|
|
|
@@ -11,6 +11,31 @@ namespace TensorFlowNET.Keras.UnitTest |
|
|
|
[TestClass] |
|
|
|
public class ActivationTest : EagerModeTestBase |
|
|
|
{ |
|
|
|
[TestMethod] |
|
|
|
public void ReLU() |
|
|
|
{ |
|
|
|
var layer = keras.layers.ReLU(); |
|
|
|
Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); |
|
|
|
Equal(new[] { 0.0f, 0.0f, 0.0f, 2.0f }, output.ToArray<float>()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Sigmoid() |
|
|
|
{ |
|
|
|
var layer = keras.layers.Sigmoid(); |
|
|
|
Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); |
|
|
|
Equal(new[] { 0.047425866f, 0.26894143f, 0.5f, 0.8807971f }, output.ToArray<float>()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Tanh() |
|
|
|
{ |
|
|
|
var layer = keras.layers.Tanh(); |
|
|
|
Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); |
|
|
|
// {-0.9950547f, -0.7615942f, 0f, 0.9640276f} |
|
|
|
Equal(new[] { -0.9950547f, -0.7615942f, 0f, 0.9640276f }, output.ToArray<float>()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void LeakyReLU() |
|
|
|
{ |
|
|
|
|