Browse Source

Merge pull request #228 from henon/master

cond test with tensor evaluation
tags/v0.9
Haiping GitHub 6 years ago
parent
commit
17cb58909f
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 228 additions and 90 deletions
  1. +0
    -38
      src/TensorFlowNET.Core/Python.cs
  2. +54
    -21
      src/TensorFlowNET.Core/Util/nest.py.cs
  3. +165
    -21
      test/TensorFlowNET.UnitTest/PythonTest.cs
  4. +5
    -5
      test/TensorFlowNET.UnitTest/control_flow_ops_test/CondTestCases.cs
  5. +4
    -5
      test/TensorFlowNET.UnitTest/nest_test/NestTest.cs

+ 0
- 38
src/TensorFlowNET.Core/Python.cs View File

@@ -131,44 +131,6 @@ namespace Tensorflow
}
}

/// <summary>
/// Untyped implementation of zip for arbitrary data
///
/// Converts an list of lists or arrays [[1,2,3], [4,5,6], [7,8,9]] into a list of arrays
/// representing tuples of the same index of all source arrays [[1,4,7], [2,5,9], [3,6,9]]
/// </summary>
/// <param name="lists">one or multiple sequences to be zipped</param>
/// <returns></returns>
public static IEnumerable<object[]> zip(params object[] lists)
{
if (lists.Length == 0)
yield break;
var first = lists[0];
if (first == null)
yield break;
var arity = (first as IEnumerable).OfType<object>().Count();
for (int i = 0; i < arity; i++)
{
var array= new object[lists.Length];
for (int j = 0; j < lists.Length; j++)
array[j] = GetSequenceElementAt(lists[j], i);
yield return array;
}
}

private static object GetSequenceElementAt(object sequence, int i)
{
switch (sequence)
{
case Array array:
return array.GetValue(i);
case IList list:
return list[i];
default:
return (sequence as IEnumerable).OfType<object>().Skip(Math.Max(0, i)).FirstOrDefault();
}
}

public static IEnumerable<(int, T)> enumerate<T>(IList<T> values)
{
for (int i = 0; i < values.Count; i++)


