解决keras模式下,使用GPU训练时会爆显存的bug。tags/v0.150.0-BERT-Model
| @@ -339,6 +339,13 @@ namespace Tensorflow | |||
| => image_ops_impl.decode_image(contents, channels: channels, dtype: dtype, | |||
| name: name, expand_animations: expand_animations); | |||
| public Tensor encode_png(Tensor contents, string name = null) | |||
| => image_ops_impl.encode_png(contents, name: name); | |||
| public Tensor encode_jpeg(Tensor contents, string name = null) | |||
| => image_ops_impl.encode_jpeg(contents, name: name); | |||
| /// <summary> | |||
| /// Convenience function to check if the 'contents' encodes a JPEG image. | |||
| /// </summary> | |||
| @@ -16,6 +16,7 @@ | |||
| using System.Collections.Generic; | |||
| using Tensorflow.IO; | |||
| using Tensorflow.Operations; | |||
| namespace Tensorflow | |||
| { | |||
| @@ -46,6 +47,12 @@ namespace Tensorflow | |||
| public Tensor[] restore_v2(Tensor prefix, string[] tensor_names, | |||
| string[] shape_and_slices, TF_DataType[] dtypes, string name = null) | |||
| => ops.restore_v2(prefix, tensor_names, shape_and_slices, dtypes, name: name); | |||
| public Operation write_file(string filename, Tensor conentes, string name = null) | |||
| => write_file(Tensorflow.ops.convert_to_tensor(filename, TF_DataType.TF_STRING), conentes, name); | |||
| public Operation write_file(Tensor filename, Tensor conentes, string name = null) | |||
| => gen_ops.write_file(filename, conentes, name); | |||
| } | |||
| public GFile gfile = new GFile(); | |||
| @@ -80,6 +80,11 @@ namespace Tensorflow.Eager | |||
| Tensor[] op_outputs) | |||
| => (out_grads, unneeded_gradients) => | |||
| { | |||
| if(!ops.gradientFunctions.ContainsKey(op_name)) | |||
| { | |||
| throw new Exception($"gradientFunctions not find op_name: {op_name}"); | |||
| } | |||
| if (ops.gradientFunctions[op_name] == null) | |||
| return new Tensor[op_inputs.Length]; | |||
| @@ -229,6 +229,37 @@ namespace Tensorflow.Gradients | |||
| }; | |||
| } | |||
| /// <summary> | |||
| /// Gradient function for Conv2D. | |||
| /// </summary> | |||
| /// <param name="op"></param> | |||
| /// <param name="grads"></param> | |||
| /// <returns></returns> | |||
| [RegisterGradient("DepthwiseConv2dNative")] | |||
| public static Tensor[] _DepthwiseConv2DGrad(Operation op, Tensor[] grads) | |||
| { | |||
| var dilations = op.get_attr_list<int>("dilations"); | |||
| var strides = op.get_attr_list<int>("strides"); | |||
| var padding = op.get_attr<string>("padding"); | |||
| var explicit_paddings = op.get_attr_list<int>("explicit_paddings"); | |||
| var data_format = op.get_attr<string>("data_format"); | |||
| var shape = gen_array_ops.shape_n(new Tensor[] { op.inputs[0], op.inputs[1] }); | |||
| return new Tensor[] | |||
| { | |||
| gen_nn_ops.depthwise_conv2d_native_backprop_input( | |||
| shape[0], op.inputs[1], grads[0], | |||
| strides, padding, explicit_paddings, | |||
| dilations: dilations, | |||
| data_format: data_format), | |||
| gen_nn_ops.depthwise_conv2d_native_backprop_filter(op.inputs[0], shape[1], grads[0], | |||
| strides, padding, | |||
| dilations: dilations, | |||
| explicit_paddings: explicit_paddings, | |||
| data_format: data_format) | |||
| }; | |||
| } | |||
| [RegisterGradient("FusedBatchNorm")] | |||
| public static Tensor[] _FusedBatchNormGrad(Operation op, Tensor[] grads) | |||
| => _BaseFusedBatchNormGrad(op, 0, grads); | |||
| @@ -24,6 +24,7 @@ public interface IModel : ILayer | |||
| List<ICallback> callbacks = null, | |||
| float validation_split = 0f, | |||
| ValidationDataPack validation_data = null, | |||
| int validation_step = 10, | |||
| bool shuffle = true, | |||
| Dictionary<int, float> class_weight = null, | |||
| NDArray sample_weight = null, | |||
| @@ -47,6 +48,20 @@ public interface IModel : ILayer | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| public ICallback fit(IDatasetV2 dataset, | |||
| int batch_size = -1, | |||
| int epochs = 1, | |||
| int verbose = 1, | |||
| List<ICallback> callbacks = null, | |||
| IDatasetV2 validation_data = null, | |||
| int validation_step = 10, // 间隔多少次会进行一次验证 | |||
| bool shuffle = true, | |||
| Dictionary<int, float> class_weight = null, | |||
| int initial_epoch = 0, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| void save(string filepath, | |||
| bool overwrite = true, | |||
| bool include_optimizer = true, | |||
| @@ -85,6 +100,14 @@ public interface IModel : ILayer | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| public Tensors predict(IDatasetV2 dataset, | |||
| int batch_size = -1, | |||
| int verbose = 0, | |||
