | |||
| <LangVersion>8.0</LangVersion> | |||
| <RootNamespace>Tensorflow.Keras</RootNamespace> | |||
| <Platforms>AnyCPU;x64</Platforms> | |||
| <Version>0.4.0</Version> | |||
| <Version>0.5.0</Version> | |||
| <Authors>Haiping Chen</Authors> | |||
| <Product>Keras for .NET</Product> | |||
| <Copyright>Apache 2.0, Haiping Chen 2020</Copyright> | |||
| @@ -23,7 +23,8 @@ | |||
| * Implemented backward_function. | |||
| * Support model.load_weights. | |||
| * Add Subtract layer | |||
| * Support YOLOv3 model.</PackageReleaseNotes> | |||
| * Support YOLOv3 model. | |||
| * Text preprocessing</PackageReleaseNotes> | |||
| <Description>Keras for .NET | |||
| Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages.</Description> | |||
| @@ -34,8 +35,8 @@ Keras is an API designed for human beings, not machines. Keras follows best prac | |||
| <RepositoryType>Git</RepositoryType> | |||
| <SignAssembly>true</SignAssembly> | |||
| <AssemblyOriginatorKeyFile>Open.snk</AssemblyOriginatorKeyFile> | |||
| <AssemblyVersion>0.4.0.0</AssemblyVersion> | |||
| <FileVersion>0.4.0.0</FileVersion> | |||
| <AssemblyVersion>0.5.0.0</AssemblyVersion> | |||
| <FileVersion>0.5.0.0</FileVersion> | |||
| <PackageLicenseFile>LICENSE</PackageLicenseFile> | |||
| </PropertyGroup> | |||
| @@ -48,6 +49,10 @@ Keras is an API designed for human beings, not machines. Keras follows best prac | |||
| <AllowUnsafeBlocks>false</AllowUnsafeBlocks> | |||
| </PropertyGroup> | |||
| <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'"> | |||
| <DocumentationFile>Tensorflow.Keras.xml</DocumentationFile> | |||
| </PropertyGroup> | |||
| <ItemGroup> | |||
| <PackageReference Include="MethodBoundaryAspect.Fody" Version="2.0.138" /> | |||
| <PackageReference Include="Newtonsoft.Json" Version="12.0.3" /> | |||
| @@ -62,10 +67,6 @@ Keras is an API designed for human beings, not machines. Keras follows best prac | |||
| </None> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <Folder Include="Engine\Interfaces\" /> | |||
| </ItemGroup> | |||
| <ItemGroup> | |||
| <ProjectReference Include="..\TensorFlowNET.Core\Tensorflow.Binding.csproj" /> | |||
| </ItemGroup> | |||
| @@ -0,0 +1,35 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Text; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public class TextApi | |||
| { | |||
| public Tensorflow.Keras.Text.Tokenizer Tokenizer( | |||
| int num_words = -1, | |||
| string filters = DefaultFilter, | |||
| bool lower = true, | |||
| char split = ' ', | |||
| bool char_level = false, | |||
| string oov_token = null, | |||
| Func<string, IEnumerable<string>> analyzer = null) | |||
| { | |||
| return new Keras.Text.Tokenizer(num_words, filters, lower, split, char_level, oov_token, analyzer); | |||
| } | |||
| public static IEnumerable<string> text_to_word_sequence(string text, string filters = DefaultFilter, bool lower = true, char split = ' ') | |||
| { | |||
| if (lower) | |||
| { | |||
| text = text.ToLower(); | |||
| } | |||
| var newText = new String(text.Where(c => !filters.Contains(c)).ToArray()); | |||
| return newText.Split(split); | |||
| } | |||
| private const string DefaultFilter = "!\"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n"; | |||
| } | |||
| } | |||
| @@ -0,0 +1,42 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Utils | |||
| { | |||
| public class KerasUtils | |||
| { | |||
| /// <summary> | |||
| /// Downloads a file from a URL if it not already in the cache. | |||
| /// </summary> | |||
| /// <param name="fname">Name of the file</param> | |||
| /// <param name="origin">Original URL of the file</param> | |||
| /// <param name="untar"></param> | |||
| /// <param name="md5_hash"></param> | |||
| /// <param name="file_hash"></param> | |||
| /// <param name="cache_subdir"></param> | |||
| /// <param name="hash_algorithm"></param> | |||
| /// <param name="extract"></param> | |||
| /// <param name="archive_format"></param> | |||