+ 54
- 21
src/TensorFlowNET.Core/Util/nest.py.cs View File

@@ -23,8 +23,44 @@ namespace Tensorflow.Util
public static class nest
{
public static IEnumerable<object[]> zip(params object[] structures)
=> Python.zip(structures);
/// <summary>
/// Untyped implementation of zip for arbitrary data
///
/// Converts an list of lists or arrays [[1,2,3], [4,5,6], [7,8,9]] into a list of arrays
/// representing tuples of the same index of all source arrays [[1,4,7], [2,5,9], [3,6,9]]
/// </summary>
/// <param name="lists">one or multiple sequences to be zipped</param>
/// <returns></returns>
public static IEnumerable<object[]> zip_many(params IEnumerable<object>[] lists)
{
if (lists.Length == 0)
yield break;
var first = lists[0];
if (first == null)
yield break;
var arity = first.Count();
for (int i = 0; i < arity; i++)
{
var array = new object[lists.Length];
for (int j = 0; j < lists.Length; j++)
array[j] = GetSequenceElementAt(lists[j], i);
yield return array;
}
}
private static object GetSequenceElementAt(object sequence, int i)
{
switch (sequence)
{
case Array array:
return array.GetValue(i);
case IList list:
return list[i];
default:
return _yield_value(sequence).Skip(Math.Max(0, i)).FirstOrDefault();
}
}
public static IEnumerable<(T1, T2)> zip<T1, T2>(IEnumerable<T1> e1, IEnumerable<T2> e2)
=> Python.zip(e1, e2);
@@ -40,9 +76,9 @@ namespace Tensorflow.Util
/// <summary>
/// Returns a sorted list of the dict keys, with error if keys not sortable.
/// </summary>
private static IEnumerable<string> _sorted(IDictionary dict_)
private static IEnumerable<object> _sorted(IDictionary dict_)
{
return dict_.Keys.OfType<string>().OrderBy(x => x);
return dict_.Keys.OfType<object>().OrderBy(x => x);
}
@@ -86,7 +122,7 @@ namespace Tensorflow.Util
{
case Hashtable hash:
var result = new Hashtable();
foreach ((object key, object value) in zip(_sorted(hash).OfType<object>(), args))
foreach ((object key, object value) in zip<object, object>(_sorted(hash), args))
result[key] = value;
return result;
}
@@ -370,13 +406,13 @@ namespace Tensorflow.Util
/// <returns> `flat_sequence` converted to have the same recursive structure as
/// `structure`.
/// </returns>
public static object pack_sequence_as<T>(object structure, IEnumerable<T> flat_sequence)
public static object pack_sequence_as(object structure, IEnumerable<object> flat_sequence)
{
List<object> flat = null;
if (flat_sequence is List<object>)
flat = flat_sequence as List<object>;
else
flat=new List<object>(flat_sequence.OfType<object>());
flat=new List<object>(flat_sequence);
if (flat_sequence==null)
throw new ArgumentException("flat_sequence must not be null");
// if not is_sequence(flat_sequence):
@@ -403,7 +439,7 @@ namespace Tensorflow.Util
var flat_structure = flatten(structure);
if (len(flat_structure) != len(flat))
{
throw new ValueError("Could not pack sequence. Structure had %d elements, but " +
throw new ValueError("Could not pack sequence. Structure had {len(structure)} elements, but " +
$"flat_sequence had {len(flat_structure)} elements. flat_sequence had: {len(flat)}");
}
return _sequence_like(structure, packed);
@@ -413,7 +449,7 @@ namespace Tensorflow.Util
var flat_structure = flatten(structure);
if (len(flat_structure) != len(flat))
{
throw new ValueError("Could not pack sequence. Structure had %d elements, but " +
throw new ValueError("Could not pack sequence. Structure had {len(structure)} elements, but " +
$"flat_sequence had {len(flat_structure)} elements. flat_sequence had: {len(flat)}");
}
return _sequence_like(structure, packed);
@@ -427,10 +463,8 @@ namespace Tensorflow.Util
/// `structure[i]`. All structures in `structure` must have the same arity,
/// and the return value will contain the results in the same structure.
/// </summary>
/// <typeparam name="T">the type of the elements of the output structure (object if diverse)</typeparam>
/// <param name="func"> A callable that accepts as many arguments as there are structures.</param>
/// <param name="structures">scalar, or tuple or list of constructed scalars and/or other
/// tuples/lists, or scalars. Note: numpy arrays are considered as scalars.</param>
/// <param name="structures">one or many IEnumerable of object</param>
/// <param name="check_types">If set to
/// `True` (default) the types of iterables within the structures have to be
/// same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError`
@@ -444,23 +478,22 @@ namespace Tensorflow.Util
/// `check_types` is `False` the sequence types of the first structure will be
/// used.
/// </returns>
public static IEnumerable<object> map_structure(Func<object[], object> func, object structure, params object[] more_structures)
public static IEnumerable<object> map_structure(Func<object[], object> func, params IEnumerable<object>[] structure)
{
// TODO: check structure and types
// for other in structure[1:]:
// assert_same_structure(structure[0], other, check_types=check_types)
if (more_structures.Length==0)
if (structure.Length==1)
{
// we don't need to zip if we have only one structure
return map_structure(a => func(new object[]{a}), structure);
return map_structure(a => func(new object[]{a}), structure[0]);
}
var flat_structures = new List<object>() { flatten(structure) };
flat_structures.AddRange(more_structures.Select(flatten));
var entries = zip(flat_structures);
var flat_structures = structure.Select(flatten).ToArray(); // ToArray is important here!
var entries = zip_many(flat_structures);
var mapped_flat_structure = entries.Select(func);
return (pack_sequence_as(structure, mapped_flat_structure) as IEnumerable).OfType<object>();
return _yield_value(pack_sequence_as(structure[0], mapped_flat_structure)).ToList();
}
/// <summary>
@@ -469,7 +502,7 @@ namespace Tensorflow.Util
/// <param name="func"></param>
/// <param name="structure"></param>
/// <returns></returns>
public static IEnumerable<object> map_structure(Func<object, object> func, object structure)
public static IEnumerable<object> map_structure(Func<object, object> func, IEnumerable<object> structure)
{
// TODO: check structure and types
// for other in structure[1:]:
@@ -478,7 +511,7 @@ namespace Tensorflow.Util
var flat_structure = flatten(structure);
var mapped_flat_structure = flat_structure.Select(func).ToList();
return (pack_sequence_as(structure, mapped_flat_structure) as IEnumerable).OfType<object>();
return _yield_value(pack_sequence_as(structure, mapped_flat_structure)).ToList();
}
//def map_structure_with_paths(func, *structure, **kwargs):