| int steps = -1, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| void summary(int line_length = -1, float[] positions = null); | |||
| IKerasConfig get_config(); | |||
| @@ -55,6 +55,12 @@ namespace Tensorflow.Keras.Layers | |||
| string kernel_initializer = "glorot_uniform", | |||
| string bias_initializer = "zeros"); | |||
| public ILayer Conv2D(int filters, | |||
| Shape kernel_size = null, | |||
| Shape strides = null, | |||
| string padding = "valid" | |||
| ); | |||
| public ILayer Conv2D(int filters, | |||
| Shape kernel_size = null, | |||
| Shape strides = null, | |||
| @@ -95,6 +101,19 @@ namespace Tensorflow.Keras.Layers | |||
| bool use_bias = true, | |||
| string kernel_initializer = "glorot_uniform", | |||
| string bias_initializer = "zeros"); | |||
| public ILayer DepthwiseConv2D(Shape kernel_size = null, | |||
| Shape strides = null, | |||
| string padding = "valid", | |||
| string data_format = null, | |||
| Shape dilation_rate = null, | |||
| int groups = 1, | |||
| int depth_multiplier = 1, | |||
| string activation = null, | |||
| bool use_bias = false, | |||
| string kernel_initializer = "glorot_uniform", | |||
| string bias_initializer = "zeros", | |||
| string depthwise_initializer = "glorot_uniform" | |||
| ); | |||
| public ILayer Dense(int units); | |||
| public ILayer Dense(int units, | |||
| @@ -102,7 +102,10 @@ namespace Tensorflow | |||
| { | |||
| throw new ValueError("\'image\' must be fully defined."); | |||
| } | |||
| var dims = image_shape["-3:"]; | |||
| var dims = new Shape(new[] { | |||
| image_shape.dims[image_shape.dims.Length - 3], | |||
| image_shape.dims[image_shape.dims.Length - 2], | |||
| image_shape.dims[image_shape.dims.Length - 1]}); | |||
| foreach (var dim in dims.dims) | |||
| { | |||
| if (dim == 0) | |||
| @@ -112,16 +115,18 @@ namespace Tensorflow | |||
| } | |||
| var image_shape_last_three_elements = new Shape(new[] { | |||
| image_shape.dims[image_shape.dims.Length - 1], | |||
| image_shape.dims[image_shape.dims.Length - 3], | |||
| image_shape.dims[image_shape.dims.Length - 2], | |||
| image_shape.dims[image_shape.dims.Length - 3]}); | |||
| image_shape.dims[image_shape.dims.Length - 1]}); | |||
| if (!image_shape_last_three_elements.IsFullyDefined) | |||
| { | |||
| Tensor image_shape_ = array_ops.shape(image); | |||
| var image_shape_return = tf.constant(new[] { | |||
| image_shape_.dims[image_shape.dims.Length - 1], | |||
| image_shape_.dims[image_shape.dims.Length - 2], | |||
| image_shape_.dims[image_shape.dims.Length - 3]}); | |||
| var image_shape_return = tf.slice(image_shape_, new[] { Math.Max(image_shape.dims.Length - 3, 0) }, new[] { 3 }); | |||
| //var image_shape_return = tf.constant(new[] { | |||
| // image_shape_.dims[image_shape_.dims.Length - 3], | |||
| // image_shape_.dims[image_shape_.dims.Length - 2], | |||
| // image_shape_.dims[image_shape_.dims.Length - 1]}); | |||
| return new Operation[] { | |||
| check_ops.assert_positive( | |||
| @@ -209,10 +214,10 @@ namespace Tensorflow | |||
| } | |||
| public static Tensor flip_left_right(Tensor image) | |||
| => _flip(image, 0, "flip_left_right"); | |||
| => _flip(image, 1, "flip_left_right"); | |||
| public static Tensor flip_up_down(Tensor image) | |||
| => _flip(image, 1, "flip_up_down"); | |||
| => _flip(image, 0, "flip_up_down"); | |||
| internal static Tensor _flip(Tensor image, int flip_index, string scope_name) | |||
| { | |||
| @@ -223,11 +228,11 @@ namespace Tensorflow | |||
| Shape shape = image.shape; | |||
| if (shape.ndim == 3 || shape.ndim == Unknown) | |||
| { | |||
| return fix_image_flip_shape(image, gen_array_ops.reverse(image, ops.convert_to_tensor(new int[] { flip_index }))); | |||
| return fix_image_flip_shape(image, gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new int[] { flip_index }))); | |||
| } | |||
| else if (shape.ndim == 4) | |||
| { | |||
| return gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new[] { (flip_index + 1) % 2 })); | |||
| return gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new[] { flip_index + 1 })); | |||
| } | |||
| else | |||
| { | |||
| @@ -2047,6 +2052,22 @@ new_height, new_width"); | |||
| }); | |||
| } | |||
| public static Tensor encode_jpeg(Tensor contents, string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "encode_jpeg"), scope => | |||
| { | |||
| return gen_ops.encode_jpeg(contents, name:name); | |||
| }); | |||
| } | |||
| public static Tensor encode_png(Tensor contents, string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "encode_png"), scope => | |||
| { | |||
| return gen_ops.encode_png(contents, name: name); | |||
| }); | |||
| } | |||