| /// <param name="cache_dir"></param> | |||
| /// <returns></returns> | |||
| public string get_file(string fname, string origin, | |||
| bool untar = false, | |||
| string md5_hash = null, | |||
| string file_hash = null, | |||
| string cache_subdir = "datasets", | |||
| string hash_algorithm = "auto", | |||
| bool extract = false, | |||
| string archive_format = "auto", | |||
| string cache_dir = null) | |||
| => data_utils.get_file(fname, origin, | |||
| untar: untar, | |||
| md5_hash: md5_hash, | |||
| file_hash: file_hash, | |||
| cache_subdir: cache_subdir, | |||
| hash_algorithm: hash_algorithm, | |||
| extract: extract, | |||
| archive_format: archive_format, | |||
| cache_dir: cache_dir); | |||
| } | |||
| } | |||
| @@ -1,39 +0,0 @@ | |||
| namespace System.Runtime.CompilerServices | |||
| { | |||
| internal static class RuntimeHelpers | |||
| { | |||
| /// <summary> | |||
| /// Slices the specified array using the specified range. | |||
| /// </summary> | |||
| public static T[] GetSubArray<T>(T[] array, Range range) | |||
| { | |||
| if (array == null) | |||
| { | |||
| throw new ArgumentNullException(nameof(array)); | |||
| } | |||
| (int offset, int length) = range.GetOffsetAndLength(array.Length); | |||
| if (default(T) != null || typeof(T[]) == array.GetType()) | |||
| { | |||
| // We know the type of the array to be exactly T[]. | |||
| if (length == 0) | |||
| { | |||
| return Array.Empty<T>(); | |||
| } | |||
| var dest = new T[length]; | |||
| Array.Copy(array, offset, dest, 0, length); | |||
| return dest; | |||
| } | |||
| else | |||
| { | |||
| // The array is actually a U[] where U:T. | |||
| var dest = (T[])Array.CreateInstance(array.GetType().GetElementType(), length); | |||
| Array.Copy(array, offset, dest, 0, length); | |||
| return dest; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,37 @@ | |||
| using System; | |||
| using System.Linq; | |||
| using System.Collections.Generic; | |||
| using System.IO; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Utils | |||
| { | |||
| public class data_utils | |||
| { | |||
| public static string get_file(string fname, string origin, | |||
| bool untar = false, | |||
| string md5_hash = null, | |||
| string file_hash = null, | |||
| string cache_subdir = "datasets", | |||
| string hash_algorithm = "auto", | |||
| bool extract = false, | |||
| string archive_format = "auto", | |||
| string cache_dir = null) | |||
| { | |||
| var datadir_base = cache_dir; | |||
| Directory.CreateDirectory(datadir_base); | |||
| var datadir = Path.Combine(datadir_base, cache_subdir); | |||
| Directory.CreateDirectory(datadir); | |||
| Web.Download(origin, datadir, fname); | |||
| if (untar) | |||
| Compress.ExtractTGZ(Path.Combine(datadir_base, fname), datadir_base); | |||
| else if (extract) | |||
| Compress.ExtractGZip(Path.Combine(datadir_base, fname), datadir_base); | |||
| return datadir; | |||
| } | |||
| } | |||
| } | |||
| @@ -67,7 +67,7 @@ namespace Tensorflow.Keras.Utils | |||
| line_length = 65; | |||
| if (positions == null) | |||
| positions = new[] { 0.45f, 0.85f, 1.0f }; | |||
| if (positions[^1] <= 1) | |||
| if (positions.Last() <= 1) | |||
| positions = positions.Select(p => line_length * p).ToArray(); | |||
| to_display = new[] { "Layer (type)", "Output Shape", "Param #" }; | |||
| } | |||
| @@ -77,7 +77,7 @@ namespace Tensorflow.Keras.Utils | |||
| line_length = 98; | |||
| if (positions == null) | |||
| positions = new[] { 0.33f, 0.55f, 0.67f, 1.0f }; | |||
| if (positions[^1] <= 1) | |||
| if (positions.Last() <= 1) | |||
| positions = positions.Select(p => line_length * p).ToArray(); | |||
| to_display = new[] { "Layer (type)", "Output Shape", "Param #", "Connected to" }; | |||
| @@ -118,7 +118,7 @@ namespace Tensorflow.Keras.Utils | |||
| foreach (var i in range(fields.Length)) | |||
| { | |||
| if (i > 0) | |||
| line = line[0..^1] + " "; | |||
| line = line + " "; | |||