+ 165
- 21
test/TensorFlowNET.UnitTest/PythonTest.cs View File

@@ -18,7 +18,8 @@ namespace TensorFlowNET.UnitTest
{
#region python compatibility layer
protected PythonTest self { get => this; }
protected object None {
protected object None
{
get { return null; }
}
#endregion
@@ -43,7 +44,7 @@ namespace TensorFlowNET.UnitTest
assertItemsEqual((g[i] as NDArray).Array, (e[i] as NDArray).Array);
else if (e[i] is ICollection && g[i] is ICollection)
assertEqual(g[i], e[i]);
else
else
Assert.AreEqual(e[i], g[i], $"Items differ at index {i}, expected {e[i]} but got {g[i]}");
}
}
@@ -102,28 +103,171 @@ namespace TensorFlowNET.UnitTest
{
if (tensors == null)
return null;
//return nest.map_structure(self._eval_tensor, tensors);
return nest.map_structure(self._eval_tensor, tensors);
return null;
}
//def evaluate(self, tensors) :
// """Evaluates tensors and returns numpy values.
// Args:
// tensors: A Tensor or a nested list/tuple of Tensors.
// Returns:
// tensors numpy values.
// """
// if context.executing_eagerly():
// return self._eval_helper(tensors)
// else:
// sess = ops.get_default_session()
// if sess is None:
// with self.test_session() as sess:
// return sess.run(tensors)
// else:
// return sess.run(tensors)
protected object _eval_tensor(object tensor)
{
if (tensor == None)
return None;
//else if (callable(tensor))
// return self._eval_helper(tensor())
else
{
try
{
//TODO:
// if sparse_tensor.is_sparse(tensor):
// return sparse_tensor.SparseTensorValue(tensor.indices, tensor.values,
// tensor.dense_shape)
//return (tensor as Tensor).numpy();
}
catch (Exception e)
{
throw new ValueError("Unsupported type: " + tensor.GetType());
}
return null;
}
}
/// <summary>
/// Evaluates tensors and returns numpy values.
/// <param name="tensors">A Tensor or a nested list/tuple of Tensors.</param>
/// </summary>
/// <returns> tensors numpy values.</returns>
public object evaluate(params Tensor[] tensors)
{
// if context.executing_eagerly():
// return self._eval_helper(tensors)
// else:
{
var sess = ops.get_default_session();
if (sess == None)
with(self.session(), s => sess = s);
return sess.run(tensors);
}
}
//Returns a TensorFlow Session for use in executing tests.
public Session session(Graph graph = null, object config = null, bool use_gpu = false, bool force_gpu = false)
{
//Note that this will set this session and the graph as global defaults.
//Use the `use_gpu` and `force_gpu` options to control where ops are run.If
//`force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if
//`use_gpu` is True, TensorFlow tries to run as many ops on the GPU as
//possible.If both `force_gpu and `use_gpu` are False, all ops are pinned to
//the CPU.
//Example:
//```python
//class MyOperatorTest(test_util.TensorFlowTestCase):
// def testMyOperator(self):
// with self.session(use_gpu= True):
// valid_input = [1.0, 2.0, 3.0, 4.0, 5.0]
// result = MyOperator(valid_input).eval()
// self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0]
// invalid_input = [-1.0, 2.0, 7.0]
// with self.assertRaisesOpError("negative input not supported"):
// MyOperator(invalid_input).eval()
//```
//Args:
// graph: Optional graph to use during the returned session.
// config: An optional config_pb2.ConfigProto to use to configure the
// session.
// use_gpu: If True, attempt to run as many ops as possible on GPU.
// force_gpu: If True, pin all ops to `/device:GPU:0`.
//Yields:
// A Session object that should be used as a context manager to surround
// the graph building and execution code in a test case.
Session s = null;
//if (context.executing_eagerly())
// yield None
//else
{
with<Session>(self._create_session(graph, config, force_gpu), sess =>
{
with(self._constrain_devices_and_set_default(sess, use_gpu, force_gpu), (x) =>
{
s = sess;
});
});
}
return s;
}
private IPython _constrain_devices_and_set_default(Session sess, bool useGpu, bool forceGpu)
{
//def _constrain_devices_and_set_default(self, sess, use_gpu, force_gpu):
//"""Set the session and its graph to global default and constrain devices."""
//if context.executing_eagerly():
// yield None
//else:
// with sess.graph.as_default(), sess.as_default():
// if force_gpu:
// # Use the name of an actual device if one is detected, or
// # '/device:GPU:0' otherwise
// gpu_name = gpu_device_name()
// if not gpu_name:
// gpu_name = "/device:GPU:0"
// with sess.graph.device(gpu_name):
// yield sess
// elif use_gpu:
// yield sess
// else:
// with sess.graph.device("/device:CPU:0"):
// yield sess
return sess;
}
// See session() for details.
private Session _create_session(Graph graph, object cfg, bool forceGpu)
{
var prepare_config = new Func<object, object>((config) =>
{
// """Returns a config for sessions.
// Args:
// config: An optional config_pb2.ConfigProto to use to configure the
// session.
// Returns:
// A config_pb2.ConfigProto object.
//TODO: config
// # use_gpu=False. Currently many tests rely on the fact that any device
// # will be used even when a specific device is supposed to be used.
// allow_soft_placement = not force_gpu
// if config is None:
// config = config_pb2.ConfigProto()
// config.allow_soft_placement = allow_soft_placement
// config.gpu_options.per_process_gpu_memory_fraction = 0.3
// elif not allow_soft_placement and config.allow_soft_placement:
// config_copy = config_pb2.ConfigProto()
// config_copy.CopyFrom(config)
// config = config_copy
// config.allow_soft_placement = False
// # Don't perform optimizations for tests so we don't inadvertently run
// # gpu ops on cpu
// config.graph_options.optimizer_options.opt_level = -1
// # Disable Grappler constant folding since some tests & benchmarks
// # use constant input and become meaningless after constant folding.
// # DO NOT DISABLE GRAPPLER OPTIMIZERS WITHOUT CONSULTING WITH THE
// # GRAPPLER TEAM.
// config.graph_options.rewrite_options.constant_folding = (
// rewriter_config_pb2.RewriterConfig.OFF)
// config.graph_options.rewrite_options.pin_to_host_optimization = (
// rewriter_config_pb2.RewriterConfig.OFF)
return config;
});
//TODO: use this instead of normal session
//return new ErrorLoggingSession(graph = graph, config = prepare_config(config))
return new Session(graph: graph);//, config = prepare_config(config))
}
#endregion