| public static Tensor is_jpeg(Tensor contents, string name = null) | |||
| { | |||
| return tf_with(ops.name_scope(name, "is_jpeg"), scope => | |||
| @@ -249,6 +249,9 @@ namespace Tensorflow | |||
| case sbyte val: | |||
| tensor_proto.IntVal.AddRange(new[] { (int)val }); | |||
| break; | |||
| case byte val: | |||
| tensor_proto.IntVal.AddRange(new[] { (int)val }); | |||
| break; | |||
| case int val: | |||
| tensor_proto.IntVal.AddRange(new[] { val }); | |||
| break; | |||
| @@ -262,7 +265,7 @@ namespace Tensorflow | |||
| tensor_proto.DoubleVal.AddRange(new[] { val }); | |||
| break; | |||
| default: | |||
| throw new Exception("make_tensor_proto Not Implemented"); | |||
| throw new Exception($"make_tensor_proto Not Implemented {values.GetType().Name}"); | |||
| } | |||
| } | |||
| @@ -132,6 +132,7 @@ namespace Tensorflow.Keras.Engine | |||
| var end_step = step + data_handler.StepIncrement; | |||
| if (!is_val) | |||
| callbacks.on_test_batch_end(end_step, logs); | |||
| GC.Collect(); | |||
| } | |||
| } | |||
| callbacks.on_test_end(logs); | |||
| @@ -167,7 +168,9 @@ namespace Tensorflow.Keras.Engine | |||
| Dictionary<string, float> test_step(DataHandler data_handler, Tensors x, Tensors y) | |||
| { | |||
| (x,y) = data_handler.DataAdapter.Expand1d(x, y); | |||
| var y_pred = Apply(x, training: false); | |||
| var loss = compiled_loss.Call(y, y_pred); | |||
| compiled_metrics.update_state(y, y_pred); | |||
| return metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Item1, x => (float)x.Item2); | |||
| @@ -41,6 +41,7 @@ namespace Tensorflow.Keras.Engine | |||
| List<ICallback> callbacks = null, | |||
| float validation_split = 0f, | |||
| ValidationDataPack validation_data = null, | |||
| int validation_step = 10, | |||
| bool shuffle = true, | |||
| Dictionary<int, float> class_weight = null, | |||
| NDArray sample_weight = null, | |||
| @@ -147,7 +148,7 @@ namespace Tensorflow.Keras.Engine | |||
| } | |||
| } | |||
| public History fit(IDatasetV2 dataset, | |||
| public ICallback fit(IDatasetV2 dataset, | |||
| int batch_size = -1, | |||
| int epochs = 1, | |||
| int verbose = 1, | |||
| @@ -156,7 +157,6 @@ namespace Tensorflow.Keras.Engine | |||
| int validation_step = 10, | |||
| bool shuffle = true, | |||
| Dictionary<int, float> class_weight = null, | |||
| NDArray sample_weight = null, | |||
| int initial_epoch = 0, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| @@ -170,7 +170,7 @@ namespace Tensorflow.Keras.Engine | |||
| InitialEpoch = initial_epoch, | |||
| Epochs = epochs, | |||
| Shuffle = shuffle, | |||
| SampleWeight = sample_weight, | |||
| ClassWeight = class_weight, | |||
| MaxQueueSize = max_queue_size, | |||
| Workers = workers, | |||
| UseMultiprocessing = use_multiprocessing, | |||
| @@ -218,6 +218,7 @@ namespace Tensorflow.Keras.Engine | |||
| var end_step = step + data_handler.StepIncrement; | |||
| End_step = end_step; | |||
| callbacks.on_train_batch_end(end_step, logs); | |||
| GC.Collect(); | |||
| } | |||
| if (validation_data != null) | |||
| @@ -233,11 +234,10 @@ namespace Tensorflow.Keras.Engine | |||
| callbacks.on_train_batch_end(End_step, logs); | |||
| } | |||
| GC.Collect(); | |||
| callbacks.on_epoch_end(epoch, logs); | |||
| GC.Collect(); | |||
| GC.WaitForPendingFinalizers(); | |||
| if (stop_training) | |||
| { | |||
| break; | |||
| @@ -282,6 +282,7 @@ namespace Tensorflow.Keras.Engine | |||
| var end_step = step + data_handler.StepIncrement; | |||
| End_step = end_step; | |||
| callbacks.on_train_batch_end(end_step, logs); | |||
| GC.Collect(); | |||
| } | |||
| if (validation_data != null) | |||
| @@ -301,7 +302,6 @@ namespace Tensorflow.Keras.Engine | |||
| callbacks.on_epoch_end(epoch, logs); | |||
| GC.Collect(); | |||
| GC.WaitForPendingFinalizers(); | |||
| if (stop_training) | |||
| { | |||
| break; | |||
| @@ -102,9 +102,9 @@ namespace Tensorflow.Keras.Engine | |||
| for (int i = 0; i < batch_outputs.Length; i++) | |||
| batch_outputs[i] = tf.concat(new Tensor[] { batch_outputs[i], tmp_batch_outputs[i] }, axis: 0); | |||
| } | |||
| var end_step = step + data_handler.StepIncrement; | |||
| callbacks.on_predict_batch_end(end_step, new Dictionary<string, Tensors> { { "outputs", batch_outputs } }); | |||
| GC.Collect(); | |||
| } | |||
| } | |||
| @@ -0,0 +1,167 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using System; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Saving; | |||
| using Tensorflow.Common.Types; | |||
| using Tensorflow.Keras.Utils; | |||
| using Tensorflow.Operations; | |||
| using Newtonsoft.Json; | |||