| line += fields[i]; | |||
| line = string.Join("", line.Take(positions[i])); | |||
| line += string.Join("", range(positions[i] - len(line)).Select(x => " ")); | |||
| @@ -1,6 +1,8 @@ | |||
| using System; | |||
| using NumSharp; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Text.Tokenizers | |||
| { | |||
| @@ -13,7 +15,31 @@ namespace Tensorflow.Text.Tokenizers | |||
| /// <returns></returns> | |||
| public Tensor tokenize(Tensor input) | |||
| { | |||
| tokenize_with_offsets(input); | |||
| throw new NotImplementedException(""); | |||
| } | |||
| Tensor[] tokenize_with_offsets(Tensor input) | |||
| { | |||
| tf_with(ops.name_scope(null, "WhitespaceTokenize"), scope => | |||
| { | |||
| _whitespace_tokenize_with_offsets_encode_decode_wrapper(input); | |||
| }); | |||
| throw new NotImplementedException(""); | |||
| } | |||
| Tensor _whitespace_tokenize_with_offsets_encode_decode_wrapper(Tensor input_tensor) | |||
| { | |||
| // Decode the strings and get byte offsets | |||
| var (codepoints, byte_start_offsets) = tf.strings.unicode_decode_with_offsets(input_tensor, "UTF-8"); | |||
| var byte_end_offsets = array_ops.concat(new Tensor[] | |||
| { | |||
| byte_start_offsets[Slice.All, new Slice(1)], | |||
| math_ops.cast( | |||
| array_ops.expand_dims(tf.strings.string_length(input_tensor), 1), | |||
| dtypes.int64) | |||
| }, 1); | |||
| return input_tensor; | |||
| } | |||
| } | |||
| } | |||
| @@ -2,13 +2,14 @@ | |||
| <PropertyGroup> | |||
| <OutputType>Exe</OutputType> | |||
| <TargetFramework>netcoreapp3.1</TargetFramework> | |||
| <TargetFramework>net5.0</TargetFramework> | |||
| <Platforms>AnyCPU;x64</Platforms> | |||
| </PropertyGroup> | |||
| <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'"> | |||
| <AllowUnsafeBlocks>true</AllowUnsafeBlocks> | |||
| <DefineConstants>DEBUG;TRACE</DefineConstants> | |||
| <PlatformTarget>x64</PlatformTarget> | |||
| </PropertyGroup> | |||
| <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'"> | |||
| @@ -56,7 +56,7 @@ Set ENV `BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\ | |||
| 1. Build static library | |||
| `bazel build --output_base=C:/tmp/tfcompilation build --config=opt //tensorflow:tensorflow` | |||
| `bazel build --output_base=C:/tmp/tfcompilation --config=opt //tensorflow:tensorflow` | |||
| 2. Build pip package | |||
| @@ -70,6 +70,16 @@ Set ENV `BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\ | |||
| `pip install C:/tmp/tensorflow_pkg/tensorflow-1.15.0-cp36-cp36m-win_amd64.whl` | |||
| ### Build from source for MacOS | |||
| ```shell | |||
| $ cd /usr/local/lib/bazel/bin | |||
| $ curl -LO https://release.bazel.build/3.7.2/release/bazel-3.7.2-darwin-x86_64 | |||
| $ chmod +x bazel-3.7.2-darwin-x86_64 | |||
| $ cd ~/Projects/tensorflow | |||
| $ bazel build --config=opt //tensorflow:tensorflow | |||
| ``` | |||
| ### Build specific version for tf.net | |||
| https://github.com/SciSharp/tensorflow | |||
| @@ -0,0 +1,305 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using NumSharp; | |||
| using System.Linq; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| namespace TensorFlowNET.Keras.UnitTest | |||
| { | |||
| /// <summary> | |||
| /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers | |||
| /// </summary> | |||
| [TestClass] | |||
| public class PoolingTest : EagerModeTestBase | |||
| { | |||
| private NDArray input_array_1D = np.array(new float[,,] | |||
| { | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,3}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| }); | |||
| private NDArray input_array_2D = np.array(new float[,,,] | |||
| {{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,3}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| },{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,3}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| }}); | |||
| [TestMethod] | |||
| public void GlobalAverage1DPoolingChannelsLast() | |||