+ 5
- 5
test/TensorFlowNET.UnitTest/control_flow_ops_test/CondTestCases.cs View File

@@ -10,14 +10,14 @@ namespace TensorFlowNET.UnitTest.control_flow_ops_test
public class CondTestCases : PythonTest
{
[Ignore("Todo")]
[TestMethod]
public void testCondTrue()
{
//var x = constant_op.constant(2);
//var y = constant_op.constant(5);
// var z = control_flow_ops.cond(math_ops.less(x,y), ()=> math_ops.multiply(x, 17), ()=> math_ops.add(y, 23))
//self.assertEquals(self.evaluate(z), 34);
var x = tf.constant(2);
var y = tf.constant(5);
var z = control_flow_ops.cond(tf.less(x, y), () => tf.multiply(x, tf.constant(17)),
() => tf.add(y, tf.constant(23)));
self.assertEquals(self.evaluate(z), 34);
}
[Ignore("Todo")]


+ 4
- 5
test/TensorFlowNET.UnitTest/nest_test/NestTest.cs View File

@@ -387,11 +387,10 @@ namespace TensorFlowNET.UnitTest.nest_test
// nest.assert_same_structure(structure1, structure1_plus1)
self.assertAllEqual( nest.flatten(structure1_plus1), new object[] { 2, 3, 4, 5, 6, 7 });
self.assertAllEqual(nest.flatten(structure1_strings), new object[] { "1", "2", "3", "4", "5", "6" });
// structure1_plus_structure2 = nest.map_structure(
// lambda x, y: x + y, structure1, structure2)
// self.assertEqual(
// (((1 + 7, 2 + 8), 3 + 9), 4 + 10, (5 + 11, 6 + 12)),
// structure1_plus_structure2)
var structure1_plus_structure2 = nest.map_structure(x => (int)(x[0]) + (int)(x[1]), structure1, structure2);
self.assertEqual(
new object[] { new object[] { new object[] { 1 + 7, 2 + 8}, 3 + 9}, 4 + 10, new object[] { 5 + 11, 6 + 12}},
structure1_plus_structure2);
// self.assertEqual(3, nest.map_structure(lambda x: x - 1, 4))


Loading…
Cancel
Save