| using System.Security.Cryptography; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class DepthwiseConv2DArgs: Conv2DArgs | |||
| { | |||
| /// <summary> | |||
| /// depth_multiplier: The number of depthwise convolution output channels for | |||
| /// each input channel.The total number of depthwise convolution output | |||
| /// channels will be equal to `filters_in* depth_multiplier`. | |||
| /// </summary> | |||
| [JsonProperty("depth_multiplier")] | |||
| public int DepthMultiplier { get; set; } = 1; | |||
| [JsonProperty("depthwise_initializer")] | |||
| public IInitializer DepthwiseInitializer { get; set; } | |||
| } | |||
| public class DepthwiseConv2D : Conv2D | |||
| { | |||
| /// <summary> | |||
| /// depth_multiplier: The number of depthwise convolution output channels for | |||
| /// each input channel.The total number of depthwise convolution output | |||
| /// channels will be equal to `filters_in* depth_multiplier`. | |||
| /// </summary> | |||
| int DepthMultiplier = 1; | |||
| IInitializer DepthwiseInitializer; | |||
| int[] strides; | |||
| int[] dilation_rate; | |||
| string getDataFormat() | |||
| { | |||
| return data_format == "channels_first" ? "NCHW" : "NHWC"; | |||
| } | |||
| static int _id = 1; | |||
| public DepthwiseConv2D(DepthwiseConv2DArgs args):base(args) | |||
| { | |||
| args.Padding = args.Padding.ToUpper(); | |||
| if(string.IsNullOrEmpty(args.Name)) | |||
| name = "DepthwiseConv2D_" + _id; | |||
| this.DepthMultiplier = args.DepthMultiplier; | |||
| this.DepthwiseInitializer = args.DepthwiseInitializer; | |||
| } | |||
| public override void build(KerasShapesWrapper input_shape) | |||
| { | |||
| //base.build(input_shape); | |||
| var shape = input_shape.ToSingleShape(); | |||
| int channel_axis = data_format == "channels_first" ? 1 : -1; | |||
| var input_channel = channel_axis < 0 ? | |||
| shape.dims[shape.ndim + channel_axis] : | |||
| shape.dims[channel_axis]; | |||
| var arg = args as DepthwiseConv2DArgs; | |||
| if (arg.Strides.ndim != shape.ndim) | |||
| { | |||
| if (arg.Strides.ndim == 2) | |||
| { | |||
| this.strides = new int[] { 1, (int)arg.Strides[0], (int)arg.Strides[1], 1 }; | |||
| } | |||
| else | |||
| { | |||
| this.strides = conv_utils.normalize_tuple(new int[] { (int)arg.Strides[0] }, shape.ndim, "strides"); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| this.strides = arg.Strides.dims.Select(o=>(int)(o)).ToArray(); | |||
| } | |||
| if (arg.DilationRate.ndim != shape.ndim) | |||
| { | |||
| this.dilation_rate = conv_utils.normalize_tuple(new int[] { (int)arg.DilationRate[0] }, shape.ndim, "dilation_rate"); | |||
| } | |||
| long channel_data = data_format == "channels_first" ? shape[0] : shape[shape.Length - 1]; | |||
| var depthwise_kernel_shape = this.kernel_size.dims.concat(new long[] { | |||
| channel_data, | |||
| this.DepthMultiplier | |||
| }); | |||
| this.kernel = this.add_weight( | |||
| shape: depthwise_kernel_shape, | |||
| initializer: this.DepthwiseInitializer != null ? this.DepthwiseInitializer : this.kernel_initializer, | |||
| name: "depthwise_kernel", | |||
| trainable: true, | |||
| dtype: DType, | |||
| regularizer: this.kernel_regularizer | |||
| ); | |||
| var axes = new Dictionary<int, int>(); | |||
| axes.Add(-1, (int)input_channel); | |||
| inputSpec = new InputSpec(min_ndim: rank + 2, axes: axes); | |||
| if (use_bias) | |||
| { | |||
| bias = add_weight(name: "bias", | |||
| shape: ((int)channel_data), | |||
| initializer: bias_initializer, | |||
| trainable: true, | |||
| dtype: DType); | |||
| } | |||
| built = true; | |||
| _buildInputShape = input_shape; | |||
| } | |||
| protected override Tensors Call(Tensors inputs, Tensors state = null, | |||
| bool? training = false, IOptionalArgs? optional_args = null) | |||
| { | |||
| Tensor outputs = null; | |||
| outputs = gen_nn_ops.depthwise_conv2d_native( | |||
| inputs, | |||
| filter: this.kernel.AsTensor(), | |||
| strides: this.strides, | |||
| padding: this.padding, | |||
| dilations: this.dilation_rate, | |||
| data_format: this.getDataFormat(), | |||
| name: name | |||
| ); | |||
| if (use_bias) | |||
| { | |||
| if (data_format == "channels_first") | |||
| { | |||
| throw new NotImplementedException("call channels_first"); | |||
| } | |||
| else | |||
| { | |||
| outputs = gen_nn_ops.bias_add(outputs, ops.convert_to_tensor(bias), | |||
| data_format: this.getDataFormat(), name: name); | |||
| } | |||
| } | |||
| if (activation != null) | |||
| outputs = activation.Apply(outputs); | |||
| return outputs; | |||
| } | |||
| } | |||
| } | |||
| @@ -112,7 +112,28 @@ namespace Tensorflow.Keras.Layers | |||