| { | |||
| var pool = keras.layers.GlobalAveragePooling1D(); | |||
| var y = pool.Apply(input_array_1D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(5, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {1,2,3,3,3}, | |||
| {4,5,6,3,3}, | |||
| {7,8,9,3,3}, | |||
| {7,8,9,3,3} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalAverage1DPoolingChannelsFirst() | |||
| { | |||
| var pool = keras.layers.GlobalAveragePooling1D(data_format: "channels_first"); | |||
| var y = pool.Apply(input_array_1D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(3, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {2.4f, 2.4f, 2.4f}, | |||
| {4.2f, 4.2f, 4.2f}, | |||
| {6.0f, 6.0f, 6.0f}, | |||
| {6.0f, 6.0f, 6.0f} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalAverage2DPoolingChannelsLast() | |||
| { | |||
| var pool = keras.layers.GlobalAveragePooling2D(); | |||
| var y = pool.Apply(input_array_2D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(5, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {2.5f, 3.5f, 4.5f, 3.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, | |||
| {2.5f, 3.5f, 4.5f, 3.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalAverage2DPoolingChannelsFirst() | |||
| { | |||
| var pool = keras.layers.GlobalAveragePooling2D(data_format: "channels_first"); | |||
| var y = pool.Apply(input_array_2D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(2, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {2.4f, 4.2f}, | |||
| {6.0f, 6.0f}, | |||
| {2.4f, 4.2f}, | |||
| {6.0f, 6.0f} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalMax1DPoolingChannelsLast() | |||
| { | |||
| var pool = keras.layers.GlobalMaxPooling1D(); | |||
| var y = pool.Apply(input_array_1D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(5, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {1,2,3,3,3}, | |||
| {4,5,6,3,3}, | |||
| {7,8,9,3,3}, | |||
| {7,8,9,3,3} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalMax1DPoolingChannelsFirst() | |||
| { | |||
| var pool = keras.layers.GlobalMaxPooling1D(data_format: "channels_first"); | |||
| var y = pool.Apply(input_array_1D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(3, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {3.0f, 3.0f, 3.0f}, | |||
| {6.0f, 6.0f, 6.0f}, | |||
| {9.0f, 9.0f, 9.0f}, | |||
| {9.0f, 9.0f, 9.0f} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalMax2DPoolingChannelsLast() | |||
| { | |||
| var input_array_2D = np.array(new float[,,,] | |||
| {{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,9,3}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| },{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,9}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| }}); | |||
| var pool = keras.layers.GlobalMaxPooling2D(); | |||
| var y = pool.Apply(input_array_2D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(5, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {4.0f, 5.0f, 6.0f, 9.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, | |||
| {4.0f, 5.0f, 6.0f, 3.0f, 9.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void GlobalMax2DPoolingChannelsFirst() | |||
| { | |||
| var input_array_2D = np.array(new float[,,,] | |||
| {{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,9,3}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| },{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,9}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| }}); | |||
| var pool = keras.layers.GlobalMaxPooling2D(data_format: "channels_first"); | |||
| var y = pool.Apply(input_array_2D); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(2, y.shape[1]); | |||
| var expected = np.array(new float[,] | |||
| { | |||
| {9.0f, 6.0f}, | |||
| {9.0f, 9.0f}, | |||
| {9.0f, 6.0f}, | |||
| {9.0f, 9.0f} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod, Ignore("There's an error generated from TF complaining about the shape of the pool. Needs further investigation.")] | |||
| public void Max1DPoolingChannelsLast() | |||
| { | |||
| var x = input_array_1D; | |||
| var pool = keras.layers.MaxPooling1D(pool_size:2, strides:1); | |||
| var y = pool.Apply(x); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(2, y.shape[1]); | |||
| Assert.AreEqual(5, y.shape[2]); | |||
| var expected = np.array(new float[,,] | |||
| { | |||
| {{2.0f, 2.0f, 3.0f, 3.0f, 3.0f}, | |||
| { 1.0f, 2.0f, 3.0f, 3.0f, 3.0f}}, | |||
| {{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, | |||
| {4.0f, 5.0f, 6.0f, 3.0f, 3.0f}}, | |||
| {{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}}, | |||
| {{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| [TestMethod] | |||
| public void Max2DPoolingChannelsLast() | |||
| { | |||
| var x = np.array(new float[,,,] | |||
| {{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,9,3}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| },{ | |||
| {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,9}}, | |||
| {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, | |||
| },{ | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, | |||
| {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} | |||
| }}); | |||
| var pool = keras.layers.MaxPooling2D(pool_size: 2, strides: 1); | |||
| var y = pool.Apply(x); | |||
| Assert.AreEqual(4, y.shape[0]); | |||
| Assert.AreEqual(1, y.shape[1]); | |||
| Assert.AreEqual(2, y.shape[2]); | |||
| Assert.AreEqual(5, y.shape[3]); | |||
| var expected = np.array(new float[,,,] | |||
| { | |||
| {{{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, | |||
| {4.0f, 5.0f, 6.0f, 9.0f, 3.0f}}}, | |||
| {{{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}}}, | |||
| {{{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, | |||
| {4.0f, 5.0f, 6.0f, 3.0f, 9.0f}}}, | |||
| {{{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, | |||
| {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}}} | |||
| }); | |||
| Assert.AreEqual(expected, y[0].numpy()); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,413 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System; | |||
| using System.Linq; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using NumSharp; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow; | |||
| using Tensorflow.Keras.Datasets; | |||
| using Microsoft.Extensions.DependencyInjection; | |||
| namespace TensorFlowNET.Keras.UnitTest | |||
| { | |||
| [TestClass] | |||
| public class PreprocessingTests : EagerModeTestBase | |||
| { | |||
| private readonly string[] texts = new string[] { | |||
| "It was the best of times, it was the worst of times.", | |||
| "Mr and Mrs Dursley of number four, Privet Drive, were proud to say that they were perfectly normal, thank you very much.", | |||
| "It was the best of times, it was the worst of times.", | |||
| "Mr and Mrs Dursley of number four, Privet Drive.", | |||
| }; | |||
| private readonly string[][] tokenized_texts = new string[][] { | |||
| new string[] {"It","was","the","best","of","times","it","was","the","worst","of","times"}, | |||
| new string[] {"mr","and","mrs","dursley","of","number","four","privet","drive","were","proud","to","say","that","they","were","perfectly","normal","thank","you","very","much"}, | |||
| new string[] {"It","was","the","best","of","times","it","was","the","worst","of","times"}, | |||
| new string[] {"mr","and","mrs","dursley","of","number","four","privet","drive"}, | |||
| }; | |||
| private readonly string[] processed_texts = new string[] { | |||
| "it was the best of times it was the worst of times", | |||
| "mr and mrs dursley of number four privet drive were proud to say that they were perfectly normal thank you very much", | |||
| "it was the best of times it was the worst of times", | |||
| "mr and mrs dursley of number four privet drive", | |||
| }; | |||
| private const string OOV = "<OOV>"; | |||