| KernelInitializer = GetInitializerByName(kernel_initializer), | |||
| BiasInitializer = GetInitializerByName(bias_initializer) | |||
| }); | |||
| public ILayer Conv2D(int filters, | |||
| Shape kernel_size = null, | |||
| Shape strides = null, | |||
| string padding = "valid") | |||
| => new Conv2D(new Conv2DArgs | |||
| { | |||
| Rank = 2, | |||
| Filters = filters, | |||
| KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, | |||
| Strides = strides == null ? (1, 1) : strides, | |||
| Padding = padding, | |||
| DataFormat = null, | |||
| DilationRate = (1, 1), | |||
| Groups = 1, | |||
| UseBias = false, | |||
| KernelRegularizer = null, | |||
| KernelInitializer =tf.glorot_uniform_initializer, | |||
| BiasInitializer = tf.zeros_initializer, | |||
| BiasRegularizer = null, | |||
| ActivityRegularizer = null, | |||
| Activation = keras.activations.Linear, | |||
| }); | |||
| /// <summary> | |||
| /// 2D convolution layer (e.g. spatial convolution over images). | |||
| /// This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. | |||
| @@ -210,6 +231,38 @@ namespace Tensorflow.Keras.Layers | |||
| Activation = keras.activations.GetActivationFromName(activation) | |||
| }); | |||
| public ILayer DepthwiseConv2D(Shape kernel_size = null, | |||
| Shape strides = null, | |||
| string padding = "valid", | |||
| string data_format = null, | |||
| Shape dilation_rate = null, | |||
| int groups = 1, | |||
| int depth_multiplier = 1, | |||
| string activation = null, | |||
| bool use_bias = false, | |||
| string kernel_initializer = "glorot_uniform", | |||
| string bias_initializer = "zeros", | |||
| string depthwise_initializer = "glorot_uniform" | |||
| ) | |||
| => new DepthwiseConv2D(new DepthwiseConv2DArgs | |||
| { | |||
| Rank = 2, | |||
| Filters = 1, | |||
| KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, | |||
| Strides = strides == null ? (1) : strides, | |||
| Padding = padding, | |||
| DepthMultiplier = depth_multiplier, | |||
| DataFormat = data_format, | |||
| DilationRate = dilation_rate == null ? (1) : dilation_rate, | |||
| Groups = groups, | |||
| UseBias = use_bias, | |||
| KernelInitializer = GetInitializerByName(kernel_initializer), | |||
| DepthwiseInitializer = GetInitializerByName(depthwise_initializer == null ? kernel_initializer : depthwise_initializer), | |||
| BiasInitializer = GetInitializerByName(bias_initializer), | |||
| Activation = keras.activations.GetActivationFromName(activation), | |||
| }); | |||
| /// <summary> | |||
| /// Transposed convolution layer (sometimes called Deconvolution). | |||
| /// </summary> | |||
| @@ -4,6 +4,7 @@ using System.Linq; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| using System; | |||
| using System.IO; | |||
| namespace TensorFlowNET.UnitTest | |||
| { | |||
| @@ -164,5 +165,94 @@ namespace TensorFlowNET.UnitTest | |||
| Assert.AreEqual(result.size, 16ul); | |||
| Assert.AreEqual(result[0, 0, 0, 0], 12f); | |||
| } | |||
| [TestMethod] | |||
| public void ImageSaveTest() | |||
| { | |||
| var imgPath = TestHelper.GetFullPathFromDataDir("img001.bmp"); | |||
| var jpegImgPath = TestHelper.GetFullPathFromDataDir("img001.jpeg"); | |||
| var pngImgPath = TestHelper.GetFullPathFromDataDir("img001.png"); | |||
| File.Delete(jpegImgPath); | |||
| File.Delete(pngImgPath); | |||
| var contents = tf.io.read_file(imgPath); | |||
| var bmp = tf.image.decode_image(contents); | |||
| Assert.AreEqual(bmp.name, "decode_image/DecodeImage:0"); | |||
| var jpeg = tf.image.encode_jpeg(bmp); | |||
| var op1 = tf.io.write_file(jpegImgPath, jpeg); | |||
| var png = tf.image.encode_png(bmp); | |||
| var op2 = tf.io.write_file(pngImgPath, png); | |||
| this.session().run(op1); | |||
| this.session().run(op2); | |||
| Assert.IsTrue(File.Exists(jpegImgPath), "not find file:" + jpegImgPath); | |||
| Assert.IsTrue(File.Exists(pngImgPath), "not find file:" + pngImgPath); | |||
| // 如果要测试图片正确性,需要注释下面两行代码 | |||
| File.Delete(jpegImgPath); | |||
| File.Delete(pngImgPath); | |||
| } | |||
| [TestMethod] | |||
| public void ImageFlipTest() | |||
| { | |||
| var imgPath = TestHelper.GetFullPathFromDataDir("img001.bmp"); | |||
| var contents = tf.io.read_file(imgPath); | |||
| var bmp = tf.image.decode_image(contents); | |||
| // 左右翻转 | |||
| var lrImgPath = TestHelper.GetFullPathFromDataDir("img001_lr.png"); | |||
| File.Delete(lrImgPath); | |||
| var lr = tf.image.flip_left_right(bmp); | |||
| var png = tf.image.encode_png(lr); | |||
| var op = tf.io.write_file(lrImgPath, png); | |||
| this.session().run(op); | |||
| Assert.IsTrue(File.Exists(lrImgPath), "not find file:" + lrImgPath); | |||
| // 上下翻转 | |||
| var updownImgPath = TestHelper.GetFullPathFromDataDir("img001_updown.png"); | |||
| File.Delete(updownImgPath); | |||
| var updown = tf.image.flip_up_down(bmp); | |||
| var pngupdown = tf.image.encode_png(updown); | |||
| var op2 = tf.io.write_file(updownImgPath, pngupdown); | |||
| this.session().run(op2); | |||
| Assert.IsTrue(File.Exists(updownImgPath)); | |||
| // 暂时先人工观测图片是否翻转,观测时需要删除下面这两行代码 | |||
| File.Delete(lrImgPath); | |||
| File.Delete(updownImgPath); | |||
| // 多图翻转 | |||
| // 目前直接通过 bmp 拿到 shape ,这里先用默认定义图片大小来构建了 | |||
| var mImg = tf.stack(new[] { bmp, lr }, axis:0); | |||
| print(mImg.shape); | |||
| var up2 = tf.image.flip_up_down(mImg); | |||
| var updownImgPath_m1 = TestHelper.GetFullPathFromDataDir("img001_m_ud.png"); // 直接上下翻转 | |||
| File.Delete(updownImgPath_m1); | |||
| var img001_updown_m2 = TestHelper.GetFullPathFromDataDir("img001_m_lr_ud.png"); // 先左右再上下 | |||
| File.Delete(img001_updown_m2); | |||
| var png2 = tf.image.encode_png(up2[0]); | |||
| tf.io.write_file(updownImgPath_m1, png2); | |||
| png2 = tf.image.encode_png(up2[1]); | |||
| tf.io.write_file(img001_updown_m2, png2); | |||
| // 如果要测试图片正确性,需要注释下面两行代码 | |||
| File.Delete(updownImgPath_m1); | |||
| File.Delete(img001_updown_m2); | |||
| } | |||
| } | |||
| } | |||
| @@ -33,6 +33,40 @@ namespace Tensorflow.Keras.UnitTest | |||
| return ret; | |||
| } | |||
| public void AssertArray(int[] f1, int[] f2) | |||
| { | |||
| bool ret = false; | |||
| for (var i = 0; i < f1.Length; i++) | |||
| { | |||
| ret = f1[i] == f2[i]; | |||
| if (!ret) | |||
| break; | |||
| } | |||
| if (!ret) | |||
| { | |||
| Assert.Fail($"Array not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); | |||
| } | |||
| } | |||
| public void AssertArray(float[] f1, float[] f2) | |||
| { | |||
| bool ret = false; | |||
| var tolerance = .00001f; | |||
| for (var i = 0; i < f1.Length; i++) | |||
| { | |||
| ret = Math.Abs(f1[i] - f2[i]) <= tolerance; | |||
| if (!ret) | |||
| break; | |||
| } | |||
| if (!ret) | |||
| { | |||
| Assert.Fail($"Array float not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); | |||
| } | |||
| } | |||
| public bool Equal(double[] d1, double[] d2) | |||
| { | |||
| bool ret = false; | |||
| @@ -1,6 +1,8 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System.Linq; | |||
| using Tensorflow.NumPy; | |||
| using static Tensorflow.KerasApi; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow.Keras.UnitTest.Layers | |||
| { | |||
| @@ -193,5 +195,128 @@ namespace Tensorflow.Keras.UnitTest.Layers | |||
| Assert.AreEqual(x.dims[2], y.shape[2]); | |||
| Assert.AreEqual(filters, y.shape[3]); | |||
| } | |||
| [TestMethod] | |||
| public void BasicDepthwiseConv2D() | |||
| { | |||
| var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null, | |||
| padding:"same", depthwise_initializer: "ones"); | |||
| var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3)); | |||
| var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||
| var y = conv.Apply(x2); | |||
| print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); | |||
| Assert.AreEqual(4, y.shape.ndim); | |||
| var arr = y.numpy().reshape((2, 9, 9, 3)); | |||
| AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 }); | |||
| AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2457f, 2466f, 2475f }); | |||
| var bn = keras.layers.BatchNormalization(); | |||
| var y2 = bn.Apply(y); | |||
| arr = y2.numpy().ToArray<float>(); | |||
| double delta = 0.0001; // 误差范围 | |||
| Assert.AreEqual(arr[0], 59.97002f, delta); | |||
| Assert.AreEqual(arr[1], 63.96802f, delta); | |||
| } | |||
| [TestMethod] | |||
| public void BasicDepthwiseConv2D_strides_2() | |||
| { | |||
| var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null, | |||
| padding: "same", depthwise_initializer: "ones"); | |||
| var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); | |||
| var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||
| var y = conv.Apply(x2); | |||
| print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); | |||
| Assert.AreEqual(4, y.shape.ndim); | |||
| var arr = y.numpy().reshape((2, 5, 5, 3)); | |||
| AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 }); | |||
| AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2727f, 2736f, 2745f }); | |||
| var bn = keras.layers.BatchNormalization(); | |||
| var y2 = bn.Apply(y); | |||
| arr = y2.numpy().ToArray<float>(); | |||
| double delta = 0.0001; // 误差范围 | |||
| Assert.AreEqual(arr[0], 59.97002f, delta); | |||
| Assert.AreEqual(arr[1], 63.96802f, delta); | |||
| } | |||