| [TestMethod] | |||
| public void TokenizeWithNoOOV() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| Assert.AreEqual(27, tokenizer.word_index.Count); | |||
| Assert.AreEqual(7, tokenizer.word_index["worst"]); | |||
| Assert.AreEqual(12, tokenizer.word_index["number"]); | |||
| Assert.AreEqual(16, tokenizer.word_index["were"]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeWithNoOOV_Tkn() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| // Use the list version, where the tokenization has already been done. | |||
| tokenizer.fit_on_texts(tokenized_texts); | |||
| Assert.AreEqual(27, tokenizer.word_index.Count); | |||
| Assert.AreEqual(7, tokenizer.word_index["worst"]); | |||
| Assert.AreEqual(12, tokenizer.word_index["number"]); | |||
| Assert.AreEqual(16, tokenizer.word_index["were"]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeWithOOV() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| Assert.AreEqual(28, tokenizer.word_index.Count); | |||
| Assert.AreEqual(1, tokenizer.word_index[OOV]); | |||
| Assert.AreEqual(8, tokenizer.word_index["worst"]); | |||
| Assert.AreEqual(13, tokenizer.word_index["number"]); | |||
| Assert.AreEqual(17, tokenizer.word_index["were"]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeWithOOV_Tkn() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| // Use the list version, where the tokenization has already been done. | |||
| tokenizer.fit_on_texts(tokenized_texts); | |||
| Assert.AreEqual(28, tokenizer.word_index.Count); | |||
| Assert.AreEqual(1, tokenizer.word_index[OOV]); | |||
| Assert.AreEqual(8, tokenizer.word_index["worst"]); | |||
| Assert.AreEqual(13, tokenizer.word_index["number"]); | |||
| Assert.AreEqual(17, tokenizer.word_index["were"]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequences() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], sequences[0][9]); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], sequences[1][10]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequences_Tkn() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| // Use the list version, where the tokenization has already been done. | |||
| tokenizer.fit_on_texts(tokenized_texts); | |||
| var sequences = tokenizer.texts_to_sequences(tokenized_texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], sequences[0][9]); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], sequences[1][10]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequencesAndBack() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| var processed = tokenizer.sequences_to_texts(sequences); | |||
| Assert.AreEqual(4, processed.Count); | |||
| for (var i = 0; i < processed.Count; i++) | |||
| Assert.AreEqual(processed_texts[i], processed[i]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequencesAndBack_Tkn1() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| // Use the list version, where the tokenization has already been done. | |||
| tokenizer.fit_on_texts(tokenized_texts); | |||
| // Use the list version, where the tokenization has already been done. | |||
| var sequences = tokenizer.texts_to_sequences(tokenized_texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| var processed = tokenizer.sequences_to_texts(sequences); | |||
| Assert.AreEqual(4, processed.Count); | |||
| for (var i = 0; i < processed.Count; i++) | |||
| Assert.AreEqual(processed_texts[i], processed[i]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequencesAndBack_Tkn2() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| // Use the list version, where the tokenization has already been done. | |||
| tokenizer.fit_on_texts(tokenized_texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| var processed = tokenizer.sequences_to_texts(sequences); | |||
| Assert.AreEqual(4, processed.Count); | |||
| for (var i = 0; i < processed.Count; i++) | |||