| [TestMethod] | |||
| public void BasicDepthwiseConv2D_strides_3() | |||
| { | |||
| var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null, | |||
| padding: "same", depthwise_initializer: "ones"); | |||
| var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); | |||
| var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||
| var y = conv.Apply(x2); | |||
| print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); | |||
| Assert.AreEqual(4, y.shape.ndim); | |||
| var arr = y.numpy().reshape((2, 3, 3, 3)); | |||
| AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 }); | |||
| AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 3267f, 3276f, 3285f }); | |||
| var bn = keras.layers.BatchNormalization(); | |||
| var y2 = bn.Apply(y); | |||
| arr = y2.numpy().ToArray<float>(); | |||
| double delta = 0.0001; // 误差范围 | |||
| Assert.AreEqual(arr[0], 269.86508f, delta); | |||
| Assert.AreEqual(arr[1], 278.8606f, delta); | |||
| } | |||
| [TestMethod] | |||
| public void BasicDepthwiseConv2D_UseBias() | |||
| { | |||
| var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null, | |||
| use_bias: true, padding: "same", | |||
| depthwise_initializer: "ones", | |||
| bias_initializer:"ones" | |||
| ); | |||
| var weight = conv.get_weights(); | |||
| var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3)); | |||
| var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||
| var y = conv.Apply(x2); | |||
| Assert.AreEqual(4, y.shape.ndim); | |||
| var arr = y.numpy().ToArray<float>(); | |||
| Assert.AreEqual(arr[0], 61f); | |||
| Assert.AreEqual(arr[1], 65f); | |||
| var bn = keras.layers.BatchNormalization(); | |||
| var y2 = bn.Apply(y); | |||
| arr = y2.numpy().ToArray<float>(); | |||
| double delta = 0.0001; // 误差范围 | |||
| Assert.AreEqual(arr[0], 60.96952f, delta); | |||
| Assert.AreEqual(arr[1], 64.96752f, delta); | |||
| } | |||
| } | |||
| } | |||
| @@ -20,6 +20,20 @@ namespace TensorFlowNET.UnitTest | |||
| return Math.Abs(f1 - f2) <= tolerance; | |||
| } | |||
| public bool Equal(long[] l1, long[] l2) | |||
| { | |||
| if (l1.Length != l2.Length) | |||
| return false; | |||
| for (var i = 0; i < l1.Length; i++) | |||
| { | |||
| if (l1[i] != l2[i]) | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| public bool Equal(float[] f1, float[] f2) | |||
| { | |||
| bool ret = false; | |||
| @@ -3,6 +3,7 @@ using Tensorflow.NumPy; | |||
| using Tensorflow; | |||
| using static Tensorflow.Binding; | |||
| using System.Linq; | |||
| using Tensorflow.Operations; | |||
| namespace TensorFlowNET.UnitTest.ManagedAPI | |||
| { | |||
| @@ -105,5 +106,321 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
| Assert.IsTrue(Equal(a[0].ToArray<float>().Reverse().ToArray(), b[0].ToArray<float>())); | |||
| Assert.IsTrue(Equal(a[1].ToArray<float>().Reverse().ToArray(), b[1].ToArray<float>())); | |||
| } | |||
| [TestMethod] | |||
| public void ReverseImgArray3D() | |||
| { | |||
| // 创建 sourceImg 数组 | |||
| var sourceImgArray = new float[,,] { | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }; | |||
| var sourceImg = ops.convert_to_tensor(sourceImgArray); | |||
| // 创建 lrImg 数组 | |||
| var lrImgArray = new float[,,] { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }; | |||
| var lrImg = ops.convert_to_tensor(lrImgArray); | |||
| var lr = tf.image.flip_left_right(sourceImg); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr.numpy().ToArray<float>()), "tf.image.flip_left_right fail."); | |||
| var lr2 = tf.reverse(sourceImg, 1); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||
| var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||
| // 创建 udImg 数组 | |||
| var udImgArray = new float[,,] { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }; | |||
| var udImg = ops.convert_to_tensor(udImgArray); | |||
| var ud = tf.image.flip_up_down(sourceImg); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud.numpy().ToArray<float>()), "tf.image.flip_up_down fail."); | |||
| var ud2 = tf.reverse(sourceImg, new Axis(0)); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud2.numpy().ToArray<float>()), "tf.reverse (axis=0) fail."); | |||
| var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=0 fail."); | |||
| } | |||
| [TestMethod] | |||
| public void ReverseImgArray4D() | |||
| { | |||
| // 原图左上角,加一张左右翻转后的图片 | |||
| var m = new float[,,,] { | |||
| { | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }, | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| } | |||
| }; | |||
| var sourceImg = ops.convert_to_tensor(m); | |||