| Assert.AreEqual(processed_texts[i], processed[i]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequencesAndBack_Tkn3() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| // Use the list version, where the tokenization has already been done. | |||
| var sequences = tokenizer.texts_to_sequences(tokenized_texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| var processed = tokenizer.sequences_to_texts(sequences); | |||
| Assert.AreEqual(4, processed.Count); | |||
| for (var i = 0; i < processed.Count; i++) | |||
| Assert.AreEqual(processed_texts[i], processed[i]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequencesWithOOV() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], sequences[0][9]); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], sequences[1][10]); | |||
| for (var i = 0; i < sequences.Count; i++) | |||
| for (var j = 0; j < sequences[i].Length; j++) | |||
| Assert.AreNotEqual(tokenizer.word_index[OOV], sequences[i][j]); | |||
| } | |||
| [TestMethod] | |||
| public void TokenizeTextsToSequencesWithOOVPresent() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV, num_words:20); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| Assert.AreEqual(4, sequences.Count); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], sequences[0][9]); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], sequences[1][10]); | |||
| var oov_count = 0; | |||
| for (var i = 0; i < sequences.Count; i++) | |||
| for (var j = 0; j < sequences[i].Length; j++) | |||
| if (tokenizer.word_index[OOV] == sequences[i][j]) | |||
| oov_count += 1; | |||
| Assert.AreEqual(9, oov_count); | |||
| } | |||
| [TestMethod] | |||
| public void PadSequencesWithDefaults() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| var padded = keras.preprocessing.sequence.pad_sequences(sequences); | |||
| Assert.AreEqual(4, padded.shape[0]); | |||
| Assert.AreEqual(22, padded.shape[1]); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], padded[0, 19].GetInt32()); | |||
| for (var i = 0; i < 8; i++) | |||
| Assert.AreEqual(0, padded[0, i].GetInt32()); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], padded[1, 10].GetInt32()); | |||
| for (var i = 0; i < 20; i++) | |||
| Assert.AreNotEqual(0, padded[1, i].GetInt32()); | |||
| } | |||
| [TestMethod] | |||
| public void PadSequencesPrePaddingTrunc() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| var padded = keras.preprocessing.sequence.pad_sequences(sequences,maxlen:15); | |||
| Assert.AreEqual(4, padded.shape[0]); | |||
| Assert.AreEqual(15, padded.shape[1]); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], padded[0, 12].GetInt32()); | |||
| for (var i = 0; i < 3; i++) | |||
| Assert.AreEqual(0, padded[0, i].GetInt32()); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], padded[1, 3].GetInt32()); | |||
| for (var i = 0; i < 15; i++) | |||
| Assert.AreNotEqual(0, padded[1, i].GetInt32()); | |||
| } | |||
| [TestMethod] | |||
| public void PadSequencesPrePaddingTrunc_Larger() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| var padded = keras.preprocessing.sequence.pad_sequences(sequences, maxlen: 45); | |||
| Assert.AreEqual(4, padded.shape[0]); | |||
| Assert.AreEqual(45, padded.shape[1]); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], padded[0, 42].GetInt32()); | |||
| for (var i = 0; i < 33; i++) | |||
| Assert.AreEqual(0, padded[0, i].GetInt32()); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], padded[1, 33].GetInt32()); | |||
| } | |||
| [TestMethod] | |||
| public void PadSequencesPostPaddingTrunc() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| var padded = keras.preprocessing.sequence.pad_sequences(sequences, maxlen: 15, padding: "post", truncating: "post"); | |||
| Assert.AreEqual(4, padded.shape[0]); | |||
| Assert.AreEqual(15, padded.shape[1]); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], padded[0, 9].GetInt32()); | |||
| for (var i = 12; i < 15; i++) | |||
| Assert.AreEqual(0, padded[0, i].GetInt32()); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], padded[1, 10].GetInt32()); | |||
| for (var i = 0; i < 15; i++) | |||
| Assert.AreNotEqual(0, padded[1, i].GetInt32()); | |||
| } | |||
| [TestMethod] | |||
| public void PadSequencesPostPaddingTrunc_Larger() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV); | |||
| tokenizer.fit_on_texts(texts); | |||
| var sequences = tokenizer.texts_to_sequences(texts); | |||
| var padded = keras.preprocessing.sequence.pad_sequences(sequences, maxlen: 45, padding: "post", truncating: "post"); | |||
| Assert.AreEqual(4, padded.shape[0]); | |||
| Assert.AreEqual(45, padded.shape[1]); | |||
| Assert.AreEqual(tokenizer.word_index["worst"], padded[0, 9].GetInt32()); | |||
| for (var i = 32; i < 45; i++) | |||
| Assert.AreEqual(0, padded[0, i].GetInt32()); | |||
| Assert.AreEqual(tokenizer.word_index["proud"], padded[1, 10].GetInt32()); | |||
| } | |||
| [TestMethod] | |||
| public void TextToMatrixBinary() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| Assert.AreEqual(27, tokenizer.word_index.Count); | |||
| var matrix = tokenizer.texts_to_matrix(texts); | |||
| Assert.AreEqual(texts.Length, matrix.shape[0]); | |||
| CompareLists(new double[] { 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, matrix[0].ToArray<double>()); | |||
| CompareLists(new double[] { 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, matrix[1].ToArray<double>()); | |||
| } | |||
| [TestMethod] | |||
| public void TextToMatrixCount() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| Assert.AreEqual(27, tokenizer.word_index.Count); | |||
| var matrix = tokenizer.texts_to_matrix(texts, mode:"count"); | |||
| Assert.AreEqual(texts.Length, matrix.shape[0]); | |||
| CompareLists(new double[] { 0, 2, 2, 2, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, matrix[0].ToArray<double>()); | |||
| CompareLists(new double[] { 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, matrix[1].ToArray<double>()); | |||
| } | |||
| [TestMethod] | |||
| public void TextToMatrixFrequency() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| Assert.AreEqual(27, tokenizer.word_index.Count); | |||
| var matrix = tokenizer.texts_to_matrix(texts, mode: "freq"); | |||
| Assert.AreEqual(texts.Length, matrix.shape[0]); | |||
| double t12 = 2.0 / 12.0; | |||
| double o12 = 1.0 / 12.0; | |||
| double t22 = 2.0 / 22.0; | |||
| double o22 = 1.0 / 22.0; | |||
| CompareLists(new double[] { 0, t12, t12, t12, o12, t12, t12, o12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, matrix[0].ToArray<double>()); | |||
| CompareLists(new double[] { 0, 0, 0, 0, 0, o22, 0, 0, o22, o22, o22, o22, o22, o22, o22, o22, t22, o22, o22, o22, o22, o22, o22, o22, o22, o22, o22, o22 }, matrix[1].ToArray<double>()); | |||
| } | |||
| [TestMethod] | |||
| public void TextToMatrixTDIDF() | |||
| { | |||
| var tokenizer = keras.preprocessing.text.Tokenizer(); | |||
| tokenizer.fit_on_texts(texts); | |||
| Assert.AreEqual(27, tokenizer.word_index.Count); | |||
| var matrix = tokenizer.texts_to_matrix(texts, mode: "tfidf"); | |||
| Assert.AreEqual(texts.Length, matrix.shape[0]); | |||
| double t1 = 1.1736001944781467; | |||
| double t2 = 0.69314718055994529; | |||
| double t3 = 1.860112299086919; | |||
| double t4 = 1.0986122886681098; | |||
| double t5 = 0.69314718055994529; | |||
| CompareLists(new double[] { 0, t1, t1, t1, t2, 0, t1, t2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, matrix[0].ToArray<double>()); | |||
| CompareLists(new double[] { 0, 0, 0, 0, 0, 0, 0, 0, t5, t5, t5, t5, t5, t5, t5, t5, t3, t4, t4, t4, t4, t4, t4, t4, t4, t4, t4, t4 }, matrix[1].ToArray<double>()); | |||
| } | |||
| private void CompareLists<T>(IList<T> expected, IList<T> actual) | |||
| { | |||
| Assert.AreEqual(expected.Count, actual.Count); | |||
| for (var i = 0; i < expected.Count; i++) | |||
| { | |||
| Assert.AreEqual(expected[i], actual[i]); | |||
| } | |||
| } | |||
| } | |||
| } | |||