| var lrArray = new float[,,,] { | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 }, | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }, | |||
| { | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| } | |||
| }; | |||
| var lrImg = ops.convert_to_tensor(lrArray); | |||
| // 创建 ud 数组 | |||
| var udArray = new float[,,,] { | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }, | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 } | |||
| } | |||
| } | |||
| }; | |||
| var udImg = ops.convert_to_tensor(udArray); | |||
| var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||
| var ud2 = tf.reverse(sourceImg, new Axis(1)); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||
| var ud = tf.image.flip_up_down(sourceImg); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud.numpy().ToArray<float>()), "tf.image.flip_up_down fail."); | |||
| // 左右翻转 | |||
| var lr = tf.image.flip_left_right(sourceImg); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr.numpy().ToArray<float>()), "tf.image.flip_left_right fail."); | |||
| var lr2 = tf.reverse(sourceImg, 0); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||
| var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||
| } | |||
| [TestMethod] | |||
| public void ReverseImgArray4D_3x3() | |||
| { | |||
| // 原图左上角,加一张左右翻转后的图片 | |||
| var m = new float[,,,] { | |||
| { | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }, | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| } | |||
| }; | |||
| var sourceImg = ops.convert_to_tensor(m); | |||
| var lrArray = new float[,,,] { | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 }, | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }, | |||
| { | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| } | |||
| }; | |||
| var lrImg = ops.convert_to_tensor(lrArray); | |||
| // 创建 ud 数组 | |||
| var udArray = new float[,,,] { | |||
| { | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 237, 28, 36 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| } | |||
| }, | |||
| { { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 } | |||
| }, | |||
| { | |||
| { 255, 255, 255 }, | |||
| { 255, 255, 255 }, | |||
| { 237, 28, 36 } | |||
| } | |||
| } | |||
| }; | |||
| var udImg = ops.convert_to_tensor(udArray); | |||
| var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||
| var ud2 = tf.reverse(sourceImg, new Axis(1)); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||
| var ud = tf.image.flip_up_down(sourceImg); | |||
| Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud.numpy().ToArray<float>()), "tf.image.flip_up_down fail."); | |||
| // 左右翻转 | |||
| var lr = tf.image.flip_left_right(sourceImg); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr.numpy().ToArray<float>()), "tf.image.flip_left_right fail."); | |||
| var lr2 = tf.reverse(sourceImg, 0); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||
| var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); | |||
| Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,44 @@ | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using Tensorflow.NumPy; | |||
| using System; | |||
| using System.Linq; | |||
| using static Tensorflow.Binding; | |||
| using Tensorflow; | |||
| namespace TensorFlowNET.UnitTest.NumPy | |||
| { | |||
| [TestClass] | |||
| public class ShapeTest : EagerModeTestBase | |||
| { | |||
| [Ignore] | |||
| [TestMethod] | |||
| public unsafe void ShapeGetLastElements() | |||
| { | |||
| // test code from function _CheckAtLeast3DImage | |||
| // 之前的 _CheckAtLeast3DImage 有bug,现在通过测试,下面的代码是正确的 | |||
| // todo: shape["-3:"] 的写法,目前有bug,需要修复,单元测试等修复后再放开,暂时先忽略测试 | |||
| var image_shape = new Shape(new[] { 32, 64, 3 }); | |||
| var image_shape_4d = new Shape(new[] { 4, 64, 32, 3 }); | |||
| var image_shape_last_three_elements = new Shape(new[] { | |||
| image_shape.dims[image_shape.dims.Length - 3], | |||
| image_shape.dims[image_shape.dims.Length - 2], | |||
| image_shape.dims[image_shape.dims.Length - 1]}); | |||
| var image_shape_last_three_elements2 = image_shape["-3:"]; | |||
| Assert.IsTrue(Equal(image_shape_last_three_elements.dims, image_shape_last_three_elements2.dims), "3dims get fail."); | |||
| var image_shape_last_three_elements_4d = new Shape(new[] { | |||
| image_shape_4d.dims[image_shape_4d.dims.Length - 3], | |||
| image_shape_4d.dims[image_shape_4d.dims.Length - 2], | |||
| image_shape_4d.dims[image_shape_4d.dims.Length - 1]}); | |||
| var image_shape_last_three_elements2_4d = image_shape_4d["-3:"]; | |||
| Assert.IsTrue(Equals(image_shape_last_three_elements_4d.dims, image_shape_last_three_elements2_4d.dims), "4dims get fail."); | |||
| } | |||
| } | |||
| } | |||